首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Osborne-Mendel (O-M) rats displayed differences in brain and systemic tryptophan metabolism. O-M rats had decreased brainstem tryptophan-5-hydroxylase activity and decreased serotonin (5-HT) levels as compared to Sprague-Dawley rats. However, brain tryptophan levels were actually increased in O-M rats. Norepinephrine, dopamine and 5-hydroxyindole-3-acetic acid levels were not different between strains. 2. Pineal serotonin levels were increased in O-M rats. 3. Liver tryptophan 2,3-dioxygenase activity was increased in O-M rats while tyrosine aminotransferase activity was not different between strains. 4. Total blood cholesterol was decreased in O-M rats while triglycerides, free fatty acids and albumin was not different between strains. Total serum tryptophan was not different between strains while O-M rats had an increased level of free (unbound) tryptophan.  相似文献   

2.
Regional and whole-brain tryptophan-hydroxylating activity and serotonin turnover were investigated in portacaval shunted (PCS) rats using an in vivo decarboxylase inhibition assay. To saturate tryptophan hydroxylation with amino acid substrate, rats were administered a high dose of tryptophan 1 h prior to analysis of brain tryptophan, 5-hydroxytryptophan, serotonin, and 5-hydroxyindoleacetic acid. The analysis revealed, as expected, higher brain concentrations of tryptophan and 5-hydroxyindoles and increased serotonin synthesis rate in PCS rats as compared with shamoperated controls. Saturating levels of brain tryptophan were achieved in both PCS and sham animals after exogenous tryptophan administration. The tryptophan load resulted in increased brain serotonin turnover in all regions and in whole brain compared with rats that did not receive a tryptophan load. Tryptophan-loaded PCS rats showed increased brain serotonin turnover compared with tryptophan-loaded sham rats. Regionally, this supranormal tryptophan-hydroxylating activity was most pronounced in the mesencephalon-pons followed by the cortex. It is concluded that, at least in the PCS rat, brain tryptophan hydroxylation is an inducible process. Since it is known that brain tissue from PCS rats undergoes a redox shift toward a reduced state and that the essential cofactor tetrahydrobiopterin is active in tryptophan hydroxylation only when present in its reduced form, it is hypothesized that this is the reason for the supranormal tryptophan-hydroxylating activity displayed by the PCS rats. The hypothesis further suggests that alterations in tetrahydrobiopterin availability may serve as a mechanism by which brain tryptophan hydroxylation, and therefore serotonin turnover, can be regulated with high sensitivity in vivo.  相似文献   

3.
Effects of serotonin uptake inhibitor fluoxetine (F) and it's complexes with glycyrrizhinic acid (GA) in molar proportions 1GA : 1F (FGA-1) and 4GA : 1F (FGA-4) on rat behavior in elevated plus-maze and brain monoamine concentrations were studied. Drugs (25 mg/kg) were administered per os 1 h before investigations. F-treated rats showed increased anxiety and reduced locomotor activity, whereas FGA-1 and FGA-4 had no effects on the behaviors. None of the compounds modified brain tissue serotonin content, but all of them decreased the level of its metabolite 5-hydroxyindole-3-acetic acid level in the hypothalamus, and FGA-4 also decreased it in the cortex. Noradrenaline levels were increased in the hypothalamus of rats treated with F in both combinations with GA. In the striatum, F increased dopamine and its metabolite DOPAC levels, but their ratio (an indicator of the neurotransmitter turnover) was not altered by this drug. Unlike F, FGA-1 significantly activated dopamine turnover in the striatum. The data obtained suggested that application of F in complexes with GA significantly modified the drug behavioral effects and these alterations may be related to specific effects of the pure compound and its complexes on the functions of the brain monoaminergic systems that regulate investigated behavior.  相似文献   

4.
The 5 HT(1A) receptor agonist 8-hydroxy-2-(di-n-propylamino)-tetraline (8-OH-DPAT) increases the food intake of satiated Zucker rats, both lean and obese. Associated with this increased intake are changes in the hypothalamic content of serotonin and its metabolite, 5-HIAA (5-hydroxyindole-3-acetic acid); serotonin is increased while the level of 5-HIAA is decreased. Analysis of individual 5-HIAA/5-hydroxytryptamine (5-HT) ratios, a measure of serotonin turnover indicate that 8-OH DPAT affected serotonin turnover equally and dramatically in both phenotypes. This would be an expected physiological action of an autofeedback mechanism by a 5-HT(1A) receptor agonist. Dehydroepiandrosterone (DHEA) at doses as low as 10 mg/kg blocks the 8-OH-DPAT-induced increase in food intake but does not alter food intake of control satiated Zucker rats. The mechanism of DHEA's action was investigated by monitoring the steroid's effect on hypothalamic neurotransmitters in this satiated model. DHEA by itself induced some change in 5-HIAA in the obese satiated model but not the lean. 8-OH-DPAT, by itself, dramatically decreased serotonin turnover in either lean or obese rats, and DHEA combined with 8-OH-DPAT did not further change serotonin turnover, suggesting DHEA may work through mechanisms other than monoamines to cause its inhibition of 8-OH-DPAT-induced behavioral effects at such low doses.  相似文献   

5.
The pattern of ontogenetic development of tryptophan (TP), tryptamine (T), indole-3-acetic acid (IAA), 5-hydroxytryptamine (5-HT; serotonin), and 5-hydroxyindole-3-acetic acid (5-HIAA) in the brains of rats aged 1-45 days is presented. Analysis of the five components in each brain allows the calculation of the acid/amine and amine/amino acid ratios. These metabolic indexes are a useful tool to study and compare the metabolic origins and fates of both amines. The ontogenetic patterns of TP, T, and IAA are very similar, especially during the first week postpartum. The highest and lowest levels found for T were 2.2 ng/g and 0.1 ng/g at the 1st and 5th day, respectively. The temporal relationship between the T/TP and IAA/T ratios suggests the existence of mechanisms protecting T against monoamine oxidase (MAO) which develop in parallel to synaptogenesis. Significant correlations were found between TP and IAA during the whole period studied and between TP and T during the first week after birth. The 5-HT peak found during the first postpartum week could be due to a non-neuronal pool of 5-HT protected against MAO and possibly contained in mast cells. Preliminary determinations on leptomeningeal membranes suggest the existence of such a pool.  相似文献   

6.
Serotonin, a putative neurotransmitter in insects, was found to cause consistent phase shifts of the circadian rhythm of locomotor activity of the cockroach Leucophaea maderae when administered during the early subjective night as a series of 4-microliters pulses (one every 15 min) for either 3 or 6 hr. Six-hour treatments with dopamine also caused significant phase shifts during the early subjective night, but 3-hr treatments with dopamine had no phase-shifting effect. Other substances tested in early subjective night (norepinephrine, octopamine, gamma-aminobutyric acid, glutamate, carbachol, histamine, tryptophan, tryptamine, N-acetyl serotonin, or 5-hydroxyindole-3-acetic acid) did not consistently cause phase shifts. The phase-shifting effect of serotonin was found to be phase-dependent. The phase response curve (PRC) for serotonin treatments was different from the PRC for light. Like light, serotonin caused phase delays in the late subjective day and early subjective night, but serotonin did not phase-shift rhythms when tested at phases where light causes phase advances.  相似文献   

7.
In this report, we describe an HPLC with electrochemical detection assay for the simultaneous measurement of levels of morphine, serotonin, 5-hydroxyindole-3-acetic acid, and homovanillic acid in dialysates of various brain areas and CSF in the awake rat. Morphine could be detected in the dialysates after a single intraperitoneal injection, with doses as low as 1.0 mg/kg. The time course of extracellular morphine content in the lateral hypothalamus, striatum, cerebellum, periaqueductal gray, and dorsal horn of the spinal cord and in CSF, from the ventricles and cisterna magna, was similar. We detected morphine in the first 15-min sample, and levels peaked 45-60 min after injection. Maximal dialysate levels, however, varied with the type of dialysis probe used and the area sampled. The most efficient in vivo recovery was in CSF dialysates from the cisterna magna, presumably because of minimal tissue interference with the dialysis probe. For this reason, the cisterna is an ideal region for sampling CSF. Morphine had no significant effect on the extracellular concentrations of serotonin in any of the areas studied and did not modify or only slightly increased levels of tissue metabolites; however, morphine markedly increased the CSF levels of 5-hydroxyindole-3-acetic acid and homovanillic acid. Because microdialysis in freely moving animals permits assessment of the behavioral effects of morphine while continuously monitoring the drug levels in discrete brain regions, this approach will greatly facilitate future studies of the neurochemical basis of morphine's effects in the brain.  相似文献   

8.
Morphine tolerance in arthritic rats and serotonergic system   总被引:1,自引:0,他引:1  
Li JY  Wong CH  Huang KS  Liang KW  Lin MY  Tan PP  Chen JC 《Life sciences》1999,64(10):PL111-PL116
To understand whether chronic inflammation alters the development of morphine tolerance, the tail-flick test was used to evaluate the analgesic effect of morphine (75 mg tablet, s.c.) in the arthritic rats at the day 9-12 after the inoculation with Freund's adjuvant. Spinal cord monoamines and amino acid neurotransmitters were concomitantly measured. Chronic inflammation attenuated the antinociceptive effect of morphine as tolerance developed faster in the arthritic rats compared to the vehicle-treated controls. In addition, ratio of 5-hydroxyindole-3-acetic acid/5-hydroxytryptamine (5-HIAA/5-HT) increased in the lumbar spinal cord of arthritic rats without any change in the concentrations of norepinephrine, glutamate, aspartate or GABA. Interestingly, increased serotonin turnover in the spinal cord was observed in both control and arthritic rats 24 hours after morphine treatment. Overall, the results suggest a significant role of serotonin up-regulation in the spinal cord during chronic pain and the development of morphine tolerance.  相似文献   

9.
The catecholamines noradrenaline, dopamine, adrenaline, the indoleamine 5-hydroxy-tryptamine (5-HT; serotonin), and some of their major metabolites were assayed, using high performance liquid chromatography (HPLC), in the neocortex of normal rats as well as in animals in which 5-HT synthesis had been inhibited withp-chlorophenylalanine. Besides important depletions in serotonin and in 5-hydroxyindole-3-acetic acid, noradrenaline levels were significantly reduced, but the content in 3-methoxy-4-hydroxyphenylglycol was increased, indicating an augmented utilization of this amine. The levels of dopamine and 3-methoxytyramine were also reduced, although homovanillic acid and 3,4-dihydroxyphenylacetic acid levels remained constant. The spontaneous unitary activity of identified noradrenergic neurons in the Locus coeruleus was increased, indicating an hyperactivity of this system. These results can be interpreted in relation to functional interactions between the catecholamines and serotonin; i.e.: a decrease in endogenous serotonin results in the loss of a negative feedback control of noradrenaline release.Special Issue dedicated to Prof. Eduardo De Robertis.  相似文献   

10.
Tryptophan metabolites with an indole ring are enriched by adsorption either as an ion pair with a trichloroacetic acid anion or as its undissociated form on porous polystyrene polymer (TSK 2000 S) from strongly acidic plasma deproteinized by trichloroacetic acid, and after washing with water, they are eluted with a 90% methanol solution. Following the removal of the solvent, the residue is dissolved in a small amount of water and then subjected to high-performance liquid chromatography (hplc) analysis. Using 0.2 ml of adsorbent, the recovery of the 500 pmol added for each of the tryptophan metabolites into 1.5 ml of deproteinized plasma is above 70%. This method is used for the analysis of normal rabbit and rat plasma. The hplc analysis, with native fluorescence detection, shows several peaks corresponding to tryptophan, 5-hydroxytryptophan, serotonin, 5-hydroxyindole-3-acetic acid, indole-3-acetic acid, and indole-3-propionic acid. Peak identification and cross reactivity were checked by the retention time with two hplc systems, fluorometric characterization, and electrochemical characterization. This method is easy and is simple enough for routine analysis.  相似文献   

11.
Some changes in the brain serotonergic system were found in rats bred for predisposition to catalepsy, and in those bred for its absence. The genetic predisposition for catalepsy was found to be characterized by an increased tryptophan hydroxylase activity in the striatum, and an increased serotonin content in the midbrain. No changes in 5-hydroxyindoleacetic acid level were found. A selection for predisposition to catalepsy turned out to entail a decrease in the sensitivity of postsynaptic serotonin receptors as estimated by the "head twitch" test after 5-hydroxytryptophan administration, while a selection for the absence of catalepsy increased the sensitivity of serotonin receptors.  相似文献   

12.
A selective and sensitive high-performance liquid chromatographic method with chemiluminescence detection for the determination of 5-hydroxyindoles is described, based on the reaction of 5-hydroxyindoles with 4-dimethylaminobenzylamine. Serotonin, 5-hydroxyindole-3-acetic acid, 5-hydroxytryptophol, 5-hydroxyindole-3-acetamide and N-acetyl-5-hydroxytryptamine were used as model compounds to optimize the derivatization and chemiluminescent reaction. The reagent reacts with 5-hydroxyindoles in slightly alkaline media in the presence of potassium hexacyanoferrate(III) to give the corresponding derivatives, which can be separated on a reversed-phase column, Wakosil-II 5C18RS, with aqueous acetonitrile as an eluent. The derivatives were detected by peroxyoxalate chemiluminescence detection. The detection limits are in the range of 0.5–1.2 fmol per 100-μl injection. The method was applied to the simultaneous determination of serotonin and 5-hydroxyindole-3-acetic acid in human platelet-poor plasma.  相似文献   

13.
Electrochemical detection is often used to detect catecholamines and indolamines in brain samples that have been separated by conventional reverse-phase high performance liquid chromatography (HPLC). This paper presents the transfer of an existing chromatographic method for the determination of monoamines in brain tissues using 5 μm granulometry HPLC columns to columns with a particle diameter less than 3 μm. Several parameters (repeatability, linearity, accuracy, limit of detection, and stability of samples) for this new ultrafast high performance liquid chromatography (UHPLC) method were examined after optimization of the analytical conditions. The separation of seven compounds, noradrenaline, dopamine and three of its metabolites, dihydroxyphenylacetic acid, homovanillic acid, and 3-methoxytyramine, and serotonin and its metabolite, 5-hydroxyindole-3-acetic acid was analyzed using this UHPLC-electrochemical detection method. The final method, which was applied to brain tissue extracts from mice, rats, and cats, decreased analysis time by a factor of 4 compared to HPLC, while guaranteeing good analytical performance.  相似文献   

14.
Indole reacts with sodium nitrite and glycine-HCl buffer, pH 2.6, to form a red color that is stable for more than 1 week. The reaction is reproducible and is linear over a wide range of indole concentrations (0.05–1.00 μmol). Twelve indole derivatives, including tryptophan, and 17 protein amine acids do not interfere. Indole-3-acetic acid, indole-3-acrylic acid, indole-3-pyruvic acid, 5-indole carboxylic acid, and 5-hydroxyindole-3-acetic acid interfere to varying extents (16–27%). Free indole was determined in biological material containing tryptophan by the present method. The method is also applicable to the assay of tryptophanase activity without prior indole extraction.  相似文献   

15.
Single doses of DL-alpha-amino-beta-(2-pyridine)propanoic acid (2-PA, 100 mg/kg) significantly decreased the holoenzyme and apoenzyme activities of rat liver tryptophan pyrrolase (TP) and increased brain tryptophan, serotonin (5-HT) and 5-hydroxyindole-3-ylacetic acid concentrations. 2-PA had no inhibitory effect on either of the enzyme activities in vitro, but its expected metabolites were effective. Single doses of DL-alpha-amino-beta-(3-pyridine)propanoic acid (3-PA, 100 mg/kg) decreased only the holoenzyme activity and elevated brain tryptophan and its metabolites levels in rats. 3-PA and its metabolite, 3-pyridylpyruvate, inhibited only the holoenzyme activity in vitro. DL-alpha-Amino-beta-(4-pyridine)propanoic acid (4-PA) caused significant changes in liver TP (holo- and apoenzyme forms) activity and brain tryptophan concentration only after repeated administration (100 mg/kg/day). 4-PA was a weak inhibitor of the holoenzyme, but its metabolites apparently inhibited the holo- and apoenzyme activities in vitro. These findings suggest that PA analogs (and/or their metabolites) increased brain tryptophan (and hence 5-HT synthesis) by directly inhibiting liver TP activity.  相似文献   

16.
Reversed-phase HPLC method by direct plasma injection has been developed for the analysis of major tryptophan metabolites (both metabolites in kynurenine pathways and in indole pathways). Two columns were used: one was a short precolumn of protein-coated octadecylsilane (ODS) for deproteinization and also for trapping of tryptophan metabolites, and the other was an analytical column of the usual ODS. By a column-switching method, the metabolites trapped in the precolumn were allowed to be eluted through the analytical column. The recovery of the spiked metabolites in plasma by the present method was almost quantitative (98-102%) with good reproducibility (CV less than 3%, within-run), and the method is determined to be simple and reproducible for the analysis of total (free + protein-bound) tryptophan metabolites in plasma. The analysis of rabbit plasma showed several peaks corresponding to kynurenine, kynurenic acid, 5-hydroxyindole-3-acetic acid, indole-3-lactic acid, indole-3-acetic acid, indole-3-propionic acid, and 5-hydroxy-tryptamine in addition to tryptophan.  相似文献   

17.
Oxidative modification of low density lipoprotein (LDL) induced by free radicals is implicated in the development of atherosclerosis. The aim of the present study was to examine the ability of various pineal indoles in inhibiting LDL oxidation which is accompanied by an increase in mobility in agarose gel electrophoresis and by an augmented generation of thiobarbituric acid-reactive substance induced by Cu2+. It was found that the order of potencies in inhibiting malondialdehyde formation was 5-hydroxytryptamine (serotonin)>5-hydroxytryptophol and 5-hydroxyindole-3-acetic acid when tested at 4 mM. 5-Methoxytryptamine was as effective as 5-hydroxytryptophol and 5-hydroxyindole-3-acetic acid when tested at 4 mM but was inactive at 1 mM. 5-Methoxytryptophol was marginally active at 4 mM. Melatonin, 5-methoxyindole-3-acetic acid and 6-methoxy-2-benzoxazolinone were inactive even at 4 mM. The ranking of antioxidative potencies as reflected in the shift of mobility in agar gel electrophoresis was 5-hydroxytryptamine>5-methoxytryptamine>5-hydroxyindole-3-acetic acid and 5-methoxytryptophol>5-hydroxytryptophol and melatonin. Another aim of this investigation was to ascertain the action of the aforementioned pineal indoles on the enhanced lipid peroxidation brought about in the mouse kidney and liver by intraperitoneal administrations of carbon tetrachloride. It was found that all pineal indoles tested demonstrated an inhibitory effect in the kidney but not in the liver. 6-Methox-2-benzoxazolinone and 5-methoxyindole-3-acetic acid exerted antifungal activity against Mycosphaerella arachidicola, Botrytis cinerea and Physalospora piricola. 6-Methoxy-2-benzoxazolinone exhibited antibacterial activity against Proteus vulgaris and 5-methoxytryptamine against Staphylocccus aureus and Bacillus subtilis. Other pineal indoles did not possess antifungal or antibacterial action.  相似文献   

18.
Abstract: Intracerebral microdialysis was applied to monitor the neocortical extracellular levels of the aromatic amino acids phenylalanine, tyrosine, and tryptophan, the neurotransmitters dopamine (DA), noradrenaline (NA), and serotonin (5-HT), and the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindole-3-acetic acid (5-HIAA) in rats with various forms of experimental hepatic encephalopathy (HE). The extracellular aromatic amino acid levels were clearly increased in acute, subacute, and chronic HE. No changes compared with controls in the neocortical DA release could be detected in the three experimental HE rat models investigated. The NA release showed a significant increase only in the subacute HE group. These data suggest that HE may not be associated with any major reduction of neocortical DA or NA release as previously suggested. In acute and subacute HE, decreased extracellular DOPAC but elevated 5-HIAA concentrations were seen. In chronic HE, elevations of both DOPAC and 5-HIAA were observed. Neocortical 5-HT release did not change in subacute and chronic HE, whereas it decreased in acute HE compared with control values. Significant increase in extracellular concentrations of 5-HIAA and of the 5-HIAA/5-HT ratio in the present study are in agreement with previously reported increases in 5-HT turnover in experimental HE. However, a substantially increased 5-HT turnover in experimental HE does not appear to be related to an increase in neuronal neocortical 5-HT release.  相似文献   

19.
The effects of pyrazinamide on the metabolism of tryptophan to niacin and of tryptophan to serotonin were investigated to elucidate the mechanism for pyrazinamide action against tuberculosis. Weanling rats were fed with a diet with or without 0.25% pyrazinamide for 61 days. Urine samples were periodically collected for measuring the tryptophan metabolites. The administration of pyrazinamide significantly increased the metabolites, 3-hydroxyanthranilic acid and beyond, especially quinolinic acid, nicotinamide, N'-methylnicotinamide, and N1-methyl-4-pyridone-3-carboxamide, and therefore significantly increased the conversion ratio of tryptophan to niacin and the blood NAD level . However, no difference in the upper metabolites of the tryptophan to niacin pathway such as anthranilic acid, kynurenic acid and xanthurenic acid was apparent between the two groups. No difference in the concentrations of trytptophan and serotonin in the blood were apparent either. It is suggested from these results that the action of pyrazinamide against tuberculosis is linked to the increase in turnover of NAD and to the increased content of NAD in the host cells.  相似文献   

20.
Abstract— Administration of glucocorticoids to rats increased the activity of hepatic tryptophan peroxidase (EC 1.11.1.4) and lowered brain serotonin. Pretreatment with glucose diminished both of these effects. Administration of allylisopropylacetamide to adrenalecto-mized rats increased both the activity of tryptophan peroxidase and the level of brain serotonin but had no effect on tryptophan hydroxylase (EC 1.99.1.4) activity in the brain stem. The activity of tryptophan peroxidase was increased by the acute stress of laparotomy and by the chronic stress of a 72-h fast. Neither stressor affected brain serotonin levels appreciably. These results argue against the proposal that the activity of tryptophan peroxidase activity directly affects synthesis of brain serotonin by diverting tryptophan from the biosynthesis of this monoamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号