首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kalanchoë daigremontiana, a CAM plant grown in a greenhouse, was subjected to severe water stress. The changes in photosystem II (PSII) photochemistry were investigated in water‐stressed leaves. To separate water stress effects from photoinhibition, water stress was imposed at low irradiance (daily peak PFD 150 μmol m?2 s?1). There were no significant changes in the maximal efficiency of PSII photochemistry (Fv/Fm), the traditional fluorescence induction kinetics (OIP) and the polyphasic fluorescence induction kinetics (OJIP), suggesting that water stress had no direct effects on the primary PSII photochemistry in dark‐adapted leaves. However, PSII photochemistry in light‐adapted leaves was modified in water‐stressed plants. This was shown by the decrease in the actual PSII efficiency (ΦPSII), the efficiency of excitation energy capture by open PSII centres (Fv′/Fm′), and photochemical quenching (qP), as well as a significant increase in non‐photochemical quenching (NPQ) in particular at high PFDs. In addition, photoinhibition and the xanthophyll cycle were investigated in water‐stressed leaves when exposed to 50% full sunlight and full sunlight. At midday, water stress induced a substantial decrease in Fv/Fm which was reversible. Such a decrease was greater at higher irradiance. Similar results were observed in ΦPSII, qP, and Fv′/Fm′. On the other hand, water stress induced a significant increase in NPQ and the level of zeaxanthin via the de‐epoxidation of violaxanthin and their increases were greater at higher irradiance. The results suggest that water stress led to increased susceptibility to photoinhibition which was attributed to a photoprotective process but not to a photodamage process. Such a photoprotection was associated with the enhanced formation of zeaxanthin via de‐epoxidation of violaxanthin. The results also suggest that thermal dissipation of excess energy associated with the xanthophyll cycle may be an important adaptive mechanism to help protect the photosynthetic apparatus from photoinhibitory damage for CAM plants normally growing in arid and semi‐arid areas where they are subjected to a combination of water stress and high light.  相似文献   

2.
光强转换对不同生长环境下桑树叶片光化学效率的影响   总被引:3,自引:0,他引:3  
以桑树品种‘蒙古桑’为试验材料,利用叶绿素荧光技术研究了光强转换对生长在不同光强下的桑树叶片实际光化学效率(ΦPSⅡ)、电子传递速率(ETR)和非光化学淬灭(NPQ)的影响,分析了非光化学淬灭(NPQ)3个组分的变化.结果表明:当光强从黑暗或弱光转换到自然光条件下,自然光桑树叶片的光量子转化效率高于弱光叶片,ΦPSⅡ、ETR诱导平衡较快,NPQ诱导呈先升后降趋势.自然光叶片在强光下状态转换淬灭组分(qT)占NPQ的18%,而弱光叶片qT仅占NPQ的7%.与弱光桑树叶片相比,自然光桑树叶片可以通过较高的光量子转化效率和较强的调节激发能在PSⅠ和PSⅡ之间的分配能力来适应光强的变化.  相似文献   

3.
We aimed to find out relations among nonphotochemical quenching (NPQ), gross photosynthetic rate (P G), and photoinhibition during photosynthetic light induction in three woody species (one pioneer tree and two understory shrubs) and four ferns adapted to different light regimes. Pot-grown plants received 100% and/or 10% sunlight according to their light-adaptation capabilities. After at least four months of light acclimation, CO2 exchange and chlorophyll fluorescence were measured simultaneously in the laboratory. We found that during light induction the formation and relaxation of the transient NPQ was closely related to light intensity, light-adaption capability of species, and P G. NPQ with all treatments increased rapidly within the first 1–2 min of the light induction. Thereafter, only species with high P G and electron transport rate (ETR), i.e., one pioneer tree and one mild shade-adapted fern, showed NPQ relaxing rapidly to a low steady-state level within 6–8 min under PPFD of 100 μmol(photon) m?2 s?1 and ambient CO2 concentration. Leaves with low P Gand ETR, regardless of species characteristics or inhibition by low CO2 concentration, showed slow or none NPQ relaxation up to 20 min after the start of low light induction. In contrast, NPQ increased slowly to a steady state (one pioneer tree) or it did not reach the steady state (the others) from 2 to 30 min under PPFD of 2,000 μmol m?2 s?1. Under high excess of light energy, species adapted to or plants acclimated to high light exhibited high NPQ at the initial 1 or 2 min, and showed low photoinhibition after 30 min of light induction. The value of fastest-developing NPQ can be quickly and easily obtained and might be useful for physiological studies.  相似文献   

4.
The effects of drought stress and high irradiance and their combination were studied under laboratory conditions using young plants of a very drought-resistant variety, ICMH 451, of pearl millet (Pennisetum glaucum) and three varieties of sorghum (Sorghum bicolor)—one drought-resistant from India, one drought-tolerant from Texas, and one drought-sensitive variety from France. CO2 assimilation rates and photosystem II fluorescence in leaves were analyzed in parallel with photosynthetic electron transport, photosystem II fluorescence, and chlorophyll-protein composition in chloroplasts isolated from these leaves. High irradiance slightly increased CO2 assimilation rates and electron transport activities of irrigated plants but not fluorescence. Drought stress (less than −1 megapascal) decreased CO2 assimilation rates, fluorescence, and electron transport. Under the combined effects of drought stress and high irradiance, CO2 assimilation rates and fluorescence were severely inhibited in leaves, as were the photosynthetic electron transport activities and fluorescence in chloroplasts (but not photosystem I activity). The synergistic or distinctive effect of drought and high irradiance is discussed. The experiments with pearl millet and three varieties of sorghum showed that different responses of plants to drought and light stresses can be monitored by plant physiological and biochemical techniques. Some of these techniques may have a potential for selection of stress-resistant varieties using seedlings.  相似文献   

5.
Seasonal variability of maximum quantum yield of PSII photochemistry (Fv/Fm) was studied in needles of Taxus baccata seedlings acclimated to full light (HL, 100% solar irradiance), medium light (ML, 18% irradiance) or low light (LL, 5% irradiance). In HL plants, Fv/Fm was below 0.8 (i.e. state of photoinhibition) throughout the whole experimental period from November to May, with the greatest decline in January and February (when Fv/Fm value reached 0.37). In ML seedlings, significant declines of Fv/Fm occurred in January (with the lowest level at 0.666), whereas the decline in LL seedlings (down to 0.750) was not significant. Full recovery of Fv/Fm in HL seedlings was delayed until the end of May, in contrast to ML and LL seedlings. Fv/Fm was significantly correlated with daily mean (T mean), maximal (T max) and minimal (T min) temperature and T min was consistently the best predictor of Fv/Fm in HL and ML needles. Temperature averages obtained over 3 or 5 days prior to measurement were better predictors of Fv/Fm than 1- or 30-day averages. Thus our results indicate a strong light-dependent seasonal photoinhibition in needles of T. baccata as well as suggest a coupling of Fv/Fm to cumulative temperature from several preceding days. The dependence of sustained winter photoinhibition on light level to which the plants are acclimated was further demonstrated when plants from the three light environments were exposed to full daylight over single days in December, February and April and Fv/Fm was followed throughout the day to determine residual sensitivity of electron transport to ambient irradiance. In February, the treatment revealed a considerable midday increase in photoinhibition in ML plants, much less in HL (already downregulated) and none in LL plants. This suggested a greater capacity for photosynthetic utilization of electrons in LL plants and a readiness for rapid induction of photoinhibition in ML plants. Further differences between plants acclimated to contrasting light regimes were revealed during springtime de-acclimation, when short term regeneration dynamics of Fv/Fm and the relaxation of nonphotochemical quenching (NPQ) indicated a stronger persistent thermal mechanism for energy dissipation in HL plants. The ability of Taxus baccata to sustain winter photoinhibition from autumn until late spring can be beneficial for protection against an excessive light occurring together with frosts but may also restrict photosynthetic carbon gain by this shade-tolerant species when growing in well illuminated sites.  相似文献   

6.
We investigated the effects of leaf color change in the fall on photosynthetic production and nitrogen resorption. Seedlings of Acer platanoides L. and A. saccharum Marsh. were grown in a shade house for 5 months in either 21 % (intermediate light, M) or 4.9 % (low light, L) of incident irradiance. After this period, a subset of the intermediate-light grown seedlings was transferred to a high-light stress treatment (H). Gas exchange, chlorophyll fluorescence, pigments, antioxidant activity, and nitrogen (N) resorption were examined at three leaf senescence stages during September and October. Our results show that plants of both species produce more anthocyanins in the H treatment. In comparison with plants grown in the L and M treatments, plants of both species in the H treatments had lower chlorophyll, carotenoid and chlorophyll fluorescence parameters (F v/F m, Φ PSII, NPQ and ETR) at the third sampling date (October 12–18), and indicating higher levels of photoinhibition in the seedlings exposed to high light. Our results imply that autumn leaf redness is inducible and closely linked to photo-oxidative stress. However, anthocyanins did not enhance antioxidant capacity in red leaves in either species, when exposed to high light. For both species, our results showed a higher N-resorption for high-light stressed plants. We also observed that the number of abscised leaves at the second sampling dates (September 10) was higher than at the third sampling dates. The intra-leaf distribution of anthocyanin, the association between anthocyanin production and the high-light environments, the retention of red leaves, the substantial physiological gain of photosynthetic activity, as well as the links between anthocyanins and increased N resorption led us to assume that one primary role of autumn anthocyanin could be to protect the photosynthetic apparatus from photo-oxidative damage as light filters rather than as antioxidant. Another major role is to extend carbon capture and help supply the energy needed for N resorption from senescing leaves in both A. saccharum and A. Platanoides during high-light stress. Nevertheless, photoprotective capacity of anthocyanins was not able to fully compensate for photoinhibitory stress as the anthocyanins are not optimally located to efficiently reduce light within the leaves.  相似文献   

7.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

8.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was characterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then declined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dissipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than −21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon rewatering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation.  相似文献   

9.
Winter wheat is a grass species widely planted in northern and central China, where the increase of aerosols, air pollutants and population density are causing significant reduction in solar irradiance. In order to investigate the adaptation of winter wheat (Triticum aestivum L., cv. Yangmai 13) to low irradiance conditions occurring in the downstream plain of the Yangtze River (China), plants were subjected to four solar irradiance treatments (100%, 60%, 40%, and 20% of environmental incident solar irradiance). Significant increases in chlorophyll (Chl) and xanthophyll (Xan) pigments, and decreases in Chl a/b and Xan/Chl ratios were observed in plants under low light. Light-response curves showed higher net photosynthetic rates (P N) in fully irradiated plants, that also showed a higher light-compensation point. Shaded plants maintained high values of minimal fluorescence of dark-adapted state (Fo) and maximum quantum efficiency of PSII photochemistry (Fv/Fm) that assess a lower degree of photoinhibition under low light. Reduced irradiance caused decreases in effective quantum yield of PSII photochemistry (ΦPSII), electron transport rate (ETR), and nonphotochemical quenching coefficient (qN), and the promotion of excitation pressure of PSII (1 − qP). The activities of the antioxidant enzymes superoxide dismutase and peroxidase were high under reduced light whereas no light-dependent changes in catalase activity were observed. Thiobarbituric acid reactive species content and electrolyte leakage decreased under shaded plants that showed a lower photooxidative damage. The results suggest that winter wheat cv. Yangmai 13 is able to maintain a high photosynthetic efficiency under reduced solar irradiance and acclimates well to shading tolerance. The photosynthetic and antioxidant responses of winter wheat to low light levels could be important for winter wheat cultivation and productivity.  相似文献   

10.
The effect of high levels of natural light on leaf photosynthesisin olive trees (Olea europaea L. var. Coratina), grown in potsoutdoors in the summer and subjected to water, stress, was studied.Net photosynthetic rates reached maximum values early in themorning in both control and stressed plants and subsequentlydeclined gradually. This inactivation of photosynthetic activitywas accompanied by changes in the fluorescence characteristicsof the upper intact leaf surface. The maximum fluorescence yield(Fp) and the ratio Fv/Fp decreased at midday especially in water-stressedplants, but the initial fluorescence (Fo) rose to a maximumvalue at midday and declined again in the afternoon. In controlplants the values of maximum fluorescence Fp and the ratio Fv/Fpincreased again in the afternoon and had recovered almost completelyby 8 p.m. as the leaf water potential recovered. In stressedplants this diurnal recovery was not complete, so that the photosyntheticrates and the ratio Fv/Fp declined gradually during the developmentof water stress. These results indicate that in olive treessubjected to severe water stress the non-stomatal componentof photosynthesis was affected and perhaps a light-dependentinactivation of the primary photochemistry associated with photosystemII (PSII) occurred. Four to five days after rewatering severelystressed plants, the predawn leaf water potential, net photosyntheticrates and chlorophyll fluorescence indices recovered only partially. Key words: Olea europaea, photosynthesis, water stress, chlorophyll a fluorescence, inhibition of photosynthesis  相似文献   

11.
Xu  C.-C.  Lin  R.-C.  Li  L.-B.  Kuang  T.-Y. 《Photosynthetica》2000,38(2):221-226
The mechanistic basis for protection of exogenous ascorbate against photoinhibition at low temperature was examined in leaves of rice (Oryza sativa L.). Exposure of intact leaves to chilling temperature resulted in a drastic decrease in the speed of development of non-photochemical fluorescence quenching (NPQ). This was related to the low temperature-imposed restriction on the formation of the fast relaxing component of NPQ (qf). Feeding with 20 mM ascorbate markedly increased the rate of qf development at chilling temperature due primarily to the enhanced rate of zeaxanthin (Z) formation. On the other hand, ascorbate feeding had no influence on photosystem 2 (PS2)-driven electron flow. The reduced state of the PS2 primary electron acceptor QA decreased in ascorbate-fed leaves exposed to high irradiance at chilling temperature owing to the increased Z-associated thermal energy dissipation in the light-harvesting antenna system of PS2. Furthermore, ascorbate feeding increased the photosynthetic apparatus of rice leaves to resist photoinhibition at low temperature. The protective effect of exogenous ascorbate was fully accounted for by the enhanced xanthophyll cycle activity.  相似文献   

12.
A tomato (Lycopersicon esculentum Mill.) zeaxanthin epoxidase gene (LeZE) was isolated and antisense transgenic tomato plants were produced. Northern, southern, and western blot analyses demonstrated that antisense LeZE was transferred into the tomato genome and the expression of LeZE was inhibited. The ratio of (A+Z)/(V+A+Z) in antisense transgenic plants was maintained at a higher level than in the wild type (WT) plants under high light and chilling stress with low irradiance. The value of non-photochemical quenching (NPQ) in WT and transgenic plants was not affected during the stresses. The oxidizable P700 and the maximal photochemical efficiency of PSII (Fv/Fm) in transgenic plants decreased more slowly at chilling temperature under low irradiance. These results suggested that suppression of LeZE caused zeaxanthin accumulation, which was helpful in alleviating photoinhibition of PSI and PSII in tomato plants under chilling stress.  相似文献   

13.
Drought is a major cause of losses in crop yield. Under field conditions, plants exposed to drought are usually also experiencing rapid changes in light intensity. Accordingly, plants need to acclimate to both, drought and light stress. Two crucial mechanisms in plant acclimation to changes in light conditions comprise thylakoid protein phosphorylation and dissipation of light energy as heat by non-photochemical quenching (NPQ). Here, we analyzed the acclimation efficacy of two different wheat varieties, by applying fluctuating light for analysis of plants, which had been subjected to a slowly developing drought stress as it usually occurs in the field. This novel approach allowed us to distinguish four drought phases, which are critical for grain yield, and to discover acclimatory responses which are independent of photodamage. In short-term, under fluctuating light, the slowdown of NPQ relaxation adjusts the photosynthetic activity to the reduced metabolic capacity. In long-term, the photosynthetic machinery acquires a drought-specific configuration by changing the PSII-LHCII phosphorylation pattern together with protein stoichiometry. Therefore, the fine-tuning of NPQ relaxation and PSII-LHCII phosphorylation pattern represent promising traits for future crop breeding strategies.  相似文献   

14.
Reaumuria soongorica (Pall.) Maxim., a perennial semi-shrub, is widely found in semi-arid areas in northwestern China and can survive severe desiccation of its vegetative organs. In order to study the protective mechanism of desiccation tolerance in R. soongorica, diurnal patterns of net photosynthetic rate (Pn), water use efficiency (WUE) and chlorophyll fluorescence parameters of Photosystem II (PSII), and sugar content in the source leaf and stem were investigated in 6-year-old plants during progressive soil drought imposed by the cessation of watering. The results showed that R. soongorica was characterized by very low leaf water potential, high WUE, photosynthesis and high accumulation of sucrose in the stem and leaf abscission under desiccation. The maximum Pn increased at first and then declined during drought, but intrinsic WUE increased remarkably in the morning with increasing drought stress. The maximal photochemical efficiency of PSII (Fv/Fm) and the quantum efficiency of noncyclic electric transport of PSII(ΦPSII) decreased significantly under water stress and exhibited an obvious phenomenon of photoinhibition at noon. Drought stressed plants maintained a higher capacity of dissipation of the excitation energy (measured as NPQ) with the increasing intensity of stress. Conditions of progressive drought promoted sucrose and starch accumulation in the stems but not in the leaves. However, when leaf water potential was less than −21.3 MPa, the plant leaves died and then abscised. But the stem photosynthesis remained and, afterward the plants entered the dormant state. Upon rewatering, the shoots reactivated and the plants developed new leaves. Therefore, R. soongorica has the ability to reduce water loss through leaf abscission and maintain the vigor of the stem cells to survive desiccation. Supported by the Program of the Research of Vegetation Restoration in Arid Areas of Lanzhou (Grant No. 03-2-27) and the National Natural Science Foundation of China (Grant No. 30270243)  相似文献   

15.
Photoinactivation of Photosystem (PS) II in vivo was investigated by cumulative exposure of pea, rice and spinach leaves to light pulses of variable duration from 2 to 100 s, separated by dark intervals of 30 min. During each light pulse, photosynthetic induction occurred to an extent depending on the time of illumination, but steady-state photosynthesis had not been achieved. During photosynthetic induction, it is clearly demonstrated that reciprocity of irradiance and duration of illumination did not hold: hence the same cumulative photon exposure (mol m–2) does not necessarily give the same extent of photoinactivation of PS II. This contrasts with the situation of steady-state photosynthesis where the photoinactivation of PS II exhibited reciprocity of irradiance and duration of illumination (Park et al. (1995) Planta 196: 401–411). We suggest that, for reciprocity to hold between irradiance and duration of illumination, there must be a balance between photochemical (qP) and non-photochemical (NPQ) quenching at all irradiances. The index of susceptibility to light stress, which represents an intrinsic ability of PS II to balance photochemical and non-photochemical quenching, is defined by the quotient (1-qP)/NPQ. Although constant in steady-state photosynthesis under a wide range of irradiance (Park et al. (1995). Plant Cell Physiol 36: 1163–1169), this index of susceptibility for spinach leaves declined extremely rapidly during photosynthetic induction at a given irradiance, and, at a given cumulative photon exposure, was dependent on irradiance. During photosynthetic induction, only limited photoprotective strategies are developed: while the transthylakoid pH gradient conferred some degree of photoprotection, neither D1 protein turnover nor the xanthophyll cycle was operative. Thus, PS II is more easily photoinactivated during photosynthetic induction, a phenomenon that may have relevance for understorey leaves experiencing infrequent, short sunflecks.Abbreviations D1 protein psbA gene product - DTT dithiothreitol - Fv, Fm, Fo variable, maximum, and initial (corresponding to open traps) chlorophyll fluorescence yield, respectively - NPQ non-photochemical quenching - PS Photosystem - QA primary quinone acceptor of PS II - qP photochemical quenching coefficient  相似文献   

16.
Chlorophyll (Chl) fluorescence of warm day/cool night temperature exposed Phalaenopsis plants was measured hourly during 48 h to study the simultaneous temperature and irradiance response of the photosynthetic physiology. The daily pattern of fluorescence kinetics showed abrupt changes of photochemical quenching (qP), non-photochemical quenching (NPQ) and quantum yield of photosystem II electron transport (ΦPSII) upon transition from day to night and vice versa. During the day, the course of ΦPSII and NPQ was related to the air temperature pattern, while maximum quantum efficiency of PSII photochemistry (Fv/Fm) revealed a rather light dependent response. Information on these daily dynamics in fluorescence kinetics is important with respect to meaningful data collection and interpretation.  相似文献   

17.
The long-term response (LTR) of higher plants to varying light qualities increases the photosynthetic yield; however, the benefit of this improvement for physiology and survival of plants is largely unknown, and its functional relation to other light acclimation responses has never been investigated. To unravel positive effects of the LTR we acclimated Arabidopsis thaliana for several days to light sources, which preferentially excite photosystem I (PSI) or photosystem II (PSII). After acclimation, plants revealed characteristic differences in chlorophyll fluorescence, thylakoid membrane stacking, phosphorylation state of PSII subunits and photosynthetic yield of PSII and PSI. These LTR-induced changes in the structure, function and efficiency of the photosynthetic machinery are true effects by light quality acclimation, which could not be induced by light intensity variations in the low light range. In addition, high light stress experiments indicated that the LTR is not involved in photoinhibition; however, it lowers non-photochemical quenching (NPQ) by directing more absorbed light energy into photochemical work. NPQ in turn is not essential for the LTR, since npq mutants performed a normal acclimation. We quantified the beneficial potential of the LTR by comparing wild-type plants with the LTR-deficient mutant stn7. The mutant exhibited a decreased effective quantum yield and produced only half of seeds when grown under fluctuating light quality conditions. Thus, the LTR represents a distinct acclimation response in addition to other already known responses that clearly improves plant physiology under low light conditions resulting in a pronounced positive effect on plant fitness.  相似文献   

18.
Cold acclimation requires adjustment to a combination of light and low temperature, conditions which are potentially photoinhibitory. The photosynthetic response of plants to low temperature is dependent upon time of exposure and the developmental history of the leaves. Exposure of fully expanded leaves of winter cereals to short-term, low temperature shiftsinhibits whereas low temperature growthstimulates electron transport capacity and carbon assimilation. However, the photosynthetic response to low temperature is clearly species and cultivar dependent. Winter annuals and algae which actively grow and develop at low temperature and moderate irradiance acquire a resistance to irradiance 5- to 6-fold higher than their growth irradiance. Resistance to short-term photoinhibition (hours) in winter cereals is a reflection of the increased capacity to keep QA oxidized under high light conditions and low temperature. This is due to an increased capacity for photosynthesis. These characteristics reflect photosynthetic acclimation to low growth temperature and can be used to predict the freezing tolerance of cereals. It is proposed that the enhanced photosynthetic capacity reflects an increased flux of fixed carbon through to sucrose in source tissue as a consequence of the combined effects of increased storage of carbohydrate as fructans in the vacuole of leaf mesophyll cells and an enhanced export to the crown due to its increased sink activity. Long-term exposure (months) of cereals to low temperature photoinhibition indicates that this reduction of photochemical efficiency of PS II represents a stable, long-term down regulation of PS II to match the energy requirements for CO2 fixation. Thus, photoinhibition in vivo should be viewed as the capacity of plants to adjust photosynthetically to the prevailing environmental conditions rather than a process which necessarily results in damage or injury to plants. Not all cold tolerant, herbaceous annuals use the same mechanism to acquire resistance to photoinhibition. In contrast to annuals and algae, overwintering evergreens become dormant during the cold hardening period and generally remain susceptible to photoinhibition. It is concluded that the photosynthetic response to low temperatures and susceptibility to photoinhibition are consequences of the overwintering strategy of the plant species.  相似文献   

19.
Abstract The leaves of olive are long lived and likely to experience both chilling and high temperature stress during their life. Changes in photosynthetic CO2 assimilation resulting from chilling and high temperature stress, in both dim and high light, are investigated. The quantum yield (φ) of photosynthesis at limiting light levels was reduced following chilling (at 5°C for 12 h), in dim light by approximately 10%, and in high light by 75%; the difference being attributed to photoinhibition. Similar reductions were observed in the light-saturated rate of CO2 uptake (Amax). Decrease in Amax correlated with a halving of the leaf internal CO2 concentration (ci), suggesting an increased limitation by stomata following photoinhibition. Leaves were apparently more susceptible to photoinhibitory damage if the whole plant, rather than the leaf alone, was chilled. On return to 26 °C, I he photosynthetic capacity recovered to pre-stress levels within a few hours if leaves had been chilled in high light for 8 h or less, but did not fully recover from longer periods of chilling when loss of chlorophyll occurred. Leaves which were recovering from chilling in high light showed far more damage on being chilled a second time in high light. Three hours in high light at 38 °C reduced φ by 80%, but φ recovered within 4h of return to 26 °C. Although leaves of Olive are apparently less susceptible to photoinhibitory damage during chilling stress than the short-lived leaves of chilling-sensitive annual? crops, the results nevertheless show that photoinhibition during temperature stress is potentially a major factor influencing the photosynthetic productivity of Olive in the field.  相似文献   

20.
The present study was carried out to test the hypothesis thatelevated atmospheric CO2 (Ca) will alleviate over‐excitationof the C4 photosynthetic apparatus and decrease non‐photochemicalquenching (NPQ) during periods of limited water availability. Chlorophyll a fluorescencewas monitored in Sorghum bicolor plants grown under a free‐aircarbon‐dioxide enrichment (FACE) by water‐stress (Dry) experiment.Under Dry conditions elevated Ca increased the quantum yield ofphotosystem II (φPSII) throughout the day throughincreases in both photochemical quenching coefficient (qp)and the efficiency with which absorbed quanta are transferred toopen PSII reaction centres (Fv′/Fm′).However, in the well‐watered plants (Wets) FACE enhanced φPSIIonly at midday and was entirely attributed to changes in Fv′/Fm. Underfield conditions, decreases in φPSII under Dry treatmentsand ambient Ca corresponded to increases in NPQ but the de‐epoxidation stateof the xanthophyll pool (DPS) showed no effects. Water‐stress didnot lead to long‐term damage to the photosynthetic apparatus asindicated by φPSII and carbon assimilation measuredafter removal of stress conditions. We conclude that elevated Caenhances photochemical light energy usage in C4 photosynthesisduring drought and/or midday conditions. Additionally,NPQ protects against photo‐inhibition and photodamage. However,NPQ and the xanthophyll cycle were affected differently by elevatedCa and water‐stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号