首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the interactions between gelsolin and actin in crude extracts from activated and unactivated platelets and in mixtures of purified platelet gelsolin and muscle actin. Extracts were prepared using 10 mM EGTA from human platelets treated either with 100 microM aspirin and 2.5 mM tetracaine to retard activation or with the calcium ionophore A23187 to effect activation. The extracts were fractionated by gel filtration on Sephadex G-150 or by sedimentation on sucrose gradients and then analyzed using anti-gelsolin immunoblots and actin filament nucleation assays. The nucleation activity in both extracts was associated with gelsolin. The activity in the extracts from unactivated platelets sedimented with an S value of 5.2 and had an Mr = 90,000. The activity in the extracts prepared with EGTA from activated platelets sedimented at 6.8 S and had an Mr = 130,000. We have shown previously that the Mr = 130,000 species is an EGTA-stable binary complex of one actin and one gelsolin. Transient exposure of the extracts from unactivated platelets to 100 microM Ca2+ and subsequent fractionation in EGTA-containing buffers demonstrated that the formation of the binary complex occurs in the presence of Ca2+. Fractionation in the presence of 100 microM Ca2+ demonstrated higher order complexes including a ternary complex with a sedimentation constant of 8.2 S and an Mr = 165,000. Sedimentation and gel filtration experiments using purified platelet gelsolin and rabbit skeletal muscle actin demonstrated that formation of the EGTA-stable binary complex required Ca2+. At least one additional actin is bound to the binary complex in the presence of Ca2+, but is not sufficiently stable to be purified when EGTA is added. The results suggest that gelsolin exists either as a monomer or perhaps as a weak complex with actin in unactivated platelets but complexes tightly with actin during the transient Ca2+ rise that occurs during activation.  相似文献   

2.
Cell motility is produced by changes in the dynamics and organization of actin filaments. The aim of the experiments described here was to test whether growing neurites contain two actin-binding proteins, gelsolin and profilin, that regulate polymerization of actin and affect non-neuronal cell motility. The distribution of gelsolin, profilin and the microfilaments was compared by immunocytochemistry of leech neurons growing in culture. We observed that microfilaments are enriched in the peripheral motile areas of the neurites. Both gelsolin and profilin are also concentrated in these regions. Gelsolin is abundant in filopodia and is associated with single identifiable microfilament bundles in lamellipodia. Profilin is not prominent in filopodia and shows a diffuse staining pattern in lamellipodia. The colocalization of gelsolin and profilin in motile, microfilament-rich areas supports the hypothesis that they synergistically regulate the actin dynamics that underlie neurite growth.  相似文献   

3.
Gelsolin is a 90,000-mol-wt protein with two actin and two high affinity calcium-binding sites that can form complexes with Ca2+ ions and monomeric actin. These complexes will nucleate filament growth and cap the barbed end of filaments, but will not fragment F-actin. Uncomplexed gelsolin severs F-actin. (Bryan, J., and L. M. Coluccio, 1985, J. Cell Biol., 101:1236-1244). These associations with actin are modulated by Ca2+. We have purified and characterized monoclonal antibodies that recognize Ca2+-induced conformational changes in human platelet gelsolin (G) and human plasma brevin (B), a closely related protein. Two hybridomas, 8G5 and 4F8, were adapted to growth in serum-free medium. 8G5 was found to secrete an IgG; 4F8 secretes an IgA. On immunoblots, both antibodies gave a strong reaction if Ca2+ was present, but gave barely detectable reactions if EGTA was used. 8G5 IgG-Sepharose columns retained gelsolin (as GCa2) or brevin (as BCa2) in 0.1 mM CaCl2 containing buffers, but released these molecules when eluted with 4 mM EGTA. 8G5 IgG-Sepharose columns also retained gelsolin-actin-Ca2+ complexes, as GA1Ca2 or higher oligomers from platelet extracts containing 0.1 mM CaCl2. Elution with 4 mM EGTA released material that gel filtration showed to be the EGTA-stable 130,000-mol-wt gelsolin-actin complex, GA1Ca1. The results demonstrate that the 8G5 IgG recognizes a conformation of gelsolin or brevin induced by binding of an easily exchangeable Ca2+ ion. Actin is not required for this conformational change, and the antibody discriminates, for example, GCa2 from G and GCa1. A 4F8 IgA-Sepharose column retained brevin or gelsolin in 0.1 mM CaCl2-containing buffers, but, like the 8G5 IgG, released these molecules when eluted with 4 mM EGTA. The 4F8 IgA column also retained gelsolin or brevin-actin-Ca2+ complexes, for example, as BA1Ca2, or higher oligomers, in 0.1 mM CaCl2. No protein was recovered, however, upon elution with 4 mM EGTA, but elution with 0.1 M glycine-HCl, pH 2.8, released bound brevin or gelsolin and actin. Similarly, preformed brevin-actin-Ca2+ complex, equilibrated with EGTA, was retained by 4F8 IgA-Sepharose. The results demonstrate that the 4F8 IgA recognizes a conformation of gelsolin or brevin that is maintained and presumably induced by binding of a nonexchangeable Ca2+ ion that is trapped in the complex.  相似文献   

4.
F Markey  T Persson  U Lindberg 《Cell》1981,23(1):145-153
The amount of profilactin in platelet extracts made in the absence of free Ca++ ions decreases and the amount of free profilin increases as a consequence of thrombin stimulation. This agrees with the proposed role of profilactin as a microfilament precursor in nonmuscle cells. Filamentous actin in extracts of unstimulated platelets appears partly in large aggregates that contain actin binding protein (ABP) and relatively few other proteins. After stimulation, the amounts of actin and ABP in the aggregates are increased and myosin is also included together with a few additional proteins. When the cells are lysed in the presence of Ca++, aggregation is drastically reduced. The data indicate that filamentous actin depolymerizes rapidly and recombines with available profilin, and that a Ca-specific interaction also occurs between actin and a new protein with molecular weight about 90,000.  相似文献   

5.
Profilins are thought to be essential for regulation of actin assembly. However, the functions of profilins in mammalian tissues are not well understood. In mice profilin I is expressed ubiquitously while profilin II is expressed at high levels only in brain. In extracts from mouse brain, profilin I and profilin II can form complexes with regulators of endocytosis, synaptic vesicle recycling and actin assembly. Using mass spectrometry and database searching we characterized a number of ligands for profilin I and profilin II from mouse brain extracts including dynamin I, clathrin, synapsin, Rho-associated coiled-coil kinase, the Rac-associated protein NAP1 and a member of the NSF/sec18 family. In vivo, profilins co-localize with dynamin I and synapsin in axonal and dendritic processes. Our findings strongly suggest that in brain profilin I and profilin II complexes link the actin cytoskeleton and endocytic membrane flow, directing actin and clathrin assembly to distinct membrane domains.  相似文献   

6.
Mechanism of the interaction of human platelet profilin with actin   总被引:24,自引:4,他引:20  
We have reexamined the interaction of purified platelet profilin with actin and present evidence that simple sequestration of actin monomers in a 1:1 complex with profilin cannot explain many of the effects of profilin on actin assembly. Three different methods to assess binding of profilin to actin show that the complex with platelet actin has a dissociation constant in the range of 1 to 5 microM. The value for muscle actin is similar. When bound to actin, profilin increases the rate constant for dissociation of ATP from actin by 1,000-fold and also increases the rate of dissociation of Ca2+ bound to actin. Kinetic simulation showed that the profilin exchanges between actin monomers on a subsecond time scale that allows it to catalyze nucleotide exchange. On the other hand, polymerization assays give disparate results that are inconsistent with the binding assays and each other: profilin has different effects on elongation at the two ends of actin filaments; profilin inhibits the elongation of platelet actin much more strongly than muscle actin; and simple formation of 1:1 complexes of actin with profilin cannot account for the strong inhibition of spontaneous polymerization. We suggest that the in vitro effects on actin polymerization may be explained by a complex mechanism that includes weak capping of filament ends and catalytic poisoning of nucleation. Although platelets contain only 1 profilin for every 5-10 actin molecules, these complex reactions may allow substoichiometric profilin to have an important influence on actin assembly. We also confirm the observation of I. Lassing and U. Lindberg (1985. Nature [Lond.] 318:472-474) that polyphosphoinositides inhibit the effects of profilin on actin polymerization, so lipid metabolism must also be taken into account when considering the functions of profilin in a cell.  相似文献   

7.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

8.
Profilin interacts with the barbed ends of actin filaments and is thought to facilitate in vivo actin polymerization. This conclusion is based primarily on in vitro kinetic experiments using relatively low concentrations of profilin (1-5 microm). However, the cell contains actin regulatory proteins with multiple profilin binding sites that potentially can attract millimolar concentrations of profilin to areas requiring rapid actin filament turnover. We have studied the effects of higher concentrations of profilin (10-100 microm) on actin monomer kinetics at the barbed end. Prior work indicated that profilin might augment actin filament depolymerization in this range of profilin concentration. At barbed-end saturating concentrations (final concentration, approximately 40 microm), profilin accelerated the off-rate of actin monomers by a factor of four to six. Comparable concentrations of latrunculin had no detectable effect on the depolymerization rate, indicating that profilin-mediated acceleration was independent of monomer sequestration. Furthermore, we have found that high concentrations of profilin can successfully compete with CapG for the barbed end and uncap actin filaments, and a simple equilibrium model of competitive binding could explain these effects. In contrast, neither gelsolin nor CapZ could be dissociated from actin filaments under the same conditions. These differences in the ability of profilin to dissociate capping proteins may explain earlier in vivo data showing selective depolymerization of actin filaments after microinjection of profilin. The finding that profilin can uncap actin filaments was not previously appreciated, and this newly discovered function may have important implications for filament elongation as well as depolymerization.  相似文献   

9.
Head JF  Swamy N  Ray R 《Biochemistry》2002,41(29):9015-9020
A high-affinity complex formed between G-actin and plasma vitamin D-binding protein (DBP) is believed to form part of a scavenging system in the plasma for removing actin released from damaged cells. In the study presented here, we describe the crystal structure of the complex between actin and human vitamin D-binding protein at 2.5 A resolution. The complex contains one molecule of each protein bound together by extensive ionic, polar, and hydrophobic interactions. It includes an ATP and a calcium ion bound to actin, but no evidence of vitamin D metabolites bound to the DBP. Both actin and DBP are multidomain molecules, two major domains in actin and three in DBP. All of these domains contribute to the interaction between the molecules. DBP enfolds the end of the actin molecule, principally in actin subdomain 3 but with additional interactions in actin subdomain 1. This orientation is similar to the binding of profilin to actin, as predicted from previous studies. The more extensive interactions of DBP give an affinity for actin some 3 orders of magnitude higher than that for profilin. The larger "footprint" of DBP on actin also leads to an overlap with the actin-binding site of gelsolin domain I.  相似文献   

10.
We present evidence that native profilin can be purified from cellular extracts of Acanthamoeba, Dictyostelium, and human platelets by affinity chromatography on poly-L-proline agarose. After applying cell extracts and washing the column with 3 M urea, homogeneous profilin is eluted by increasing the urea concentration to 6-8 M. Acanthamoeba profilin-I and profilin-II can subsequently be separated by cation exchange chromatography. The yield of Acanthamoeba profilin is twice that obtained by conventional methods. Several lines of evidence show that the profilins fully renature after removal of the urea by dialysis: 1) dialyzed Acanthamoeba and human profilins rebind quantitatively to poly-L-proline and bind to actin in the same way as native, conventionally purified profilin without urea treatment; 2) dialyzed profilins form 3-D crystals under the same conditions as native profilins; 3) dialyzed Acanthamoeba profilin-I has an NMR spectrum identical with that of native profilin-I; and 4) dialyzed human and Acanthamoeba profilins inhibit actin polymerization. We report the discovery of profilin in Dictyostelium cell extracts using the same method. Based on these observations we conclude that urea elution from poly-L-proline agarose followed by renaturation will be generally useful for preparing profilins from a wide variety of cells. Perhaps also of general use is the finding that either myosin-II or alpha-actinin in crude cell extracts can be bound selectively to the poly-L-proline agarose column depending on the ionic conditions used to equilibrate the column. We have purified myosin-II from both Acanthamoeba and Dictyostelium cell extracts and alpha-actinin from Acanthamoeba cell extracts in the appropriate buffers. These proteins are retained as complexes with actin by the agarose and not by a specific interaction with poly-L-proline. They can be eluted by dissociating the complexes with ATP and separated from actin by gel filtration if necessary.  相似文献   

11.
Functional studies that distinguish free from actin-bound gelsolin based on the ability of the former to sever actin filaments reveal that the binding of actin monomers to gelsolin is highly cooperative and can be prevented by prior incubation of actin with vitamin D-binding protein (DBP), even though the apparent affinity of gelsolin for actin is 50-fold greater than that of DBP. Measurements of actin binding by immunoprecipitation and pyrene-actin fluorescence establish that DBP-actin complexes do not bind to gelsolin and that DBP removes one of the actin monomers in a 2:1 actin-gelsolin complex. These studies may explain why DBP-actin complexes exist in blood plasma in vivo in the presence of free gelsolin and suggest that the interaction of gelsolin with actin in cells and plasma may be regulated in part by actin monomer binding proteins.  相似文献   

12.
Inactivation of endotoxin by human plasma gelsolin   总被引:7,自引:0,他引:7  
Septic shock from bacterial endotoxin, triggered by the release of lipopolysaccharide (LPS) molecules from the outer wall of Gram-negative bacteria, is a major cause of human death for which there is no effective treatment once the complex inflammatory pathways stimulated by these small amphipathic molecules are activated. Here we report that plasma gelsolin, a highly conserved human protein, binds LPS from various bacteria with high affinity. Solid-phase binding assays, fluorescence measurements, and functional assays of actin depolymerizing effects show that gelsolin binds more tightly to LPS than it does to its other known lipid ligands, phosphatidylinositol 4,5-bisphosphate and lysophosphatidic acid. Gelsolin also competes with LPS-binding protein (LBP), a high-affinity carrier for LPS. One result of gelsolin-LPS binding is inhibition of the actin binding activity of gelsolin as well as the actin depolymerizing activity of blood serum. Simultaneously, effects of LPS on cellular functions, including cytoskeletal actin remodeling, and collagen-induced platelet activation by pathways independent of toll-like receptors (TLRs) are neutralized by gelsolin and by a peptide based on gelsolin residues 160-169 (GSN160-169) which comprise part of gelsolin's phosphoinositide binding site. Additionally, TLR-dependent NF-kappaB translocation in astrocytes appears to be blocked by gelsolin. These results show a strong effect of LPS on plasma gelsolin function and suggest that some effects of endotoxin in vivo may be mediated or inhibited by plasma gelsolin.  相似文献   

13.
The polyphosphoinositides, PIP and PIP2, have been proposed to regulate actin polymerization in vivo because they dissociate actin/gelsolin complexes in vitro. We tested this hypothesis by comparing the ability of EGF and bradykinin to affect PI metabolism and the actin cytoskeleton in A431 cells. EGF, but not bradykinin, was found to induce ruffling and dissociation of actin/gelsolin complexes in these cells. However, both EGF and bradykinin stimulated the accumulation of inositol phosphates in [3H]inositol-labeled cells indicating that stimulation of PI turnover is not sufficient for the induction of changes in actin/gelsolin complex levels. EGF stimulated a twofold increase in the level of PIP in A431 cells. Other phosphoinositide levels were not markedly altered. Treatment of the cells with cholera toxin abrogated the EGF-induced rise in PIP levels without altering the dissociation of actin from gelsolin. These data indicate that increases in PIP and/or PIP2 are not necessary for dissociation of actin/gelsolin complexes. Overall, these experiments suggest that in A431 cells, the effects of EGF on the actin cytoskeleton are unlikely to be mediated through changes in PIP or PIP2 levels.  相似文献   

14.
Exposure of cryptic actin filament fast growing ends (barbed ends) initiates actin polymerization in stimulated human and mouse platelets. Gelsolin amplifies platelet actin assembly by severing F-actin and increasing the number of barbed ends. Actin filaments in stimulated platelets from transgenic gelsolin-null mice elongate their actin without severing. F-actin barbed end capping activity persists in human platelet extracts, depleted of gelsolin, and the heterodimeric capping protein (CP) accounts for this residual activity. 35% of the approximately 5 microM CP is associated with the insoluble actin cytoskeleton of the resting platelet. Since resting platelets have an F- actin barbed end concentration of approximately 0.5 microM, sufficient CP is bound to cap these ends. CP is released from OG-permeabilized platelets by treatment with phosphatidylinositol 4,5-bisphosphate or through activation of the thrombin receptor. However, the fraction of CP bound to the actin cytoskeleton of thrombin-stimulated mouse and human platelets increases rapidly to approximately 60% within 30 s. In resting platelets from transgenic mice lacking gelsolin, which have 33% more F-actin than gelsolin-positive cells, there is a corresponding increase in the amount of CP associated with the resting cytoskeleton but no change with stimulation. These findings demonstrate an interaction between the two major F-actin barbed end capping proteins of the platelet: gelsolin-dependent severing produces barbed ends that are capped by CP. Phosphatidylinositol 4,5-bisphosphate release of gelsolin and CP from platelet cytoskeleton provides a mechanism for mediating barbed end exposure. After actin assembly, CP reassociates with the new actin cytoskeleton.  相似文献   

15.
Three actin-associated proteins, actin-binding protein, gelsolin, and profilin, influence gelation, solation, and polymerization, respectively, of actin in vitro. As assessed with specific cDNA probes and immunoaffinity reagents, a 7-50-fold increase in gelsolin, 3-5-fold increase in actin-binding protein, and less than 2-fold increases in actin and profilin protein and mRNA levels accompanied tetradecanoylphorbolacetate-induced differentiation of the myeloid cell lines U937 and HL60 into macrophage-like cells. Such induction in actin-binding protein or gelsolin did not occur in K562 cells, which respond minimally to tetradecanoylphorbolacetate, or following 1,25-dihydroxyvitamin D3-induced monocyte-like differentiation of U937, which results in a less motile phenotype. These observations suggest that increases in gelsolin and actin-binding protein are essential to the expression of many regulated motile functions which takes place during differentiation of myeloid cells.  相似文献   

16.
Acanthamoeba profilin was cross-linked to actin via a zero-length isopeptide bond using carbodiimide. The covalently linked 1:1 complex was purified and treated with cyanogen bromide. This cleaves actin into small cyanogen bromide (CNBr) peptides and leaves the profilin intact owing to its lack of methionine. Profilin with one covalently attached actin CNBr peptide was purified by gel filtration followed by gel electrophoresis and electroblotting on polybase-coated glass-fiber membranes. Since the NH2 terminus of profilin is blocked, Edman degradation gave only the sequence of the conjugated actin CNBr fragment beginning with Trp-356. The profilin-actin CNBr peptide conjugate was digested further with trypsin and the cross-linked peptide identified by comparison with the tryptic peptide pattern obtained from carbodiimide-treated profilin. Amino-acid sequence analysis of the cross-linked tryptic peptides produced two residues at each cycle. Their order corresponds to actin starting at Trp-356 and profilin starting at Ala-94. From the absence of the phenylthiohydantoin-amino acid residues in specific cycles, we conclude that actin Glu-364 is linked to Lys-115 in profilin. Experiments with the isoforms of profilin I and profilin II gave identical results. The cross-linked region in profilin is homologous with sequences in the larger actin filament capping proteins fragmin and gelsolin.  相似文献   

17.
18.
A unique set of affinity-purified anti-profilin and anti-actin antibodies generated against a covalently coupled version of the profilin:actin complex was used to assess the distribution of profilin and non-filamentous actin in mouse melanoma cells. In agreement with the profilin:actin complex being the principal source of actin for filament formation, we observed extensive co-distribution of both antibody preparations with vasodilator-stimulated phosphoprotein (VASP) and the p34 subunit of the Arp2/3 complex, both of which are components of actin polymer-forming protein complexes in the cell. This suggests that the localization of profilin and actin revealed with these antibodies in fact reflects the distribution of the profilin:actin complex rather than the two proteins separately. Significantly, protruding lamellipodia and filopodia showed intensive labeling. The two antibody preparations were also used to stain HeLa cells infected with Listeria monocytogenes or vaccinia virus. In both cases, the pattern of antibody staining of the pathogen-induced microfilament arrangement differed, suggesting a varying accessibility for the antibody-binding epitopes.  相似文献   

19.
In the purification of proline hydroxylase by affinity chromatography on poly(L-proline)-Sepharose it was found earlier that two other components, profilin and the complex profilin-actin, also bind with high affinity to this matrix. We have exploited this observation to develop a rapid procedure for the isolation of profilin and profilin-actin complexes in high yields directly from high-speed supernatants of crude tissue-extracts. Through an extensive search for elution conditions, avoiding poly(L-proline) as the desorbant, we have found that active proteins can be recovered from the affinity column with a buffer containing 30% dimethyl sulphoxide. Subsequent chromatography on hydroxylapatite separates free profilin and the two isoforms of profilactin, profilin-actin beta and profilin-actin gamma. The profilin-actin complexes produced this way have high specific activities in the DNAase-inhibition assay, give rise to filaments on addition of Mg2+, and can be crystallized. From the isolated profilin-actin complexes the beta- and gamma-actin isoforms of non-muscle cells can easily be prepared in a polymerization competent form. Pure profilin is either obtained from an excess pool present in some extracts or by dissociation of profilin-actin complexes and removal of the actin.  相似文献   

20.
In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号