首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified 14S subunit particles were obtained from alkali-dissociated poliovirus type 1 procapsids (naturally occurring empty capsids in poliovirus-infected cells) to compare their morphological and biophysical properties with those of naturally occurring 14S particles. Procapsid-derived 14S particles (PC-14S), like naturally occurring 14S particles, were capable of self-assembly into an empty shell in buffer or extracts from uninfected cells. These empty capsids always exhibited pIs more acidic than those of procapsids but were themselves distinguishable by their respective pIs. Nevertheless, if PC-14S or naturally occurring 14S particles were incubated with extracts made from poliovirus-infected cells, procapsidlike empty shells were formed. This clearly showed that the 14S particle, however obtained, possesses the information to form an empty shell of correct dimensions but of improper conformation, unless a factor present in poliovirus-infected cells is present. With the electron microscope, the PC-14S subunit frequently was seen as a pentagonal structure with a diameter of 20.4 +/- 1.4 nm, a size somewhat larger than expected for a subunit composing 1/12th of the poliovirus surface. Upon self-assembly in vitro, the empty shell formed exhibited a diameter of 29 +/- 1 nm and a wall thickness of ca. 6 to 7 nm. It was necessary to avoid CsCl banding of procapsids in their preparation as this treatment altered both their pI and their sensitivity to alkali dissociation into 14S subunits. The relevance of these findings to the nature and role of procapsids and the requirement for a morphopoietic factor in poliovirus morphogenesis is discussed.  相似文献   

2.
Investigation of 15 poliovirus temperature-sensitive (ts) mutants by using physiological tests [formation of virus-specific antigen and ribonucleic acid (RNA) under nonpermissive conditions] permitted us to divide them into three groups. From each group, one mutant was selected (ts 2, 5, 11), and a comparative study of poliovirus-related particle (5, 10, 73, and 150S) formation under permissive (36 C) and nonpermissive (40 C) conditions was carried out. The ts 2 and ts 11 are mutants with greatly reduced RNA synthesis which at 40 C produce particles with a sedimentation constant of 5S, and the ts 5 (RNA(+)) mutant produces both 5 and 10S particles. The relationship between different temperature-sensitive defects in the mutants is discussed. The results obtained indicate a possible role of 5S protein structures in morphogenesis of poliovirus.  相似文献   

3.
A previously undetected subviral particle, designated the 55S particle because of its position in sucrose density gradients, has been found in cytoplasmic extracts of poliovirus-infected cells. It contains no RNA, is composed of equimolar amounts of the structural polypeptides P1AB, P1C, and P1D, and is stable in vitro under a variety of conditions: presence or absence of EDTA, dilution in low- or high-ionic-strength buffers, suspension in buffers up to pH 10, incubation at 37 degrees C, and centrifugation to equilibrium in CsCl gradients (where it bands at a density of 1.285 g/cm3). Conventional pulse-chase experiments show that 55S particles are the products of the assembly of 14S subunits and the precursors of virions. These data led to the formulation of a model of poliovirus morphogenesis in which the conversion of capsomers into 73S empty capsids does not occur directly, but through the formation of an intermediate structure, the 55S particle.  相似文献   

4.
Empty capsid species formed from the self- and extract-mediated assembly of poliovirus type 1 14S particles in vitro and procapsids isolated from virus-infected cells were subjected to isoelectric focusing in charge-free agarose gels. The empty capsid formed in the self-assembly reaction had an isoelectric point (pI) of 5.0, whereas procapsids and extract-assembled empty capsids focused at pH 6.8. Unreacted 14S particles focused at pH 4.8 to 5.0. The sedimentation coefficient (s20,w) and density of the empty capsid species were also determined. Procapsids had a density in CsCl of 1.31 g/cm3, whereas empty capsids formed by self- or extract-mediated assembly had a density of 1.29 g/cm3. Both extract-assembled empty capsids and procapsids had an s20,w of 75S, whereas self-assembled empty capsids had an s20,w of 71S. Self-assembled empty capsids were not converted to pI 6.8 empty capsids by incubation with poliovirus-infected HeLa cell extracts. The dissociated polypeptides of self-assembled empty capsids (pI 5.0) and procapsids (pI 6.8) behaved identically when analyzed by isoelectric focusing in the presence of 9 M urea and by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. These results suggest that infected cell extracts possess a factor that influences the final conformation of the empty shell (pI 6.8, 75S) formed from 14S particles and that this influences is exerted at the initiation step or during the polymerization reaction. A small amount of this activity (less than or equal to 20% of infected extracts) was detected in uninfected cells; the significance of this remains unknown.  相似文献   

5.
The current model of poliovirus morphogenesis postulates a fundamental role for procapsid, 80S shells that, upon interaction with viral RNA and subsequent proteolytic cleavage, give rise to complete virus particles. Although 80S sedimenting particles can, indeed, be isolated from cytoplasmic extracts of infected cells, their physical properties differ from those reported for procapsids. Far from being stable structures, they can be dissociated by pH 8.5 and 0.1% sodium dodecyl sulfate into slower-sedimenting subunits. The reasons for this discrepancy were investigated, and two main modalities leading to the appearance of procapsids in vitro were identified. The first involves a temperature-mediated conversion of dissociable 80S particles into stable 80S procapsids, and the second involves the self-assembly of endogenous 14S subunits, also primed by an increase in the temperature of cytoplasmic extracts.  相似文献   

6.
Antigenic Specificity of Poliovirus-Related Particles   总被引:4,自引:2,他引:2       下载免费PDF全文
Poliovirus-specific structures with sedimentation constants of 5, 14, 73, and 150S produced in infected HeLa cells possess different antigenic specificities.  相似文献   

7.
Infection of cells with poliovirus results in the complete shutoff of host protein synthesis. It is presumed that proteolysis of the p220 component of the cap-binding protein complex that is required for the translation of host mRNAs is responsible for the shutoff phenomenon. In this paper, we show that when cells are infected with poliovirus in the presence of guanidine or 3-methylquercetin, both inhibitors of poliovirus replication, complete cleavage of p220 occurs by 3.5 h postinfection. However, under these conditions only 55 to 77% of host protein synthesis is suppressed. Results obtained with extracts prepared from poliovirus-infected cells were similar to those obtained in vivo. These results suggest that complete inhibition of host protein synthesis after poliovirus infection requires at least one event in addition to proteolysis of p220. Thus, proteolysis of p220 is probably necessary but not sufficient for total suppression of host protein synthesis after poliovirus infection.  相似文献   

8.
A drastic inhibition of protein synthesis occurs in HeLa cells treated with human lymphoblastoid interferon and infected with poliovirus. At the time when this inhibition has been established no degradation of 32P-labelled ribosomal RNA can be detected. Isolation of the mRNAs from poliovirus-infected cells plus or minus interferon treatment, followed by translation in a reticulocyte lysate indicates that cellular mRNAs remain active. These results suggest that gross degradation of cellular RNA does not occur in interferon-treated poliovirus-infected HeLa cells and that a non-specific nuclease induced by 2′–5′ A is not responsible for the inhibition of protein synthesis observed.  相似文献   

9.
The infection of HeLa cells by poliovirus leads to profound alterations in the activities of both phospholipase C and the A23187-stimulated phospholipase A2. As early as the third hour after poliovirus infection, the activity of phospholipase C is enhanced, as measured by the increase in inositol triphosphate (IP3) in the cells. By the fifth hour post-infection there is a 5-fold increase in IP3 in the infected cells. Therefore, the synthesis of the bulk of poliovirus proteins and poliovirus genomes takes place in cells containing a high and sustained increase in IP3. This augmentation in IP3 is dependent on the multiplicity of infection used. Poliovirus gene expression is required to induce the increase in phospholipase C activity, since the presence of cycloheximide or guanidine blocked it. In contrast to the activation of phospholipase C induced by poliovirus, there is a drastic blockade of the A23187-induced phospholipase A2 activity, measured as the release of [3H]arachidonic acid to the medium. This action on phospholipase A2 is dependent on poliovirus gene expression because it was prevented by cycloheximide or 3-methylquercetin. To our knowledge this is the first report analyzing these two activities in animal virus-infected cells. The findings described may help to explain the profound modifications of both membrane permeability and lipid metabolism undergone by poliovirus-infected cells.  相似文献   

10.
Infections with RNA viruses are sensed by the innate immune system through membrane-bound Toll-like receptors or the cytoplasmic RNA helicases RIG-I and MDA-5. It is believed that MDA-5 is crucial for sensing infections by picornaviruses, but there have been no studies on the role of this protein during infection with poliovirus, the prototypic picornavirus. Beginning at 4 h postinfection, MDA-5 protein is degraded in poliovirus-infected cells. Levels of MDA-5 declined beginning at 6 h after infection with rhinovirus type 1a or encephalomyocarditis virus, but the protein was stable in cells infected with rhinovirus type 16 or echovirus type 1. Cleavage of MDA-5 is not carried out by either poliovirus proteinase 2Apro or 3Cpro. Instead, degradation of MDA-5 in poliovirus-infected cells occurs in a proteasome- and caspase-dependent manner. Degradation of MDA-5 during poliovirus infection correlates with cleavage of poly(ADP) ribose polymerase (PARP), a hallmark of apoptosis. Induction of apoptosis by puromycin leads to cleavage of both PARP and MDA-5. The MDA-5 cleavage product observed in cells treated with puromycin is approximately 90 kDa, similar in size to the putative cleavage product observed in poliovirus-infected cells. Poliovirus-induced cleavage of MDA-5 may be a mechanism to antagonize production of type I interferon in response to viral infection.  相似文献   

11.
Lysates of poliovirus-infected HeLa cells were fractionated by low speed centrifugation into a sediment (“nuclear fraction”) which contained the nuclei and part of the cytoplasm (nucleus-associated cytoplasm, NAC) and a supernatant (nucleus-unassociated cytoplasm, NUC). Both the nuclear fraction and NUC promoted the conversion of 14 S precursor particles to poliovirus procapsids. The NAC contained numerous species of poliovirus-related particles. Their analysis revealed the presence of two new viral polypeptides, NACP-1 and NACP-2, which were absent from the NUC; their molecular weight was estimated as 37,000 and 54,000, respectively.  相似文献   

12.
RNA binding properties of poliovirus subviral particles.   总被引:1,自引:1,他引:0       下载免费PDF全文
The mechanism of encapsidation of the RNA genome of poliovirus and other picornaviruses is unknown. To test whether any of the putative assembly intermediates of poliovirus could interact directly with the poliovirus RNA genome, poliovirus RNA was attached to magnetic streptavidin beads and incubated with partially purified extracts containing 35S-labeled 14S pentamer and 75S empty-capsid subviral particles from infected cells. The amount of labeled protein bound to the beads was monitored, thus testing the RNA-binding activities of only the labeled viral proteins in the preparations. In this assay, nonspecific RNA-binding activity was displayed by the 14S pentameric particles and mature virons. 75S empty capsids displayed no propensity to associate with RNA. 14S pentamers were demonstrated to form rapidly sedimenting complexes and to undergo a conformational alteration upon RNA binding. These findings are consistent with a direct role for the 14S pentameric particles in RNA packaging during poliovirus morphogenesis.  相似文献   

13.
Following poliovirus infection of HeLa cells, the synthesis of cellular proteins is inhibited but translation of poliovirus mRNA proceeds. The defect in the recognition of host cell mRNA may be due to a change in a cap recognition complex which, when added to an infected cell lysate, restores the ability to translate capped mRNAs. We employed immunoblotting techniques to examine initiation factors in crude lysates from uninfected and poliovirus-infected HeLa cells. Using an antiserum against eucaryotic initiation factor 3, we detected an antigen of approximate molecular weight 220,000 in uninfected cell lysates but not in infected cell lysates. Antigenically related polypeptides of 100,000 to 130,000 daltons, presumably degradation products, were detected in the infected cell lysate. The time course for degradation of the 220,000-dalton polypeptide correlates with that for inhibition of cellular protein synthesis in vivo. A portion of the population of 220,000-dalton polypeptides apparently associates with initiation factor eIF3 but is readily dissociated in buffers containing high salt. Affinity-purified antibodies against the polypeptide recognize a protein of the same size in a purified preparation of a cap binding protein complex obtained by cap-affinity chromatography. We postulate that the 220,000-dalton polypeptide is an essential component of the cap recognition complex and that its degradation in poliovirus-infected cells results in the inhibition of host cell translation. These results are in the first demonstration of a specific structural defect in an initiation factor resulting from poliovirus infection.  相似文献   

14.
Host protein synthesis in poliovirus-infected HeLa cells is interrupted, but the host mRNA appears to remain completely intact and unmodified. The average size and poly (A) content of host mRNA was previously known to be unchanged (Koschel, 1974; Leibowitz and Penman, 1971), and this was confirmed. In addition, the 5' terminal methylated "cap" structures remained intact, and no further base modifications at the level of 1 base in 1,000 could be detected. Poliovirus RNA from viruses was previously shown not to have "caps" (Wimmer, 1972), and in this work poliovirus RNA from polyribosomes was found to have pUp at its 5' end. Since, initiation of protein synthesis is probably the basis for the inhibition of cellular protein synthesis in infected cells, the difference in the 5' ends of the host cell and viral RNA could be the basis of selective translation of viral RNA during infection.  相似文献   

15.
Inhibition of host protein synthesis after poliovirus infection has been suggested to be a consequence of the proteolytic degradation of a p220 polypeptide necessary to translate capped mRNAs. However, the synthesis of several adenovirus late proteins on capped mRNAs was resistant to poliovirus inhibition. Thus, the hexon protein was still made 8 h after poliovirus superinfection. The synthesis of other adenovirus proteins such as the fiber was much more sensitive to poliovirus-induced inhibition than the hexon, either in the absence or in the presence of guanidine. Detailed densitometric analyses clearly showed the differential behavior of several adenovirus late mRNAs to poliovirus shut-off of translation. This is striking in view of the fact that a common leader sequence in the 5' termini is present in the adenovirus late mRNAs. The use of 3-methyl quercetin, an inhibitor of poliovirus RNA synthesis (Castrillo, J. L., Vanden Berghe, D., and Carrasco, L. (1986) Virology 152, 219-227), showed that translation of several capped adenovirus mRNAs took place in poliovirus-infected cells after the synthesis of host proteins had ceased. The poliovirus mRNA and the adenovirus mRNA coding for the hexon protein are very efficient mRNAs and have a leader sequence of more than 740 and 250 nucleotides, respectively, with very rich secondary structures making it difficult to predict how the scanning model will operate on these two mRNAs.  相似文献   

16.
Structural protein complexes sedimenting at 140S, 70S (empty capsids), and 14S were isolated from foot-and-mouth disease virus-infected cells. The empty capsids were stable, while 14S complexes were relatively short-lived. Radioimmune binding assays involving the use of neutralizing monoclonal antibodies to six distinct epitopes on type A12 virus and polyclonal antisera to A12 structural proteins demonstrated that native empty capsids were indistinguishable from virus. Infected cell 14S particles possessed all the neutralizing epitopes and reacted with VP2 antiserum. Cell-free structural protein complexes sedimenting at 110S, 60S, and 14S containing capsid proteins VP0, VP3, and VP1 are assembled in a rabbit reticulocyte lysate programmed with foot-and-mouth viral RNA. These structures also contain the six epitopes, and cell-free 14S structures like their in vivo counterparts reacted with VP2 antiserum. Capsid structures from infected cells and the cell-free complexes adsorbed to susceptible cells, and this binding was inhibited, to various degrees, by saturating levels of unlabeled virus. These assays and other biochemical evidence indicate that capsid assembly in the cell-free system resembles viral morphogenesis in infected cells. In addition, epitopes on the virus surface possibly involved in interaction with cellular receptor sites are found early in virion morphogenesis.  相似文献   

17.
C Wychowski  S van der Werf  M Girard 《Gene》1985,37(1-3):63-71
The poliovirus cDNA fragment coding for capsid polypeptide VP1 was inserted between the EcoRI and BamHI sites of SV40 DNA, generating a chimaeric gene in which the sequence of the 302 amino acids (aa) of poliovirus capsid polypeptide VP1 was placed downstream from that of the 94 N-terminal aa of SV40 capsid polypeptide VP1. The resulting defective, hybrid virus, SV40-delta 1 polio, was propagated in CV1 cells using an early SV40 mutant, am404, as a helper. Cells doubly infected by SV40-delta 1 polio and am404 expressed a 50-kDal fusion protein which was specifically immunoprecipitated by polyclonal and/or monoclonal antibodies raised against poliovirus capsids or against poliovirus polypeptide VP1. Examination of the infected cells by immunofluorescence after staining with anti-poliovirus VP1 immune sera revealed that the fusion protein was mostly located in the intra- and perinuclear space of the cells, in contrast to the exclusively intracytoplasmic location of genuine poliovirus VP1 polypeptide that was observed in poliovirus-infected cells. This suggests that the N-terminal part of the SV40-VP1 polypeptide could contain an important sequence element acting as a migration signal for the transport of proteins from the cytoplasm to the nucleus.  相似文献   

18.
Poliovirus-infected cells contain a previously unrecognized particle which appears to be an intermediate in virion synthesis and therefore has been named proviron. It sediments at about 125S, contains the three procapsid proteins, VP-0, VP-1, and VP-3, and has 35S viral RNA. It is disrupted both by sodium dodecyl sulfate and EDTA but the RNA resists digestion by ribonuclease. Pulsechase experiments and studies employing the virus-specific inhibitor, guanidine, all indicate that the proviron is formed by combination of newly made RNA with the procapsid. Cleavage of VP-0 to form VP-2 and VP-4 follows formation of the provirion and would be the final step in poliovirus morphogenesis.  相似文献   

19.
Thermosensitive Block of the Sabin Strain of Poliovirus Type I   总被引:11,自引:7,他引:4  
The thermosensitive defect of the Sabin LSc2ab strain of poliovirus type I was studied. Transfer of infected KB cells from 36 to 38.5 C resulted in 30% inhibition of viral RNA replication but in 90% inhibition of formation of virions. Neither 74S procapsids nor 14S particles were detected in the cells transferred to the non-permissive temperature. However, procapsids, once accumulated at 36 C, were normally stable at 38.5 C and could transform into virions at that temperature. Viral proteins synthesized at the nonpermissive temperature were not different from those synthesized at permissive temperature, as judged from their pattern in polyacrylamide gel electrophoresis and from the fact that they normally matured into virions when the infected cells were brought back to permissive temperature, even under conditions of inhibition of protein synthesis. This leads to the conclusion that the defect in the Sabin strain studied lies in the assembly of its viral capsid proteins into capsomeres.  相似文献   

20.
Guanidine-resistant defective interfering particles of poliovirus.   总被引:2,自引:2,他引:0       下载免费PDF全文
A mixture containing standard poliovirus and D3 particles (mutants with deletions in the capsid locus) was serially passaged in the presence of guanidine. Within five growth cycles, the standard virus was guanidine resistant, but the D3 particles were guanidine sensitive, even after 21 passages with the inhibitor. By passage 40 with guanidine, D3 particles were eliminated, and a new deletion mutant (DX) appeared in the virus population. D3 particles contained a 15% deletion, and DX particles contained a 6% deletion in the capsid locus. Although neither mutant induced the synthesis of NCVP1a or a complete complement of capsid proteins after infection, cells infected with DX particles produced two novel proteins, which had molecular weights of approximately 68,000 and 25,000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号