首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ethionine-resistant mutant of Saccharomyces cerevisiae has been investigated whose mutation (etr2) confers resistance to the heterozygous diploid also containing the sensitive allele, ets. The mutation is apparently specific for reversal of ethionine inhibition. The principal difference between the sensitive ets strain and the mutant was the latter's inability to concentrate large intracellular quantities of adenosylethionine. Reduced incorporation of ethyl groups or ethionine in other cellular fractions of the mutant was also detected. The data show that the mutant has not lost the ability to form adenosylethionine. It is suggested that the mutant has an increased ability to hydrolyze this sulfonium compound after it has been synthesized. It is possible that some of the ethionine is detoxified before it can participate in protein or adenosylethionine synthesis. No mutant alteration in accumulation of ethionine from the medium was detected. In the presence of ethionine, the parental strain accumulated 25 times more adenosylethionine than did the mutant. However, with methionine, only twice as much adenosylmethionine was accumulated by the parental strain as by the mutant.  相似文献   

2.
3.
4.
Methionine catabolism in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
The catabolism of methionine to methionol and methanethiol in Saccharomyces cerevisiae was studied using (13)C NMR spectroscopy, GC-MS, enzyme assays and a number of mutants. Methionine is first transaminated to alpha-keto-gamma-(methylthio)butyrate. Methionol is formed by a decarboxylation reaction, which yields methional, followed by reduction. The decarboxylation is effected specifically by Ydr380wp. Methanethiol is formed from both methionine and alpha-keto-gamma-(methylthio)butyrate by a demethiolase activity. In all except one strain examined, demethiolase was induced by the presence of methionine in the growth medium. This pathway results in the production of alpha-ketobutyrate, a carbon skeleton, which can be re-utilized. Hence, methionine catabolism is more complex and economical than the other amino acid catabolic pathways in yeast, which use the Ehrlich pathway and result solely in the formation of a fusel alcohol.  相似文献   

5.
Konze JR  Kende H 《Plant physiology》1979,63(3):507-510
Since selenomethionine appears to be a better precursor of ethylene in senescing flower tissue of Ipomoea tricolor and in indole acetic acid-treated pea stem sections than is methionine (Konze JR, N Schilling, H Kende 1978 Plant Physiol 62: 397-401), we compared the effectiveness of selenomethionine and methionine to participate in reactions which may be connected to ethylene biosynthesis. Evidence is presented that selenomethionine is also a better substrate of methionine adenosyltransferase (ATP: methionine S-adenosyltransferase, EC 2.5.1.6) from I. tricolor, the Vmax for selenomethionine being twice as high as that for methionine. The affinity of the enzyme is higher for methionine than for selenomethionine, however. Methionine added to flower tissue together with selenomethionine inhibits the enhancement of ethylene synthesis by the seleno analog. Likewise, methionine reduces the high, selenomethionine-dependent reaction rates of methionine adenosyltransferase from I. tricolor flower tissue. On the other hand, selenomethionine is less effective as an ethylene precursor than is methionine in model systems involving oxidation by free radicals. It was concluded that activation of methionine by methionine adenosyltransferase and formation of S-adenosylmethionine are more likely to be involved in ethylene biosynthesis than is oxidation of methionine by free radicals.  相似文献   

6.
The role of cystathionine in methionine biosynthesis in wild-type and auxotrophic strains of Saccharomyces cerevisiae was studied. Homocysteine and cysteinerequiring mutants were selected for detailed study. Exogenously supplied cystathionine, although actively transported by all strains tested, could not satisfy the organic sulfur requirements of the mutants. Cell-free extracts of the wild-type, homocysteine, and cysteine auxotrophs were shown to cleave cystathionine. Pyruvic acid and homocysteine were identified as teh products of this cleavage. A mutant containing an enzyme which could cleave cystathionine to homocysteine in cell-free experiments was unable to use cystathionine as a methionine precursor in the intact organisms. The significance of this finding is discussed.  相似文献   

7.
S-adenosylmethionine (SAM) has been shown to provoke repression of some methionine-specific enzymes in wild-type cells, namely, adenosine triphosphate sulfurylase, sulfite reductase, and homocysteine synthetase. Repressive effects observed in SAM-supplemented cultures should be due to SAM per se, since the intracellular pool of SAM increases while the intracellular pool of methionine remains low and constant. Derepression brought about by methionine limitation is accompanied by a severe decrease in SAM as well as methionine pool sizes, although methionine adenosyl transferase is slightly derepressed. Different hypotheses have been considered to account for the previously reported implication of methionyl transfer ribonucleic acid and the presently reported SAM effects in this regulatory process.  相似文献   

8.
Two methionine biosynthetic enzymes and the methionine adenosyltransferase are repressed in Saccharomyces cerevisiae when grown under conditions where the intracellular levels of S-adenosylmethionine are high. The nature of the co-repressor molecule of this repression was investigated by following the intracellular levels of methionine, S-adenosylmethionine, and S-adenosylhomocysteine, as well as enzyme activities, after growth under various conditions. Under all of the conditions found to repress these enzymes, there is an accompanying induction of the S-adenosylmethionine-homocysteine methyltransferase which suggests that this enzyme may play a key role in the regulation of S-adenosylmethionine and methionine balance and synthesis. S-methylmethionine also induces the methyltransferase, but unlike S-adenosylmethionine, it does not repress the methionine adenosyltransferase or other methionine biosynthetic enzymes tested.  相似文献   

9.
SYNOPSIS. Ethionine or methionine can serve as sole nitrogen source for growth of Prymnesium parvum. Both amino acids are taken up as such at a ratio of 2 : 1 methionine/ethionine. Ethionine is totally de-ethylated in the cell, while methionine is probably only partially de-methylated. The homocysteine moiety of both amino acids is similarly metabolised to form cysteine or re-methylated to form methionine. De-ethylation of ethionine seems how P. parvum avoids its antimetabolic effect  相似文献   

10.
SYNOPSIS. Growth of Ochromonas danica is competitively inhibited by ethionine. Inhibition can be reversed by methionine. Inhibition indexes of the effect of ethionine on growth and methionine incorporation into proteins are 1 and 4, respectively. Inside the cell, methionine is partially de-methylated and metabolized to form cysteine. Ethionine is partially de-ethylated, and the homocysteine moiety is either re-methylated to form methionine or further metabolized to form cysteine. Ethionine is also incorporated into proteins of O. danica. The kind of metabolic interference, expressed by inhibition of growth, and correlated with incorporation of ethionine, is yet unknown.  相似文献   

11.
12.
The production of selenomethionine (SeMet) derivatives of recombinant proteins allows phase determination by single-wavelength or multiwavelength anomalous dispersion phasing in X-ray crystallography, and this popular approach has permitted the crystal structures of numerous proteins to be determined. Although yeast is an ideal host for the production of large amounts of eukaryotic proteins that require posttranslational modification, the toxic effects of SeMet often interfere with the preparation of protein derivatives containing this compound. We previously isolated a mutant strain (SMR-94) of the methylotrophic yeast Pichia pastoris that is resistant to both SeMet and selenate and demonstrated its applicability for the production of proteins suitable for X-ray crystallographic analysis. However, the molecular basis for resistance to SeMet by the SMR-94 strain remains unclear. Here, we report the characterization of SeMet-resistant mutants of Saccharomyces cerevisiae and the identification of a mutant allele of the MUP1 gene encoding high-affinity methionine permease, which confers SeMet resistance. Although the total methionine uptake by the mup1 mutant (the SRY5-7 strain) decreased to 47% of the wild-type level, it was able to incorporate SeMet into the overexpressed epidermal growth factor peptide with 73% occupancy, indicating the importance of the moderate uptake of SeMet by amino acid permeases other than Mup1p for the alleviation of SeMet toxicity. In addition, under standard culture conditions, the mup1 mutant showed higher productivity of the SeMet derivative relative to other SeMet-resistant mutants. Based on these results, we conclude that the mup1 mutant would be useful for the preparation of selenomethionyl proteins for X-ray crystallography.Structural analyses of proteins have provided meaningful insights into the relationship between protein conformation and biological function. Different approaches, including X-ray crystallographic analysis, nuclear magnetic resonance (NMR) analysis, and electron microscopy analysis, are applicable to determine protein structures. Although the principal method for determining three-dimensional structures of purified proteins is X-ray crystallography, substantial efforts are required to determine protein structures using this method, such as the expression and purification of recombinant proteins, optimization of crystallization conditions, and solving phase problems. Recent advances in structural biology have resulted from the substitution of Met residues for selenomethionine (SeMet) for the phase determination of proteins, using single-wavelength anomalous dispersion (SAD) and multiwavelength anomalous dispersion (MAD) phasing methods (9, 22). In addition, the use of SeMet derivatives for solving phase problems is indispensable for high-throughput determination of protein structure for structural genomic studies that aim to understand biological phenomena in whole-cell systems at the atomic level (10, 26).The use of SeMet-incorporated proteins for X-ray crystallography was originally reported in the 1990s (9). At that time, the majority of tertiary structures were determined by SAD or MAD phasing using SeMet-containing crystals that were routinely prepared in Escherichia coli cells cultured with SeMet. However, it is considered more difficult to incorporate SeMet into proteins expressed in eukaryotic systems than in E. coli cells, and eukaryotic proteins which require posttranslational modification often fail to be expressed in E. coli cells. Therefore, the incorporation of SeMet into eukaryotic proteins is limited to those proteins that can be successfully expressed in E. coli. Although there are a few reports on the production of recombinant proteins labeled with SeMet in mammalian and insect cells, these reports emphasize mainly the practical use of the specified host cells and did not examine the mechanisms by which SeMet toxicity is overcome (1, 8). Yeast is an attractive host for the production of eukaryotic proteins of interest, as cells are capable of rapid growth under simple culture conditions and production of large amounts of recombinant proteins at low cost. In addition, the potential exists to minimize or eliminate SeMet toxicity through the isolation of a SeMet-resistant mutant of yeast.The first report of SeMet-resistant mutants in the budding yeast Saccharomyces cerevisiae suggested that the observed resistance of the eth10 and eth2 mutants was dependent upon the increase of intracellular Met concentrations as a result of enhanced sulfate assimilation during biosynthesis (6). Subsequent genetic and biochemical analyses identified that the eth10 and eth2 mutant cells possess a single, recessive mutation in the unlinked genes SAM1 and SAM2, which encode isomers of S-adenosylmethionine (AdoMet) synthetase (5). A recent study demonstrated that the deletion of both SAM1 and SAM2 confers increased SeMet resistance and allows the production of recombinant proteins with 95% of SeMet occupancy (18). In a different approach, Bockhorn et al. screened a collection of single-gene deletion mutants of S. cerevisiae for resistance to SeMet and demonstrated that a mutant lacking cystathionine γ-lyase activity (cys3Δ) showed the highest resistance to SeMet and has an ability to incorporate SeMet that is equal to or slightly higher than that of sam1Δ sam2Δ cells (2). However, the extracellular supply of expensive AdoMet or Cys, which are involved in a wide range of important biological phenomena, is required to support cellular growth of these mutants and thus limits their use in practical applications (Fig. (Fig.11).Open in a separate windowFIG. 1.Metabolic pathways of sulfur compounds in S. cerevisiae. The main sulfur compounds are methionine, S-adenosylmethionine, and cysteine, which are involved in protein synthesis and sulfur metabolism regulation. The S-adenosylmethionine also participates in the methylation of nucleic acids, proteins, and lipids as a methyl group donor and in the biosynthesis of biotin and polyamines. Glutathione plays a pivotal role in redox homeostasis.Previously, we isolated a SeMet-resistant mutant of the methylotrophic yeast Pichia pastoris (SMR-94 strain) that also showed resistance to selenate (13). The mutant cells were able to produce recombinant human lysozyme containing a sufficient amount of SeMet to allow determination of its crystal structure by the SAD phasing method without the need for supplementation of AdoMet and Cys. However, the mutation sites of the P. pastoris SMR-94 strain responsible for SeMet resistance remain unclear because unlike S. cerevisiae, there is a lack of established genetic approaches and techniques for P. pastoris. Here, in an attempt to reveal the molecular basis for SeMet resistance and generate a suitable host for the production of SeMet derivatives of eukaryotic proteins, we isolated SeMet-resistant mutants of S. cerevisiae. Two obtained mutants (SRY5-3 and SRY5-7) were characterized genetically and biochemically. Furthermore, we examined the ability of these mutants to produce SeMet derivatives of epidermal growth factor (EGF) peptide.  相似文献   

13.
在外界因素处理下,细胞将启动一系列保护措施以适应各种环境改变,磷酸化调节是蛋白功能调节的主要方式. 为了探讨酵母细胞中Pil1的磷酸化与细胞压力抵抗的关系,实验应用Pil1突变细胞检测在过氧化氢或热处理后细胞的生长情况,用免疫印记法检测热处理后Pil1的表达. 结果表明,相比野生细胞,Pil1突变细胞对抗过氧化氢和热的能力强,热处理后 Pil1的磷酸化水平增高, Pil1的丝氨酸273对于其磷酸化发生至关重要.  相似文献   

14.
In vivo studies have shown that, in the absence of homoserine-O-transacetylase activity (locus met(2)), the C(4)-carbon moiety of ethionine is utilized (provided the ethionine resistance gene eth-2r is present) by methionine auxotrophs, except for met(8) mutants (homocysteine synthetase-deficient). Concomitant utilization of sulfur and methyl group from methylmercaptan or S-methylcysteine has been demonstrated. In the absence of added methylated intermediates, the methyl group of methionine formed from ethionine is derived from serine. In vitro studies with crude extracts of Saccharomyces cerevisiae have demonstrated that this synthesis of methionine occurs by the following reactions: CH(3)-SH + ethionine right harpoon over left harpoon methionine + C(2)H(5)SH and S-methylcysteine + ethionine right harpoon over left harpoon methionine + S-ethylcysteine. In the forward direction, the second product of the second reaction was shown to be S-ethylcysteine; this reaction has also been found reversible, leading to ethionine formation. Genetic and kinetic data have shown that homocysteine synthetase catalyzes these two reactions, at 0.3% of the rate it catalyzes direct homocysteine synthesis: O-Ac-homoserine + Na(2)S --> homocysteine + acetate. The three reactions are lost together in a met(8) mutant and are recovered to the same extent in spontaneous prototrophic revertants from this strain. Methionine-mediated regulation of enzyme synthesis affects the three activities and is modified to the same extent by the presence of the recessive allele (eth-2r) of the regulatory gene eth-2. Affinities of the enzyme for substrates of both types of reactions are of the same order of magnitude. Moreover, ethionine, the substrate of the second reaction, inhibits the third reaction, whereas O-acetyl-homoserine, the substrate of the third reaction, inhibits the second reaction. An enzymatic cleavage of S-methylcysteine, leading to methylmercaptan production, has been shown to occur in crude yeast extracts. It is concluded that the enzyme homocysteine synthetase participates in the two alternate pathways leading to methionine biosynthesis in S. cerevisiae, one involving O-acetyl-homoserine and H(2)S, the other involving the 4-carbon chain of ethionine and a mercaptyl donor. Participation of the two types of reactions catalyzed by homocysteine synthetase, in in vivo methionine synthesis, has been shown to occur in a met(2) partial revertant.  相似文献   

15.
Two phenotypically distinct sets of nystatin-resistant mutants were investigated. One set is resistant, respiratory competent, and requires no lipid for growth. The other set is more resistant, respiratory deficient, and lipid requiring (unsaturated fatty acid or sterol). Both sets show altered sterol composition as demonstrated by the Liebermann-Burchard colorimetric reaction, ultraviolet spectrophotometry, and gas-liquid chromatography. Genetic analysis indicates that all nystatin-resistant mutants can be placed into one of six distinct genetic groups. The phenotype's nystatin resistance, lipid requirement, and respiratory deficiency are recessive. There was one case of allelism for mutants from different sets. Revertants of mutants which have the tripartite phenotype retain a residual level of nystatin resistance, but they are no longer lipid requiring or respiratory deficient. Growth studies in mutants which have the tripartite phenotype reveal that the addition of ergosterol to the growth medium results in decreased resistance to nystatin.  相似文献   

16.
17.
Bawa S  Xiao W 《Mutation research》1999,430(1):99-107
The exposure of DNA to reactive intracellular metabolites is thought to be a major cause of spontaneous mutagenesis. DNA alkylation is implicated in the above process by the fact that bacterial and yeast cells lacking DNA alkylation-specific repair genes exhibit elevated spontaneous mutation rates. The origin of the intracellular alkylating molecules is not clear; however, S-adenosylmethionine (SAM) has been proposed as one source because it has a reactive methyl group known to methylate proteins and DNA. We supplemented yeast cultures with excess methionine and examined the effects of increased endogenous SAM concentration on spontaneous and alkylation-induced mutagenesis in the absence of various DNA repair pathways. Our results show that either the excess methionine, or the increased SAM produced as a result of this treatment, is able to protect yeast cells from mutagenesis, and that this effect is alkylation-damage-specific. The protective effect was observed only in the mgt1 mutant deficient in the O(6)-methylguanine-DNA repair methyltransferase, but not in the wild type or other DNA repair-deficient strains, indicating that the protection is specific for O-methyl lesions. Thus, our results may lend support to the recently reported chemopreventive effect of SAM in rodents and further suggest that the observed tumor prevention by SAM may be, in part, due to its suppression of spontaneous mutagenesis in mammals. Given that a strong correlation has been established between O(6)-methylguanine and carcinogenicity, this study may offer a novel approach to preventing carcinogenesis.  相似文献   

18.
Derepression of some methionine biosynthetic enzymes (methionine group I enzymes) obtained in methionine limitation has been found to be accompanied by a significant lack of in vivo charging of bulk methionine transfer ribonucleic acid (tRNA(Met)) and in addition by a decreased rate of synthesis of all tRNAs. Under the same conditions, methionyl-tRNA synthetase (MTS) was derepressed rather than repressed. These results are in agreement with those previously published based on studies of a mutant with an impaired MTS (5) and reinforce the idea that the rate of synthesis of methionine group I enzymes can be related to the total content of methionyl (Met)-tRNA (Met) per cell. They also render unlikely that MTS could be a constituent of the regulatory signal.  相似文献   

19.
Abstract: The distribution of methionine adenosyltransferase (MAT) in the CNS of the rat was studied by use of a rapid, sensitive and specific radiochemical method. The S -adenosyl-[methyl-14C] l -methionine ([14C]SAM) generated by adenosyl transfer from ATP to [methyl-14C] l -methionine is quantitated by use of a SAM-consuming transmethylation reaction. Catechol O -methyltransferase (COMT), prepared from rat liver, transfers the methyl-14C group of SAM to 3,4-dihydroxybenzoic acid. The 14C-labelled methylation products, vanillic acid and isovanillic acid, are separated from unreacted methionine by solvent extraction and quantitated by liquid scintillation counting. Compared to other methods of MAT determination, which include separation of generated SAM from methionine by ion-exchange chromatography, the assay described exhibited the same high degree of specificity and sensitivity but proved to be less time consuming. MAT activity was found to be uniformly distributed between various brain regions and the pituitary gland of adult male rats. In the pineal gland the enzyme activity is about tenfold higher.  相似文献   

20.
Summary In Saccharomyces cerevisiae, the products of eleven different genes are needed for a functional sulfate assimilation pathway. Only five enzymatic steps are known in this pathway. The study of the gene-enzyme relationships has shown that the enzymes catalysing two of these steps are probably heteropolymeric. Moreover, mutations in three unlinked genes lead to multiple enzymatic losses. Different hypotheses are made to account for these results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号