首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
In vertebrates, there are six or more copies of genes related to the Drosophila pattern formation homeodomain gene Distal-less. Among this family, Dlx3 and Dlx5 share extensive sequence homology and have similar, but distinctive, expression patterns, suggesting that these two factors may have substantially redundant developmental functions. Here we show that at the earliest phases of embryogenesis in Xenopus, there are significant differences between Dlx3 and Dlx5 expression and that this correlates with different functions in the restriction of neural crest and neural plate boundaries, respectively.  相似文献   

5.
The Msx and Dlx families of homeobox proteins are important regulators for embryogenesis. Loss of Msx1 in mice results in multiple developmental defects including craniofacial malformations. Although Dlx5 is widely expressed during embryonic development, targeted null mutation of Dlx5 mainly affects the development of craniofacial bones. Msx1 and Dlx5 show overlapping expression patterns during frontal bone development. To investigate the functional significance of Msx1/Dlx5 interaction in regulating frontal bone development, we generated Msx1 and Dlx5 double null mutant mice. In Msx1?/?;Dlx5?/? mice, the frontal bones defect was more severe than that of either Msx1?/? or Dlx5?/? mice. This aggravated frontal bone defect suggests that Msx1 and Dlx5 function synergistically to regulate osteogenesis. This synergistic effect of Msx1 and Dlx5 on the frontal bone represents a tissue specific mode of interaction of the Msx and Dlx genes. Furthermore, Dlx5 requires Msx1 for its expression in the context of frontal bone development. Our study shows that Msx1/Dlx5 interaction is crucial for osteogenic induction during frontal bone development. genesis 48:645–655, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Our laboratory and others have shown that overexpression of Dlx5 stimulates osteoblast differentiation. Dlx5−/−/Dlx6−/− mice have more severe craniofacial and limb defects than Dlx5−/−, some of which are potentially due to defects in osteoblast maturation. We wished to investigate the degree to which other Dlx genes compensate for the lack of Dlx5, thus allowing normal development of the majority of skeletal elements in Dlx5−/− mice. Dlx gene expression in cells from different stages of the osteoblast lineage isolated by FACS sorting showed that Dlx2, Dlx5 and Dlx6 are expressed most strongly in less mature osteoblasts, whereas Dlx3 is very highly expressed in differentiated osteoblasts and osteocytes. In situ hybridization and Northern blot analysis demonstrated the presence of endogenous Dlx3 mRNA within osteoblasts and osteocytes. Dlx3 strongly upregulates osteoblastic markers with a potency comparable to Dlx5. Cloned chick or mouse Dlx6 showed stimulatory effects on osteoblast differentiation. Our results suggest that Dlx2 and Dlx6 have the potential to stimulate osteoblastic differentiation and may compensate for the absence of Dlx5 to produce relatively normal osteoblastic differentiation in Dlx5 knockout mice, while Dlx3 may play a distinct role in late stage osteoblast differentiation and osteocyte function.  相似文献   

7.
8.
The process of endochondral ossification in which the bones of the limb are formed after generation of cartilage models is dependent on a precisely regulated program of chondrocyte maturation. Here, we show that the homeobox-containing gene Dlx5 is expressed at the onset of chondrocyte maturation during the conversion of immature proliferating chondrocytes into postmitotic hypertrophying chondrocytes, a critical step in the maturation process. Moreover, retroviral misexpression of Dlx5 during differentiation of the skeletal elements of the chick limb in vivo results in the formation of severely shortened skeletal elements that contain excessive numbers of hypertrophying chondrocytes which extend into ectopic regions, including sites normally occupied by immature chondrocytes. The expansion in the extent of hypertrophic maturation detectable histologically is accompanied by expanded and upregulated domains of expression of molecular markers of chondrocyte maturation, particularly type X collagen and osteopontin, and by expansion of mineralized cartilage matrix, which is characteristic of terminal hypertrophic differentiation. Furthermore, Dlx5 misexpression markedly reduces chondrocyte proliferation concomitant with promoting hypertrophic maturation. Taken together, these results indicate that Dlx5 is a positive regulator of chondrocyte maturation and suggest that it regulates the process at least in part by promoting conversion of immature proliferating chondrocytes into hypertrophying chondrocytes. Retroviral misexpression of Dlx5 also enhances formation of periosteal bone, which is derived from the Dlx5-expressing perichondrium that surrounds the diaphyses of the cartilage models. This suggests that Dlx5 may be involved in regulating osteoblast differentiation, as well as chondrocyte maturation, during endochondral ossification.  相似文献   

9.
Cranial placodes are focal regions of columnar epithelium next to the neural tube that contribute to sensory ganglia and organs in the vertebrate head, including the olfactory epithelium and the crystalline lens of the eye. Using focal dye labelling within the presumptive placode domain, we show that lens and nasal precursors arise from a common territory surrounding the anterior neural plate. They then segregate over time and converge to their final positions in discrete placodes by apparently directed movements. Since these events closely parallel the separation of eye and antennal primordia (containing olfactory sensory cells) from a common imaginal disc in Drosophila, we investigated whether the vertebrate homologues of Distalless (Dll) and Eyeless (Ey), which determine antennal and eye identity in the fly, play a role in segregation of lens and nasal precursors in the chick. Dlx5 and Pax6 are initially co-expressed by future lens and olfactory cells. As soon as presumptive lens cells acquire columnar morphology all Dlx family members are down-regulated in the placode, while Pax6 is lost in the olfactory region. Lens precursor cells that express ectopic Dlx5 never acquire lens-specific gene expression and are excluded from the lens placode to cluster in the head ectoderm. These results suggest that the loss of Dlx5 is required for cells to adopt a lens fate and that the balance of Pax6 and Dlx expression regulates cell sorting into appropriate placodal domains.  相似文献   

10.
Clinical imperatives for new bone to replace or restore the function of traumatized or bone lost as a consequence of age or disease has led to the need for therapies or procedures to generate bone for skeletal applications. However, current in vitro methods for the differentiation of human bone marrow stromal cells (HBMSCs) do not, to date, produce homogeneous cell populations of the osteogenic or chondrogenic lineages. As epigenetic modifiers are known to influence differentiation, we investigated the effects of the DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) or the histone deacetylase inhibitor trichostatin A (TSA) on osteogenic and chondrogenic differentiation. Monolayer cultures of HBMSCs were treated for 3 days with the 5-aza-dC or TSA, followed by culture in the absence of modifiers. Cells were subsequently grown in pellet culture to determine matrix production. 5-aza-dC stimulated osteogenic differentiation as evidenced by enhanced alkaline phosphatase activity, increased Runx-2 expression in monolayer, and increased osteoid formation in 3D cell pellets. In pellets cultured in chondrogenic media, TSA enhanced cartilage matrix formation and chondrogenic structure. These findings indicate the potential of epigenetic modifiers, as agents, possibly in combination with other factors, to enhance the ability of HBMSCs to form functional bone or cartilage with significant therapeutic implications therein.  相似文献   

11.
The apical ectodermal ridge (AER) is a specialized ectodermal region essential for limb outgrowth. Msx2 expression patterns in limb development strongly suggest an important role for Msx2 in the AER. Our previous studies identified a 348-bp fragment of the chicken Msx2 gene with AER enhancer activity. In this study, the functions of four potential homeodomain binding TAAT sites in this enhancer were studied using transgenic mice and in vitro protein-DNA interactions. Transgenic studies indicate that the four TAAT sites are not redundant and that only the B-TAAT site is critical for AER enhancer activity. The expression patterns of Msx2 and Dlx5 genes in the AER suggest that they might be involved in the regulation of Msx2. In support of this hypothesis, we found that Msx2 and Dlx5 can bind to the B-TAAT site as well as to a fragment containing the D- and E-TAAT sites in the Msx2 AER enhancer sequences. (c)2002 Elsevier Science (USA).  相似文献   

12.
13.
14.
15.
16.
ATF5 loss of function has been shown previously to cause apoptotic cell death in glioblastoma and breast cancer cells but not in non-transformed astrocytes and human breast epithelial cells. The mechanism for the cell type-dependent survival function of ATF5 is unknown. We report here that the anti-apoptotic factor BCL-2 is a downstream target of ATF5 that mediates the prosurvival function of ATF5 in C6 glioma cells and MCF-7 breast cancer cells. ATF5 binds to an ATF5-specific regulatory element that is downstream of and adjacent to the negative regulatory element in the BCL-2 P2 promoter, stimulating BCL-2 expression. Highlighting the critical role of BCL-2 in ATF5-dependent cancer cell survival, expression of BCL-2 blocks death of C6 and MCF-7 cells induced by dominant-negative ATF5, and depletion of BCL-2 impairs ATF5-promoted cell survival. Moreover, we found that BCL-2 expression is not regulated by ATF5 in non-transformed rat astrocytes, mouse embryonic fibroblasts, and human breast epithelial cells, where expression of BCL-2 but not ATF5 is required for cell survival. These findings identify BCL-2 as an essential mediator for the cancer-specific cell survival function of ATF5 in glioblastoma and breast cancer cells and provide direct evidence that the cell type-specific function of ATF5 derives from differential regulation of downstream targets by ATF5 in different types of cells.  相似文献   

17.
18.
《遗传学报》2022,49(6):519-522
Coat protein complex II (COPII)-coated vesicles are responsible for transporting the cargoes from the endoplasmic reticulum (ER) to different destinations. cTAGE5/MEA6 is essential for the development and function of different organs. It regulates the assembly of COPII carrier and cargo trafficking through direct or indirect interaction with COPII components. cTAGE5/MEA6 mainly coordinates with another scaffold protein, TANGO1, to play essential roles in the trafficking and secretion of both large and small cargoes in multiple organs. In this viewpoint, we would like to discuss the molecular mechanisms underlying cTAGE5/MEA6-mediated cargo transport and biological functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号