首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 134 毫秒
1.
The copepod Pseudomyicola spinosus infests marine mussels and other commercial bivalve species. There is a lack of information on the infestation process and on its relationship to size, density, and health of the host. To obtain this information, an infestation study of the copepod in Mytilus galloprovincialis in field conditions was carried out. Results showed that the intensity of infestation is closely related to host size [F((2,810))=198.33; p<0.001], but not to density [F((2,810))=0.96; p<0.38]. After an initial colonization of the host by the infested copepodite stages, an equilibrium between the intensity of the infestation and host size is maintained; mean intensity in small mussels was 1.57, in medium mussels it was 4.23, and in large mussels it was 9.86. Adult stages were observed after a period of 30 days, and ovigerous females were observed after a period of 45 days. Copepods may be found on the branches and mantle (89.5%) and inside the digestive tract (10.5%); in this last case and at the end of the study period some histological disorders were found such as obstruction of the intestine, rupture of the digestive epithelia, and encapsulations around digestive tissues. Most infested mussels showed the lowest meat weight in relation to shell weight; however, the reproductive stage may affect this observation.  相似文献   

2.
A field study has been carried out to validate the measure of structural changes in the digestive lysosomal system of sentinel mussels as biomarkers of environmental stress. Previous laboratory studies demonstrated that the digestive lysosomal system of molluscs reponds to a variety of pollutants and to different stress situations by exhibiting significant changes in its structure. Mussels were collected monthly over 1 year at the Abra estuary (Bizkaia, Biscay Bay) from six sites with different degrees of pollution. The changes in the structure of the digestive lysosomes were quantified on cryostat sections of the digestive gland by means of automated image analysis. Four stereological parameters were recorded: lysosomal volume density, surface density, surface-to-volume ratio and numerical density. A seasonal pattern in the structure of the digestive lysosomes was evidenced with reduced volume, surface, size and numbers of lysosomes in winter-spring; increased volume, surface, size and numbers in summer and an intermediate situation in autumn. The structure of digestive lysosomes was also dissimilar among sites, the most significant differences being found between Plentzia (nonpolluted site) and Galea (polluted site). The digestive lysosomes of mussels collected from Galea were smaller and more abundant than in Plentzia's mussels in most sampling times. The basis of these differences are discussed to conclude that organic chemical pollution might be the cause for these specific changes which are different from the enlargement of digestive lysosomes described as a result of various sources of environmental stress. It is concluded that structural changes in the digestive lysosomes of sentinel mussels are sensitive to pollution-induced environmental stress even in the complex situation of the field where many factors may interact to affect the structure of the digestive lysosomal system.  相似文献   

3.
Green-lipped mussels Perna viridis, collected from Peng Chau, Hong Kong were allotted into two treatment groups, each containing three experimental tanks. The first treatment group comprised of mussels fed with the diatom Thalassiosira pseudonana only, whereas the second treatment group contained mussels fed with the marine rotifer Brachionus plicatilis, which was in turn fed with diatom T. pseudonana. The mussels were fed two times each day over the experimental period of 14 days. On Days 4, 7 and 14, three mussels were collected from each tank of each treatment group and treated as a single replicate. Fatty acid profiles of diatoms, marine rotifers and the three organs (digestive gland, mantle margin and adductor muscle) of the two mussel groups were analyzed. Results showed that monosaturated fatty acid (MUFA) 16:1n7 was conserved along the food chain among diatoms, marine rotifers and green-lipped mussels. This suggested that 16:1n7 or the ratio of 16:1n7 to saturated fatty acid (SFA) 16:0 can be a trophic marker for diatom T. pseudonana and elevated amounts of 16:1n7 in mussels can reflect the dominance of diatoms in its diet. The present results also showed that rotifers could accumulate MUFA 18:1n7 and PUFA 20:4n6 which were transferred up to mussels, especially 18:1n7, as zooplankton have the ability to synthesize or actively accumulate certain fatty acids that they need for growth or reproduction. There was an increase in the amount of 18:1n7 in the digestive gland of mussels fed with rotifers but the level of this fatty acid remained unchanged in those fed with diatoms, further confirming that 18:1n7 can be used as a marker for the presence of rotifers in trophic relationship studies. The relatively faster responses in the digestive gland of mussels to acquire the fatty acid signatures from their food suggested that the fatty acid profiles in the digestive gland can be a good marker to show a short-term fluctuation of food conditions in the marine environment.  相似文献   

4.
1. The seasonal variations in the level of antioxidant compounds (glutathione (GSH), vitamin E, carotenoids) and in the activity of antioxidant enzymes, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), GSH-peroxidase (EC 1.11.1.9) in the digestive gland of mussels (Mytilus sp.) were evaluated. The lipid peroxidation process was also measured by determining the tissue concentration of malondialdehyde (MDA). 2. The physiological fluctuations of the antioxidant defence systems were inversely related to the accumulation of lipid peroxidation products (MDA) in the tissue. The observed seasonal variations are presumably related to the changing metabolic status of the animals, itself dependent on such factors as gonad ripening and food availability. 3. In particular, the obtained data indicate that a reduction of the antioxidant defence systems, occurring during winter, could be directly responsible for an enhanced susceptibility of mussels tissues to oxidative stress, as indicated by the high MDA concentration observed in this period.  相似文献   

5.
Anthropogenic disturbance may affect animal behaviour and should generally be minimised. We examined how anthropogenic disturbance (24 h food deprivation) affected circadian rhythms in laboratory mussels Mytilus edulis exposed to natural light in the absence of tides. Repeated measures data were collected on mussel gape angle, exhalant pumping and valve adduction using a Hall sensor system over eight consecutive 24 h periods when exposed to two feeding conditions after 24 h food deprivation. Mussels (fed once per day at either midday or midnight) exposed to natural light showed a clear day–night rhythm with increased nocturnal activity: significantly greater gape angle, increased exhalant pumping and had significantly higher valve adduction rates. However, circadian rhythms were less clear directly after anthropogenic food deprivation, in terms of the circadian rhythm in gape angle becoming significantly more apparent over the following days. Unlike mussels fed at midnight, those fed at midday displayed no significant change in gape angle from the hour before to the hour after they were fed, i.e. mussels given food at midday reacted to this food less than mussels fed at midnight. We suggest that independent of feeding time, laboratory mussels exposed to natural light and free from anthropogenic disturbance increase feeding activity at night because their circadian rhythms are strongly influenced by light levels. This study emphasises that the behaviour of animals in the laboratory and in the wild can be altered by anthropogenic disturbances such as vibrations caused by experimental setups and artificial illumination at night.  相似文献   

6.
《Comptes rendus biologies》2014,337(7-8):451-458
The biological effect of seasonality on cadmium, lead and metallothionein contents was assessed in mussels Mytilus galloprovincialis from natural banks located along the coastline of the Gulf of Naples (Campania, Italy). Heavy metals and metallothionein concentrations were measured in digestive and reproductive glands. The results showed a clear correlation between metallothionein content and the reproductive gland status determined during the seasons; on the contrary, no correlation was found between metallothionein and metal contents. Data allow us to hypothesize that metallothionein functions go beyond metal detoxification, thus opening new scenarios for these proteins in invertebrates. The effect of seasons on metals concentration in mussel tissues showed similar seasonal patterns between the sites, regardless of their anthropogenic impacts. Cadmium content was not strictly related to seasonal periods, whereas lead content was significantly lower in summer. The results also indicate that the metal contents in mussels from the Gulf of Naples do not represent a risk to human health, even in the period of their maximum accumulation, and that the relaying of mussels before marketing could improve the animal stress conditions, but having a slight effect on metal excretion.  相似文献   

7.
Digestive enzyme activities (amylase, cellulase, laminarinase and protease) were analysed in mussels (Mytilus chilensis) from intertidal and subtidal habitats in Yaldad Bay, Chiloé, Chile. In order to analyse the effects of the past-feeding history (origin) and new nutritional conditions (habitat) on these enzymatic activities, a cross-over transplant was carried out and the analysis performed after a 7-day acclimation period. Crystalline styles showed higher carbohydrase and lower protease activities than digestive glands, with the highest differences recorded for subtidal mussels. Cellulase is the enzyme with the highest activity in both the digestive gland and crystalline style in all the experimental conditions. Intertidal mussels transplanted to a subtidal habitat showed enzyme resources significantly higher than in their original habitat. In the inverse case, mussels transferred from an original subtidal habitat to an intertidal one, a significant decrease in carbohydrase and protease activities was observed. The "past feeding history' is involved in the specific and total carbohydrase and protease activities, with a highly significant effect on amylase and cellulase activities in both the crystalline style and the digestive gland. Laminarinase activity can be interpreted considering the habitat (trophic regime), either individually or interacting with mussels' origin, in relation with the feeding periods. The results establish that in M. chilensis, an investment in enzyme resources is one of the mechanisms employed to optimise the acclimated response in terms of energy gains when variations in the food regime occur.  相似文献   

8.
Toxoplasma gondii is associated with morbidity and mortality in a variety of marine mammals, including fatal meningoencephalitis in the southern sea otter (Enhydra lutris nereis). The source(s) of T. gondii infection and routes of transmission in the marine environment are unknown. We hypothesise that filter-feeding marine bivalve shellfish serve as paratenic hosts by assimilation and concentration of infective T. gondii oocysts and their subsequent predation by southern sea otters is a source of infection for these animals. We developed a TaqMan PCR assay for detection of T. gondii ssrRNA and evaluated its usefulness for the detection of T. gondii in experimentally exposed mussels (Mytilus galloprovincialis) under laboratory conditions. Toxoplasma gondii-specific ssrRNA was detected in mussels as long as 21 days post-exposure to T. gondii oocysts. Parasite ssrRNA was most often detected in digestive gland homogenate (31 of 35, i.e. 89%) compared with haemolymph or gill homogenates. Parasite infectivity was confirmed using a mouse bioassay. Infections were detected in mice inoculated with any one of the mussel sample preparations (haemolymph, gill, or digestive gland), but only digestive gland samples remained bioassay-positive for at least 3 days post-exposure. For each time point, the total proportion of mice inoculated with each of the different tissues from T. gondii-exposed mussels was similar to the proportion of exposed mussels from the same treatment groups that were positive via TaqMan PCR. The TaqMan PCR assay described here is now being tested in field sampling of free-living invertebrate prey species from high-risk coastal locations where T. gondii infections are prevalent in southern sea otters.  相似文献   

9.
Two aspects of mating effects on the fecundity, sex ratio and longevity of Neoseiulus cucumeris (Acari: Phytoseiidae) were examined in laboratory experiments: (1) females mated by one, two or three different males (unmated and 3 days old) at 5-day intervals, and (2) females mated by males with different age/mating status (number of females mated previously by the male). Females allowed to mate with a second or third male at 5-day intervals produced 39 eggs on average, but those mated with a single male produced 28 eggs on average. Matings with additional males 5 or 10 days after the first male increased the duration of the oviposition period of these females by 5–7 days and at the same time reduced the post-oviposition period by about 10 days. Overall, females with additional matings by one or two different males at 5-day intervals survived a few days shorter than females without additional males. Mating with a different female each day, a male of N. cucumeris could mate with 5–8 females, which produced a total of 85–116 eggs: females mated with a male during days 1 and 2 in its adulthood and with a male of the last 2 days of life (days 7 and 8) produced about half as many eggs as females mated with a male during 3–6 days of its adulthood. Females mated with males that are too young or too old had a shorter oviposition period and a longer post-oviposition period and longevity than females mated with middle-aged males. In both experiments, rates of oviposition remained similar in females with high or low fecundity. This indicates that in both cases, the increased fecundity is due to the extension of the oviposition period through additional sperm supplied by the second male and or third male (in experiment 1) or more sperm by males not too young nor too old (experiment 2).  相似文献   

10.
Environmental stressors as well as the direct or combined effects of pollutants could be harmful to the populations living in a marine environment and the reproductive and nutritive processes could be impaired in a deteriorating environment. Sublethal effects of pollutants were studied in the blue mussel Mytilus edulis L., a good bioaccumulator of contaminants. Blue mussels of 3.5 cm were sampled on a rocky substrate at Pointe-Mitis (48° 40N, 68° 02W) along the coast of the St-Lawrence estuary. Mussels were placed in experimental tanks, fed, supplemented with mineral salts and continuous sea water flow and kept 72 h before the exposure to 0.01 µg l–1 and 0.3 µg l–1 methylmercury hydroxide in the presence or absence of selenium, at a concentration of 125 µg l–1, a possible antagonist of methylmercury. The contamination protocol was performed during 45 days and a 14 day period of recuperation was allowed. The stress caused by the transplantation of mussels in the laboratory tanks and/or by the presence of pollutants was evaluated by a general indicator of stress developed in our laboratory, the measure of the lysosomal membrane fragility (LMF) of the digestive gland, according to the method developed by Moore (1976). The effects of contamination on metabolism were measured by the study of the variations of the malate dehydrogenase activity (MDH), a key enzyme of the aerobic metabolism. The first days of the contamination period led to an increased metabolism in the mantle and to a detoxifying mechanism in the hepatopancreas. At days 22 and 29 of the experiment, the affinity of the MDH was greatly decreased with both concentrations of methylmercury and selenium, suggesting a competitive inhibition of the enzymatic activity by the pollutants. LMF increased as the mussels were kept longer in the tanks. Methylmercury increased the stress undergone by the mussels. LMF gives information about the degree of stress of the organism while the biochemical indicator informs about the metabolic effects of sublethal concentrations of pollutants.  相似文献   

11.
The effect of different conditions of transfer (+;1 °C withwater, +20 °C with and without water) from the natural habitatand laboratory acclimation procedure (with and without bottomsediment) on the acid-base and electrolyte status of the freshwateruniomd mussel Anodonta anatina (L.) was studied. The shift inthe acid-base status of A. anatina during the transfer was smallerat 1°C than at 20°C. The pO2 content of the haemolymphdeclined significantly under all three transfer conditions.Neither the transfer nor the laboratory acclimation affectedhaemolymph [Na+]. However, during transfer at 1°C the haemolyraph[Ca2+] did not change, whereas [K+] increased up to three fold.Haemolymph [Ca2+] increased when mussels were transferred at20°C After a 17-day aquarium acclimation, the pO2 of all the musselskept in the sediment had returned to the field level and thetransfer seemed to have had no effect on the pCH of the haemolymph.Conversely, in the groups kept without sediment, the pO2 continuouslyremained above the field level. Whereas the [K+] of all themussels declined to the field level, the haemolymph [Ca2+] remainedelevated throughout the entire acclimation period of 17 days. (Received 22 May 1995; accepted 20 October 1995)  相似文献   

12.
  • 1.1. The seasonal variations in the level of antioxidant compounds (glutathione (GSH), vitamin E, carotenoids) and in the activity of antioxidant enzymes, Superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), GSH-peroxidase (EC 1.11.1.9) in the digestive gland of mussels (Mytilus sp.) were evaluated. The lipid peroxidation process was also measured by determining the tissue concentration of malondialdehyde (MDA).
  • 2.2. The physiological fluctuations of the antioxidant defence systems were inversely related to the accumulation of lipid peroxidation products (MDA) in the tissue. The observed seasonal variations are presumably related to the changing metabolic status of the animals, itself dependent on such factors as gonad ripening and food availability.
  • 3.3. In particular, the obtained data indicate that a reduction of the antioxidant defence systems, occurring during winter, could be directly responsible for an enhanced susceptibility of mussels tissues to oxidative stress, as indicated by the high MDA concentration observed in this period.
  相似文献   

13.
The Laurentian Great Lakes have been subject to numerous introductions of nonindigenous species, including two recent benthic fish invaders, Eurasian ruffe (Gymnocephalus cernuus) and round gobies (Neogobius melanostomus), as well as the benthic bivalve, zebra mussel (Dreissena polymorpha). These three exotic species, or “exotic triad,” may impact nearshore benthic communities due to their locally high abundances and expanding distributions. Laboratory experiments were conducted to determine (1) whether ruffe and gobies may compete for habitat and invertebrate food in benthic environments, and (2) if zebra mussels can alter those competitive relationships by serving as an alternate food source for gobies. In laboratory mesocosms, both gobies and ruffe preferred cobble and macrophyte areas to open sand either when alone or in sympatry. In a 9-week goby–ruffe competition experiment simulating an invasion scenario with a limited food base, gobies grew faster than did ruffe, suggesting that gobies may be competitively superior at low resource levels. When zebra mussels were added in a short-term experiment, the presence or absence of mussels did not affect goby or ruffe growth, as few zebra mussels were consumed. This finding, along with other laboratory evidence, suggests that gobies may prefer soft-bodied invertebrate prey over zebra mussels. Studies of interactions among the “exotic triad”, combined with continued surveillance, may help Great Lakes fisheries managers to predict future population sizes and distributions of these invasive fish, evaluate their impacts on native food webs, and direct possible control measures to appropriate species.  相似文献   

14.
The blue mussel (Mytilus edulis) is a suspension feeder which has been used in gut-microbiome surveys. Although raw 16S sequence data are often publicly available, unifying secondary analyses are lacking. The present work analysed raw data from seven projects conducted by one group over 7 years. Although each project had different motivations, experimental designs and conclusions, all selected samples were from the guts of M. edulis collected from a single location in Long Island Sound. The goal of this analysis was to determine which independent factors (e.g., collection date, depuration status) were responsible for governing composition and diversity in the gut microbiomes. Results indicated that whether mussels had undergone depuration, defined here as voidance of faeces in a controlled, no-food period, was the primary factor that governed gut microbiome composition. Gut microbiomes from non-depurated mussels were mixtures of resident and transient communities and were influenced by temporal factors. Resident communities from depurated mussels were influenced by the final food source and length of time host mussels were held under laboratory conditions. These findings reinforce the paradigm that gut microbiota are divided into resident and transient components and suggest that depuration status should be taken into consideration when designing and interpreting future experiments.  相似文献   

15.
Mussel seed (Mytilusgalloprovincialis) gathered from the intertidal and subtidal environments of a Galician embayment (NW, Spain) were maintained in the laboratory during five months to select fast (F) and slow (S) growing mussels. The physiological basis underlying inter-individual growth variations were compared for F and S mussels from both origins. Fast growing seemed to be a consequence of greater energy intake (20% higher clearance and ingestion rate) and higher food absorption rate coupled with low metabolic costs. The enhanced energy absorption (around 65% higher) resulted in 3 times higher Scope for Growth in F mussels (20.5±4.9 J h−1) than S individuals (7.3±1.1 J h−1). The higher clearance rate of F mussels appears to be linked with larger gill filtration surface compared to S mussels. Intertidal mussels showed higher food acquisition and absorption per mg of organic weight (i.e. mass-specific standardization) than subtidal mussels under the optimal feeding conditions of the laboratory. However, the enhanced feeding and digestive rates were not enough to compensate for the initial differences in tissue weight between mussels of similar shell length collected from the intertidal and subtidal environments. At the end of the experiment, subtidal individuals had higher gill efficiency, which probably lead to higher total feeding and absorption rates relative to intertidal individuals.  相似文献   

16.
Experiments were undertaken to determine the tissue distribution of Escherichia coli and a coliphage after contamination of the common mussel (Mytilus edulis). Mussels were contaminated with high levels of feces-associated E. coli and a 22-nm icosahedral coliphage over a 2-day period in a flowing-seawater facility. After contamination, individual tissues were carefully dissected and assayed for E. coli and the coliphage. Contaminated mussels were also analyzed to determine the tissue distribution of the contaminants after 24- and 48-h depuration periods. The majority of each contaminant was located in the digestive tract (94 and 89% of E. coli and coliphage, respectively). Decreasing concentrations were found in the gills and labial palps, foot and muscles, mantle lobes, and hemolymph. Our results indicate that contamination above levels in water occurred only in the digestive tract. Contaminated mussels were depurated in a commercial-scale recirculating UV depuration system over a 48-h period. The percent reductions of E. coli occurred in the following order: digestive tract, hemolymph, foot and muscles, mantle lobes, and gills and labial palps. The percent reductions of the coliphage were different, occurring in the following order: hemolymph, foot and muscles, gills and labial palps, mantle lobes, and digestive tract. Our results clearly demonstrate that E. coli and the coliphage are differentially eliminated from the digestive tract. The two microorganisms are eliminated at similar rates from the remaining tissues. Our results also clearly show that the most significant coliphage retention after depuration for 48 h is in the digestive tract. Thus, conventional depuration practices are inappropriate for efficient virus elimination from mussels.  相似文献   

17.
The morphology of the digestive tract of three species of gerbils characterized by different food specialization—Rhombomys opimus, Meriones tamariscinus and M. meridianus—is considered. The correlation between areas of glandular and cornified epithelium is variable and depends greatly on the type of stomach filling and distribution of food mass in it. The bordering fold and ileocecal junction is not only able to isolate the forestomach and caecum significantly but also may be a mechanism of regulation of food movement through the digestive tract. The close location of ileum’s opening to the caecum and its outlet to the colon, as well as isolation of caecum’s cavity by a circular fold, could provide direct food transit from the ileum to the colon.  相似文献   

18.
Experiments were undertaken to determine the tissue distribution of Escherichia coli and a coliphage after contamination of the common mussel (Mytilus edulis). Mussels were contaminated with high levels of feces-associated E. coli and a 22-nm icosahedral coliphage over a 2-day period in a flowing-seawater facility. After contamination, individual tissues were carefully dissected and assayed for E. coli and the coliphage. Contaminated mussels were also analyzed to determine the tissue distribution of the contaminants after 24- and 48-h depuration periods. The majority of each contaminant was located in the digestive tract (94 and 89% of E. coli and coliphage, respectively). Decreasing concentrations were found in the gills and labial palps, foot and muscles, mantle lobes, and hemolymph. Our results indicate that contamination above levels in water occurred only in the digestive tract. Contaminated mussels were depurated in a commercial-scale recirculating UV depuration system over a 48-h period. The percent reductions of E. coli occurred in the following order: digestive tract, hemolymph, foot and muscles, mantle lobes, and gills and labial palps. The percent reductions of the coliphage were different, occurring in the following order: hemolymph, foot and muscles, gills and labial palps, mantle lobes, and digestive tract. Our results clearly demonstrate that E. coli and the coliphage are differentially eliminated from the digestive tract. The two microorganisms are eliminated at similar rates from the remaining tissues. Our results also clearly show that the most significant coliphage retention after depuration for 48 h is in the digestive tract. Thus, conventional depuration practices are inappropriate for efficient virus elimination from mussels.  相似文献   

19.
Time-place learning in food-restricted Nile tilapia   总被引:1,自引:0,他引:1  
Time-place learning based on food association was investigated in eight food-restricted Nile tilapias. Each fish was individually housed for 10 days in an experimental tank for adjustments to laboratory conditions, and fed daily in excess. Feeding was then interrupted for 17 days. Training was then started, based on a food-restricted regime in a tank divided into three interconnected compartments. Daily food was offered in one compartment (left or right side) of the tank in the morning and on the opposite side in the afternoon, for a continuous 30-day period. Frequency of choices on the right side was measured on days 10, 20 and 30 (during these test days, fish were not fed). Following this 30-day conditioning period, the Nile tilapias were able to switch sides at the correct period of the day to get food, suggesting that food restriction facilitates time-place learning discrimination.  相似文献   

20.
Oxidative stress can take place in marine bivalves under a series of environmental adverse conditions. The study of different systems related to oxidative stress in these organisms can give important information about their physiological status and also about environmental health. Bivalves have been proposed as good sentinel organisms in pollution monitoring studies through the analysis of biochemical biomarkers, and most of the biomarkers analyzed are those related to oxidative stress. However, it is very important to know how other environmental factors not associated to the presence of pollutants might affect these parameters. We have studied a series of mechanisms related to oxidative stress in mussels which inhabit the Brazilian coast, especially in Perna perna species, subjected to different stress conditions, such as the exposure to different contaminants in the laboratory and in the field, the exposure of mussels to air and re-submersion, simulating the tidal oscillations, and in mussels collected at different seasons. Both oxidative damage levels and antioxidant defense systems were strongly affected by the different environmental stress. This review summarizes the data obtained in some studies carried out in bivalves from the Brazilian coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号