首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential for ecological niche models (ENMs) to accurately predict species' abundance and demographic performance throughout their geographic distributions remains a topic of substantial debate in ecology and biogeography. Few studies simultaneously examine the relationship between ENM predictions of environmental suitability and both a species' abundance and its demographic performance, particularly across its entire geographic distribution. Yet, studies of this type are essential for understanding the extent to which ENMs are a viable tool for identifying areas that may promote high abundance or performance of a species or how species might respond to future climate conditions. In this study, we used an ensemble ecological niche model to predict climatic suitability for the perennial forb Astragalus utahensis across its geographic distribution. We then examined relationships between projected climatic suitability and field‐based measures of abundance, demographic performance, and forecasted stochastic population growth (λs). Predicted climatic suitability showed a J‐shaped relationship with A. utahensis abundance, where low‐abundance populations were associated with low‐to‐intermediate suitability scores and abundance increased sharply in areas of high predicted climatic suitability. A similar relationship existed between climatic suitability and λs from the center to the northern edge of the latitudinal distribution. Patterns such as these, where density or demographic performance only increases appreciably beyond some threshold of climatic suitability, support the contention that ENM‐predicted climatic suitability does not necessarily represent a reliable predictor of abundance or performance across large geographic regions.  相似文献   

2.
Aim During recent and future climate change, shifts in large‐scale species ranges are expected due to the hypothesized major role of climatic factors in regulating species distributions. The stress‐gradient hypothesis suggests that biotic interactions may act as major constraints on species distributions under more favourable growing conditions, while climatic constraints may dominate under unfavourable conditions. We tested this hypothesis for one focal tree species having three major competitors using broad‐scale environmental data. We evaluated the variation of species co‐occurrence patterns in climate space and estimated the influence of these patterns on the distribution of the focal species for current and projected future climates. Location Europe. Methods We used ICP Forest Level 1 data as well as climatic, topographic and edaphic variables. First, correlations between the relative abundance of European beech (Fagus sylvatica) and three major competitor species (Picea abies, Pinus sylvestris and Quercus robur) were analysed in environmental space, and then projected to geographic space. Second, a sensitivity analysis was performed using generalized additive models (GAM) to evaluate where and how much the predicted F. sylvatica distribution varied under current and future climates if potential competitor species were included or excluded. We evaluated if these areas coincide with current species co‐occurrence patterns. Results Correlation analyses supported the stress‐gradient hypothesis: towards favourable growing conditions of F. sylvatica, its abundance was strongly linked to the abundance of its competitors, while this link weakened towards unfavourable growing conditions, with stronger correlations in the south and at low elevations than in the north and at high elevations. The sensitivity analysis showed a potential spatial segregation of species with changing climate and a pronounced shift of zones where co‐occurrence patterns may play a major role. Main conclusions Our results demonstrate the importance of species co‐occurrence patterns for calibrating improved species distribution models for use in projections of climate effects. The correlation approach is able to localize European areas where inclusion of biotic predictors is effective. The climate‐induced spatial segregation of the major tree species could have ecological and economic consequences.  相似文献   

3.
Genetic-parameter estimates and parental breeding-value predictions were compared from open-pollinated and control-pollinated progeny populations of Eucalyptus globulus and two populations of E. nitens. For E. globulus there were two types of open-pollinated populations (native stand open-pollinated and seed orchard open-pollinated) and two types of control-pollinated populations (intra-provenance and interprovenance full-sib families). For E. nitens there were two populations, a seed orchard open-pollinated population and intra-provenance full-sib families. Progeny tests were established across multiple sites and 2-year height and diameter were measured and volume calculated. Genetic parameters from native stand open-pollinated E. globulus were unlike the parameters from the other three E. globulus populations; heritability estimates were severely inflated, presumably due to high levels, and possibly differential levels, of inbreeding depression relative to the other populations. Estimates of dominance variance in the E. globulus full-sib populations were high, but were zero in the E. nitens population. Correlations among parental breeding values, predicted using data from the different populations, were generally low and non-significant, with two exceptions: predictions from the two E. globulus full-sib populations were significantly correlated (r=0.54, P = 0.001), as were predictions from the E. nitens seed orchard OP and full-sib population (r = 0.61, P = 0.08). There was some indication that superior parents of E. globulus native stand open-pollinated families also tended to have above-average breeding values based on the performance of intra-provenance full-sib offspring. The consequences of these results for exploitation of base-population collections from native stands are discussed.  相似文献   

4.
Strong climate warming is predicted at higher latitudes this century, with potentially major consequences for productivity and carbon sequestration. Although northern peatlands contain one‐third of the world's soil organic carbon, little is known about the long‐term responses to experimental climate change of vascular plant communities in these Sphagnum‐dominated ecosystems. We aimed to see how long‐term experimental climate manipulations, relevant to different predicted future climate scenarios, affect total vascular plant abundance and species composition when the community is dominated by mosses. During 8 years, we investigated how the vascular plant community of a Sphagnum fuscum‐dominated subarctic peat bog responded to six experimental climate regimes, including factorial combinations of summer as well as spring warming and a thicker snow cover. Vascular plant species composition in our peat bog was more stable than is typically observed in (sub)arctic experiments: neither changes in total vascular plant abundance, nor in individual species abundances, Shannon's diversity or evenness were found in response to the climate manipulations. For three key species (Empetrum hermaphroditum, Betula nana and S. fuscum) we also measured whether the treatments had a sustained effect on plant length growth responses and how these responses interacted. Contrasting with the stability at the community level, both key shrubs and the peatmoss showed sustained positive growth responses at the plant level to the climate treatments. However, a higher percentage of moss‐encroached E. hermaphroditum shoots and a lack of change in B. nana net shrub height indicated encroachment by S. fuscum, resulting in long‐term stability of the vascular community composition: in a warmer world, vascular species of subarctic peat bogs appear to just keep pace with growing Sphagnum in their race for space. Our findings contribute to general ecological theory by demonstrating that community resistance to environmental changes does not necessarily mean inertia in vegetation response.  相似文献   

5.
Retuerto  Rubén  Carballeira  Alejo 《Plant Ecology》2004,170(2):185-202
We characterised the climatic behaviour of 53 woody species in terms of the climatic factors that play the main role in controlling species distribution in the study area. Floristic and climatic data were obtained from 150 stands in sites under climatic control (i.e. eu-climatopes). The sampling strategy used allowed a reliable match between floristic and climatic observations. Different methods of frequency analysis and goodness-of-fit tests were used to identify associations between species occurrence and climatic characteristics. The species' responses were summarised by statistics describing ecological preferences and amplitudes, and species were grouped accordingly. A Gaussian response model was fitted to the abundance data along the main climatic gradients for selected species and response surfaces were derived by spatial analysis for a set of indicator species. Frequency analysis methods detected 42 indicator taxa for the Baudiere's Qe drought index, and lower numbers, 34 and 22, respectively, for the mean minimum coldest-month temperature and the daily temperature range in the coldest month. Goodness-of-fit tests revealed a lower number of ecological profiles with statistically significant deviations from equidistribution. We discuss the relative performance of the different methods and suggest that the combined use of statistical tests and frequency analyses may improve estimation of the environmental requirements of species. We also recommend using the species' responses to key environmental factors as reliable criteria in the definition of plant functional types. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Question: Can the distribution and abundance of Vaccinium myrtillus be reasonably predicted with soil nutritional and climatic factors? Location: Forests of France. Methods: We used Braun‐Blanquet abundance/dominance information for Vaccinium myrtillus on 2905 forest sites extracted from the phyto‐ecological database EcoPlant, to characterize the species ecological response to climatic and edaphic factors and to predict its cover/abundance at the national scale. The link between cover/abundance of the species and climatic (65 monthly and annual predictors concerning temperature, precipitation, radiation, potential evapotranspiration, water balance) and edaphic (two predictors: soil pH and C:N ratio) factors was investigated with proportional odds models. We evaluated the quality of our model with 9830 independent relevés extracted from Sophy, a large phytosociological database for France. Results: In France, Vaccinium myrtillus is at the southern limit of its European geographic range and three environmental factors (mean annual temperature, soil pH and C:N ratio) allow prediction of its distribution and abundance in forests with high success rates. The species reveals a preference for colder sites (especially mountains) and nutritionally poor soils (low pH and high C:N ratio). A predictive map of its geographic range reveals that the main potential habitats are mountains and northwestern France. The potential habitats with maximal expected abundance are the Vosges and the Massif central mountains, which are both acidic mountains. Conclusions: Complete niche models including climate and soil nutritional conditions allow an improvement of the spatial prediction of plant species abundance at a broad scale. The use of soil nutritional variables in distribution models further leads to an improvement in the prediction of plant species habitats within their geographical range.  相似文献   

7.
Our study aims at gaining insights into the processes determining the current treeline dynamics in Finnish Lapland. Using forest surveys conducted in 1978 and 2003 we modelled the occurrence and abundance of three dominant tree species in Finnish Lapland, i.e. Pinus sylvestris, Picea abies and Betula pubescens, with boosted regression trees. We assessed the importance of climatic, biotic and topographic variables in predicting tree occurrence and abundance based on their relative importance and response curves. We compared temporal and spatial transferability by using an extended transferability index. Site fertility, the abundance of co‐occurring species and growing degree days were generally the most important predictors for both occurrence and abundance across all species and datasets. Climatic predictors were more important for modelling occurrences than for modelling abundances. Occurrence models were able to reproduce the observed treeline pattern within one time period or region. Abundance models underestimated basal area but captured the general pattern of low and high values. Model performance as well as transferability differed considerably between species and datasets. Pinus sylvestris was modelled more successfully than P. abies and B. pubescens. Generally, spatial transferability was greater than temporal transferability. Comparing the environmental space between datasets revealed that transferring models means extrapolating to novel environments, providing a plausible explanation for limited transferability. Our study illustrates how climate change can shift the environmental space and lead to limited model transferability. We identified non‐climatic factors to be important in predicting the distribution of dominant tree species, contesting the widespread assumption of climatically induced range expansion.  相似文献   

8.
The sensitivity of early plant regeneration to environmental change makes regeneration a critical stage for understanding species response to climate change. We investigated the spatial and temporal response of eucalypt trees in the Central Highland region of south eastern Australia to high and low climate change scenarios. We developed a novel mechanistic model incorporating germination processes, TACA‐GEM, to evaluate establishment probabilities of five key eucalypt species, Eucalyptus pauciflora, Eucalyptus delegatensis, Eucalyptus regnans, Eucalyptus nitens and Eucalyptus obliqua. Changes to regeneration potential at landscape and site levels were calculated to determine climate thresholds. Model results demonstrated that climate change is likely to impact plant regeneration. We observed increases and decreases in regeneration potential depending on the ecosystem, indicating that some species will increase in abundance in some forest types, whilst other forest types will become inhabitable. In general, the dry forest ecosystems were most impacted, whilst the wet forests were least impacted. We also observed that species with seed dormancy mechanisms, like E. pauciflora and E. delegatensis, are likely to be at higher risk than those without. Landscape‐ and site‐level analysis revealed heterogeneity in species response at different scales. On a landscape scale, a 4.3 °C mean temperature increase and 22% decline in precipitation (predicted for 2080) is predicted to be a threshold for large spatial shifts in species regeneration niches across the study region, while a 2.6 °C increase and 15% decline in precipitation (predicted for 2050) will likely result in local site‐level shifts. Site‐level analysis showed that considerable declines in regeneration potential for E. delegatensis, E. pauciflora and E. nitens were modelled to occur in some ecosystems by 2050. While overall model performance and accuracy was good, better understanding of effects from extreme events and other underlying processes on regeneration will improve modelling and development of species conservation strategies.  相似文献   

9.
为探究蜡梅花被片表层蜡质的微形态结构特征和差异性,采用扫描电子显微镜对蜡梅和山蜡梅的花被片进行观察。结果表明:蜡梅花被片表层无明显蜡质覆盖物,细胞排列平滑,内表层有加厚透明状覆盖物; 山蜡梅花被片表层有厚蜡质覆盖物和表皮毛; 山蜡梅、蜡梅花被片均无气孔。以上独特的结构形态对于蜡梅花开放于寒冷季节,应对外界环境胁迫可能有一定的保护作用和生态意义。  相似文献   

10.
Adonis sect.Consiligo is split into three subsections based on morphology, growth pattern, pollen and fruit morphology. For all species distribution maps are provided and discussed with regard to their ecology and climatic requirements. These data reveal additional characters that support the classification of the taxa. Most species of the section grow in continental Eurasiatic steppes and mountain steppe habitats. Only the species of subsect.Amurenses grow in Far Eastern temperate forests and prefer a more oceanic climate. The taxonomic position of these strongly divergent species is supported by the distributional and ecological data. The evolution ofAdonis sect.Consiligo occurred under strong climatic control. During evolution the taxa could only slightly widen their ecological amplitude and, thus, ecology remained rather stable except that of the subsect.Amurenses. Ecological and distributional data can be used to validate taxonomy and phylogeny and reveal additional informations.  相似文献   

11.
As key dispersers of herbaceous seeds, Aphaenogaster ants strongly influence the distribution of woodland plants in eastern North America. Ants within this genus are difficult to distinguish and often are identified by subgroup, but emerging research suggests they occupy species-specific ecological niches. As such, distinct climatic requirements among Aphaenogaster spp. might result in transient plant interactions with climate change. We examine whether there are ecological and distributional differences among Aphaenogaster species that coincide with current taxonomic differentiations. We use occurrence records for six Aphaenogaster spp. that occur in deciduous forests in eastern North America. We associate the geographic patterning of species occurrence with temperature and precipitation data, and we examine whether unique climatic niches characterize each species. We then predict habitat suitability throughout eastern North America using species distribution models. For verification, we test how well the predicted ranges fit observed occurrences using novel data sets for each species. We find that Aphaenogaster species within this cryptic genus demonstrate unique ecological and geographic signatures. Each species within the subgroup generally responds differently to temperature, and somewhat differently to precipitation and seasonal variance, suggesting unique ecological niches for each species. Our results indicate that each ant species may respond uniquely to changes in climate. Such shifts could disrupt current community associations and biotic interactions with ant-dispersed plants.  相似文献   

12.
The rust fungusGymnoconia nitensinfects blackberry (Rubus argutus) systemically in regions of the continental United States, producing bright yellow–orange masses of spores on newly developing floricanes during springtime. In tests to determine the suitability of this rust as a biological control agent forR. penetransin Hawaii, a species now thought to be conspecific withR. argutus,rooted cuttings of the Hawaiian plants were grown at North Carolina State University, inoculated, and observed. Other introduced weedyRubusspp. in Hawaii, includingR. ellipticus, R. rosifolius,andR. glaucus,as well as the two endemic speciesR. hawaiensisandR. macraei,also were inoculated. No species ofRubusare of commercial importance in Hawaii, but the protection of the native species, of whichR. macraeiis rare, was of utmost concern. The native Hawaiian species did not survive well in North Carolina in this study, however. Later availability of a plant pathogen containment laboratory in Hawaii enabled similar tests to be conducted at that facility. In addition to the above species,R. spectabilis(salmonberry), a species native to the Pacific Northwest with which the HawaiianRubusspp. are thought to share a common ancestor, was inoculated in Hawaii. Infection withG. nitensunder natural field conditions becomes apparent only when sporulation occurs on floricanes the second year following infection. However, experimental inoculation led to early responses of chlorotic leaf flecking and puckering, leaf and stem contortion, and stem gall formation, indicating the sensitivity ofR. penetrans(=R. argutus),R. hawaiensis,andR. macraeito this rust. Apparent systemic infection also resulted in sporulation on one plant ofR. macraei.Ability to attack the endemic species suggests thatG. nitenswould not be suitable for release in Hawaii as a biological control agent, at least on the islands with populations of the native species.  相似文献   

13.
Predicting biodiversity responses to climate change remains a difficult challenge, especially in climatically complex regions where precipitation is a limiting factor. Though statistical climatic envelope models are frequently used to project future scenarios for species distributions under climate change, these models are rarely tested using empirical data. We used long‐term data on bird distributions and abundance covering five states in the western US and in the Canadian province of British Columbia to test the capacity of statistical models to predict temporal changes in bird populations over a 32‐year period. Using boosted regression trees, we built presence‐absence and abundance models that related the presence and abundance of 132 bird species to spatial variation in climatic conditions. Presence/absence models built using 1970–1974 data forecast the distributions of the majority of species in the later time period, 1998–2002 (mean AUC = 0.79 ± 0.01). Hindcast models performed equivalently (mean AUC = 0.82 ± 0.01). Correlations between observed and predicted abundances were also statistically significant for most species (forecast mean Spearman′s ρ = 0.34 ± 0.02, hindcast = 0.39 ± 0.02). The most stringent test is to test predicted changes in geographic patterns through time. Observed changes in abundance patterns were significantly positively correlated with those predicted for 59% of species (mean Spearman′s ρ = 0.28 ± 0.02, across all species). Three precipitation variables (for the wettest month, breeding season, and driest month) and minimum temperature of the coldest month were the most important predictors of bird distributions and abundances in this region, and hence of abundance changes through time. Our results suggest that models describing associations between climatic variables and abundance patterns can predict changes through time for some species, and that changes in precipitation and winter temperature appear to have already driven shifts in the geographic patterns of abundance of bird populations in western North America.  相似文献   

14.
Phylogenetic analyses of the genusActaea were performed using morphological, ecological and biogeographical characters. Using solely morphological characters, the relationships of the three identified species-groups remain uncertain. Close biogeographical examination and comparison of the areas with ecological peculiarities as well as climate data gave important insight into the phylogeny ofActaea and the whole tribe. Consequently, the obtained biogeographical data were used for phylogenetic reconstructions. Both, from the point of view of morphological and biogeographical data,A. pachypoda andA. asiatica are the most ancestral species. They grow on the east sides of the continents, mainly in broad-leaved forests. In West Eurasia the apomorphicA. spicata andA. acuminata occur under similar climatic and ecological conditions, but these species are adapted to another climate rhythm. The most advanced species (A. erythrocarpa, A. rubra) are to be found in the boreal forests where they are widely distributed. This biogeographical approach revealed that the evolution of the species led to a gradual widening and shifting of their ecological constitutions.  相似文献   

15.
Assessing the spatial structure of abundance of a species is a basic requirement to carry out adequate conservation strategies. However, existing attempts to predict species abundance, particularly in absolute units and on large scales, are scarce and have led to weak results. In this work we present a scheme to obtain, in an affordable way, a predictive model of absolute animal abundance on large scales based on the modelling of data obtained from local ecological knowledge (LEK) and its calibration. To exemplify this scheme, we build and validate a predictive absolute abundance model of the endangered terrestrial tortoise Testudo graeca in Southeast Iberian Peninsula. For that purpose, we collected distribution and relative abundance data of T. graeca using a low cost methodology, such as LEK, by means of interviewing shepherds. The information from LEK was employed to build a predictive habitat-based model of relative abundance. The relative abundance model was transformed into an absolute abundance model by means of calibration with a classical absolute abundance sampling method such as distance sampling. The obtained absolute abundance model predicted the observed absolute abundances values well in independent locations when compared with other works (R 2 = 36%) and thus can offer a cost-effective predictive ability. Our results show that reliable habitat-based predictive maps of absolute species abundance on regional scales can be obtained starting from low cost sampling methods of relative abundance, such as LEK, and its calibration.  相似文献   

16.
Abstract. We used classification tree analysis to develop a climate‐based distribution model for Fagus crenata forests in Japan. Four climatic variables judged likely to affect the distribution of the species (summer and winter precipitation, minimum temperature of the coldest month and Kira's warmth index) were chosen as independent variables for the model. Latitudinal and longitudinal information was also used to examine effects of spatial autocorrelation on the model. The climatic factors associated with the distribution of the forests were analysed using a classification tree to devise prediction rules. Predicted areas of high probability for forest occurrence lay mainly on the Sea of Japan side of northern Honshu and southern Hokkaido. This is consistent with actual forest distribution. Some areas with high predicted probabilities of F. crenata forest occurrence were beyond the current natural northern range limits of these forests. Since these areas were widely scattered, it was assumed that the species has been hindered from colonizing them due to dispersal limitations. Deviance‐weighted scores, used to compare magnitudes of the contributions of predictor variables, revealed winter precipitation as the most influential factor, followed by the warmth index, the minimum temperature of the coldest month and summer precipitation. Attempts were made to generate ecological explanations for the effects of the four climatic factors on the distribution of F. crenata forests.  相似文献   

17.
Summary The inheritance of freezing resistance in interspecific F1 hybrid families of Eucalyptus encompassing 27 different species combinations and a range of levels of hardiness was examined. Freezing resistance was assessed by determining the temperatures required to cause either 30% (T30), 40% (T40), or 50% (T50) leakage of electrolytes from excised leaf discs subjected to artificial freezing. Highly significant variation in freezing resistance occurred between species; the maximum difference between parents in any specific combination was over 9°C (E. gunnii x E. globulus). Freezing resistance was inherited in a predominantly additive manner in interspecific hybrids, although there was a tendency towards partial dominance toward the more sensitive species in some combinations (e.g., E. nitens x E. Globulus, E. nitens x E. camaldulensis, E. gunnii x E. globulus). The full expression of this genetic variation appeared to increase with hardiness and in some cases appeared to vary with ontogeny. Estimates of individual narrow-sense heritability of freezing resistance for pure E. nitens families were h 2 = 0.66±0.44 and 0.46±0.44. Across all species combinations examined, the heritability of F1 family means estimated from midparent regression was h 2 = 0.76±0.06 and h 2 = 0.89±0.06 for T40 and T50 values, respectively. The advantage of using selected parents for interspecific hybridization is demonstrated and the implications of these results for breeding for freezing resistance in Eucalyptus are discussed.  相似文献   

18.
Summary As ecologists use changes in the relative abundances of species to detect environmental stress in ecological communities, it is possible to do the same for higher taxa (‘Linnaean communities’) by examining the distribution of species between genera. Using an adaptation of Simpson’s diversity index (D), we predict that, like ecological communities, mature Linnaean communities have D values >0.8 and developing and relictual communities have D values <0.8. We show that D values for seven Australian weevil taxa, three indicated to be mature (Amycterini, Aterpini, Leptopiina), two relictual (Nemonychidae, Belinae) and two actively radiating groups (Gonipterini, Cyphicerina), are as predicted. Apparently subdivision of niche space has the same statistical effects in stressed Linnaean communities as it does in ecological communities, with firstly the loss of species in genera with intermediate numbers of species followed by the loss of monotypic genera. Clearly therefore, the protection of monotypic genera in Linnaean communities with low D values should be the highest conservation priority as these are at the highest risk of extinction, while monotypic genera in high-D communities are not at such high risk. Similarly, the geographical distribution of monotypic genera in Linnaean communities with low D values, rather than that of rare species (most of which will be in genera with many species), may constitute a useful way of identifying areas of conservation concern. CSIRO’s right to retain a nonexclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

19.
A mathematical model for the growth and conversion of somatic embryos was developed with the aim of monitoring the large scale production of oil palm microplants. The predicted biomass of somatic embryos obtained and subcultured (B n ), together with the number of harvested shoots (Sh n ) – two key parameters for production forecasts – have been modeled for seven different shoot harvesting procedures. For the four different clonal lines studied, observed differences between experimental B n values at the end of each culture cycle and their theoretical counterpart generated by mathematical models were found to range between −30% to +14% at the end of the first 6-weeks culture cycle, then from −50% to +70% after the 6th subculturing operation (36 weeks). Concerning the predicted number of shoots harvested after conversion of somatic embryos (Sh n ), average variations between experimental and theoretical values ranged between −45% and +41%. Predicted values for biomass (B n ) between two culture cycles were found to vary slightly (+6% to +10%) indicating that the production of embryo biomass, as predicted by the model, was rather stable, for a given clonal line, from one 6-week cycle to another. The established model could thus be regarded as valid and the variations observed for B n and Sh n were found to be acceptable when compared to the those described by other models. Taken as a whole, predicted values for the two studied production parameters were in agreement with the corresponding experimental data (correlation=0.98).  相似文献   

20.
In order to implement a robust integrated tick and tick-borne disease control programme in Tanzania, based on ecological and epidemiological knowledge of ticks and their associated diseases, a national tick and sero-surveillance study was carried out in all 21 regions of the mainland, as well as on Mafia Island, between 1998 and 2001. The current distributions of Rhipicephalus appendiculatus, R. pravus, Amblyomma variegatum, A. gemma, and A. lepidum are illustrated and discussed. Tick distribution maps were assessed using the Weights-of-Evidence method (WofE), and employing temperature, humidity, NDVI, rainfall, and land-cover predictive data. Ground-truthing was done to check correspondence both of the data employed in prediction with land-cover characteristics discerned in the field as well as of the surveyed and predicted tick distributions. Statistical methods were used to analyse associations of the tick species with their environment, cattle density, and other ticks. Except for R. appendiculatus, no appreciable changes were demonstrated in the predicted and observed tick distributions compared to the existing maps that originated in the 1950–1960s. Cattle density influenced the distribution of A. variegatum and, to a certain extent, of A. lepidum, but had no appreciable influence on the distribution of any of the other ticks discussed in this paper, neither did livestock movement. Distinct differences for environmental requirements where observed between different tick species within the same genus. The predictive maps of R. appendiculatus and R. pravus suggest their mutually exclusive distribution in Tanzania, and simultaneous statistical analysis showed R. pravus as a greater specialist. Of the three Amblyomma species, A. variegatum is the most catholic tick species in Tanzania, while both A. gemma and A. lepidum belong to the more specialized species. Despite dissimilar habitat preferences, all three Amblyomma spp. co-exist in central Tanzania, where very heterogeneous habitats may simultaneously satisfy the environmental requirements of all three species. The current study, conducted about 4 decades after the last major survey activities, has shown that changing livestock policies, unrestricted livestock movement and a continuous change in climatic/environmental conditions in Tanzania have brought about only limited changes in the distribution patterns of R. appendiculatus, R. pravus and the three Amblyomma species investigated. Whether this observation indicates a relative indifference of these ticks to environmental and/or climate changes allows room for speculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号