首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Colony growth of Streptomyces coelicolor A3(2) was studied on a cellophane membrane beneath which was passed a continuous supply of liquid medium. Colony development and differentiation occurred normally but hyphal extension rates and colony radial growth rates were reduced and branch formation was increased in comparison with colonies grown on the same medium solidified with agar. These changes are thought to result from continuous removal of staling compounds which would otherwise suppress branching at the colony margin. Glucose concentrations in the range of 0–1 g · l−1 had little effect on radial growth and branching except at a concentration of 1 g glucose · l−1, at which branching at the colony margin was suppressed. This concentration of glucose did not permit continued growth on solid medium.  相似文献   

2.
The affinity (KS value) of Geotrichum candidum for glucose determined from chemostate cultures was ca. 1 mg/1. KS values for glucose was also estimated from the radial growth rates of colonies of G. candidum and Neurospora crassa grown on media solidified with agar or silica gel. An assessment is made of the use of colony radial growth rate to determine substrate affinities. The length of apical and intercalary hyphal comparte ments, internode length and the diameter of leading hyphaat the margin of colonies grown on solid media were all reduced at low glucose concentrations.  相似文献   

3.
The growth of Salmonella typhimurium colonies on a model food system (agar solidified culture medium) was followed. Colony radius, determined using computer image analysis (IA) techniques, and viable cell number per colony were measured as indices of colony growth, and the effect of [NaCl] (0.5–3.5% (w/v)) and pH (7.0–5.0) on colony growth at 30°C was observed; colonies were point inoculated from serial dilutions. Colony growth (between 13 and 26 h after inoculation) was linear when expressed in terms of radius, and exponential when expressed in terms of viable cell number per colony. Overall, both increasing the [NaCl] and decreasing the pH had little effect on colony growth, other than to delay the onset of linear radial growth. Initial specific growth rate (μ) ranged from 0.73 to 0.87 h−1. Thin films of agar medium on microscope slides allowed the growth of microcolonies to be observed after just 4 h incubation. A greater understanding of the growth kinetics of bacterial colonies, and the effects of environment on such data, may enable better control of foodborne bacterial pathogens, and consequently an improvement in food product safety.  相似文献   

4.
Abstract The influence of nutrient level, type of carbon source and nitrogen concentration on the parasitism of Arthrobotrys oligospora on Rhizoctonia solani were investigated by quantification of coiling frequency. Changes in coiling frequency were also compared with changes in hyphal density and colony radial growth rate. Increasing concentrations of corn meal agar gave increasing coiling frequency up to a concentration of half the recomended strength. At higher concentrations the coiling frequency was constant, although the hyphal density of both fungi increased over the whole concentration range. Coiling frequency was positively correlated with the probability of hyphal encounter, calculated as the product of the hyphal densities of the two fungi, except at high CMA concentrations. Amongst several carbohydrates tested, glucose resulted in the highest, and sucrose the lowest, coiling frequency. The effect of the different carbohydrates on coiling frequency was not correlated with the hyphal densities of the fungi. Addition of a nitrogen source, NaNO3, removed the differences in coiling frequency between glucose and sucrose and increased coiling frequencies on both sugars.  相似文献   

5.
《Experimental mycology》1994,18(1):33-47
Olsson, S. 1994. Uptake of glucose and phosphorus by growing colonies of Fusarium oxysporum as quantified by image analysis. Experimental Mycology 18, 33-47. The simplest of all heterogeneous environments for fungal colony growth is the petri dish with an agar medium. As the colony grows there will be a depression of nutrient concentrations under the colony caused by the uptake of nutrients by the growing colony. Image analysis methods have been developed for measuring medium concentrations of glucose and phosphorus with simultaneous biomass density determinations in agar systems. Maps of the concentrations in the agar medium under the colony and of colony biomass density were produced. A new method for weighing fungal colonies grown on agar is also presented. For Fusarium oxysporum phosphorus and glucose uptake from the medium was the same irrespective of the C/mineral ratios in the medium within the measured range of ratios. Even the concentration profiles of the nutrients under the colony were the same irrespective of nutrient ratios. Distribution of biomass density was affected by differences in glucose concentrations, being highest at the colony margin at the lower concentrations. The results indicate that the fungal colony is able to take up nutrients at the margin in excess of the local needs.  相似文献   

6.
The affinity (K s value) of Geotrichum candidum for glucose determined from chemostat cultures was ca. 1 mg/l. K s values for glucose were also estimated from the radial growth rates of colonies of G. candidum and Neurospora crassa grown on media solidified with agar or silica gel. An assessment is made of the use of colony radial growth rate to determine substrate affinities. The length of apical and intercalary hyphal comparte ments, internode length and the diameter of leading hyphaat the margin of colonies grown on solid media were all reduced at low glucose concentrations.  相似文献   

7.
Two plate count methods are proposed for direct assessment of the maximum specific growth rate (microm) of bacteria in mixed communities. An estimate of microm of individual colonies is obtained by plating samples on an agar medium and determining either the time required to form macroscopically visible colonies, Tv (diameter < or =0.2 mm), or the linear radial growth rate, Kr, of single colonies. In accordance with theoretical models, a linear relationship was found between microm determined in liquid culture and 1/Tv, and between microm and Kr. Empirical relationships were established for these relationships. The time required to form a visible colony was 17 +/- 9 h longer for cells in the stationary growth phase, whereas the linear radial growth rate was not affected by the physiological state of the cells. The proposed plate count methods are simple and applicable for describing the community structure, and for estimating the frequency distribution of maximum specific growth rates in mixed communities. By using this frequency distribution it is possible to calculate diversity indexes and to assign a microbial community a position on an r/K-gradient.  相似文献   

8.
The universally recognized kinetic model of colony growth, introduced by Pirt, predicts a linear increase of colony size. The linearity follows from the assumption that the colony expands through the growth of only such cells that are located immediately behind the moving colony front, in the so-called peripheral zone of constant width and density. In this work, Pirt's model was tested on two bacteria--Alcaligenes sp. and Pseudomonas fluorescens--having markedly distinct cultural properties and grown on agarized medium with pyruvate. The colony size dynamics was followed for different densities of the inoculum, ranging from a single cell to a microdroplet of bacterial suspension (10(5)-10(6) cells), and for different depths of the agar layer, determining the amount of available substrate. A linear growth mode was observed only with P. fluorescens and only in the case of growth from a microdroplet. When originating from a single cell, colonies of both organisms displayed nonlinear growth with a distinct peak of Kr (the rate of colony radius increase) occurring after 2-3 days of growth. The growth of P. fluorescens colonies showed virtually no dependence on the depth of the agarized medium, whereas the rate of colony size increase of Alcaligenes sp. turned out to be directly related to the medium layer thickness. The departure from linearity is consistently explained by a new kinetic chart stipulating a possible contribution to the colony growth not only of peripheral cells but also (much more distinct in Alcaligenes) of cells at the colony center. The colony growth dynamics is determined not only by the concentration of the limiting substrate but also by the amount of autoinhibitor, the synthesis of which is governed by age of cells. The distinctions of growth from a single cell and microdroplet could also originate as a result of dissociation into the R- and S-forms and competition between the corresponding subpopulations for oxygen and the common substrate.  相似文献   

9.
The circadian rhythm of Neurospora crassa can be seen as a conidiation rhythm that produces concentric rings of bands (conidiating regions) alternating with interbands (non-conidiating regions) on the surface of an agar medium. To follow quantitatively this rhythm, densitometric analysis, gravimetric procedures, and video microscopy were employed. The circadian behavior of N. crassa is commonly monitored by cultivation in race tubes; in this work we report different growth kinetics during cultivation in conventional Petri dish cultures. Two different growth parameters were measured: total colony mass (true growth rate) and distance (colony radial expansion or hyphal elongation). Determinations of cellular mass revealed a dramatic circadian oscillation with a marked drop in growth rate during new interband formation followed by a sharp increase during the development of a new conidiation band. On the other hand, we found that the radial expansion of the colony previously reported to decrease periodically seemed unaffected by the circadian clock. Densitometric analysis showed no initial difference in the expanding margin of the colony, independent of whether that area was destined to be a band or an interband. The band areas increased rapidly in density for about 15 h whereas the interband areas maintained an equally rapid rate of increase for only 6h. The density of band areas kept increasing slowly for almost 40 h, along with an increase in the amount of conidia. Video microscopy showed the importance of cytoplasmic flow in colony development with continuous forward flow to support hyphal morphogenesis and reverse flow to support an extended period of conidiogenesis. Our results indicate that the circadian system of Neurospora can be expressed at the level of cellular mass formation, not just as the developmental conidiation rhythm.  相似文献   

10.
The influence of structural properties and kinetic constraints on the behavior of Bacillus cereus was investigated on agar media. Dimensional criteria were used to study the growth in bacterial colonies. The architecture of the agar gel as modified by the agar content was found to influence the colony size, and smaller colonies were observed on media containing 50 to 70 g of agar liter−1. Except at low nutrient levels, colonies responded to nutrient gradients by decreasing in size the farther away they were from the nutrient source, and the decrease in colony size was influenced by the agar content. The diffusivities of glucose and a protein (insulin-like growth factor) were not affected by the gel architecture, suggesting that other factors, such as mechanical factors, could influence microbial growth in the agar systems used. Increasing the viscosity of the liquid phase of the agar media by adding polyvinylpyrrolidone resulted in a reduction in colony size. When the agar concentration was increased, the colony areas were not influenced by the viscosity of the system.  相似文献   

11.
  1. Colonies of several gliding, semi-motile and non-motile strains ofMyxococcus xanthus demonstrate a constant rate of diameter increase. Colonies of motile strains, characterized by a predominance of cell swarms at the leading edges, expand more rapidly than those with single, gliding cells at their peripheries.
  2. Colony growth rate is proportional to the growth rate of cells in shake culture and on agar and to the square root of nutrient concentration over a wide concentration range. The rate of colony growth is affected by temperature and by agar concentration and depth but not by hight nor gravity.
  相似文献   

12.
An analysis was made of some of the processes involved in the stimulation by colony stimulating factor (CSF) of cluster and colony formation by mouse bone marrow cells in agar cultures in vitro. Colony formation was shown to be related to the concentration and not the total amount of CSF. The concentration of CSF determined the rate of new cluster initiation in cultures and the rate of growth of individual clusters. Colony growth depleted the medium of CSF suggesting that colony cells may utilise CSF during proliferation. Bone marrow cells incubated in agar in the absence of CSF rapidly died or lost their capacity to proliferate and form clusters or colonies. CSF appears (a) to be necessary for survival of cluster-and colony-forming cells or for survival of their proliferative potential, (b) to shorten the lag period before individual cells commence proliferation and (c) to increase the growth rate of individual clusters and colonies.  相似文献   

13.
Computer-enhanced microscopy (CEM) was used to study the growth kinetics of bacterial microcolonies attached to the wall of a continuous-flow slide culture. Image processing increased effective microscope resolution and quantitated colony growth at 10 min intervals. Three growth parameters were used to determine growth rate: the time required for cell fission, the specific rate of increase in cell number, and the specific rate of increase in cell area. Growth rate was initially constant regardless of colony size, as assumed previously in deriving colonization kinetics. However, at low substrate concentrations growth rate varied depending on laminar flow velocity. Growth was flow-dependent at a glucose concentration of 100 mg/liter and flow-independent at a concentration of 1 g/liter. This indicated that the surface microenvironment became substrate-depleted in the absence of sufficient laminar flow velocities and that glucose rather than oxygen was rate limiting.  相似文献   

14.
Panikov  N. S.  Belova  S. E.  Dorofeev  A. G. 《Microbiology》2002,71(1):50-56
The universally recognized kinetic model of colony growth, introduced by Pirt, predicts a linear increase of colony size. The linearity follows from the assumption that the colony expands through the growth of only such cells that are located immediately behind the moving colony front, in the so-called peripheral zone of constant width and density. In this work, Pirt's model was tested on two bacteria—Alcaligenes sp. and Pseudomonas fluorescens—having markedly distinct cultural properties and grown on an agarized medium with pyruvate. The colony size dynamics was followed for different densities of the inoculum, ranging from a single cell to a microdroplet of bacterial suspension (105–106 cells), and for different depths of the agar layer, determining the amount of available substrate. A linear growth mode was observed only with P. fluorescens and only in the case of growth from a microdroplet. When originating from a single cell, colonies of both organisms displayed nonlinear growth with a distinct peak of K r (the rate of colony radius increase) occurring after 2–3 days of growth. The growth of P. fluorescens colonies showed virtually no dependence on the depth of the agarized medium, whereas the rate of colony size increase of Alcaligenes sp. turned out to be directly related to the medium layer thickness. The departure from linearity is consistently explained by a new kinetic scheme stipulating a possible contribution to the colony growth not only of peripheral cells but also (much more distinct in Alcaligenes) of cells at the colony center. The colony growth dynamics is determined not only by the concentration of the limiting substrate but also by the amount of autoinhibitor, the synthesis of which is governed by the age of cells. The distinctions of growth from a single cell and microdroplet could also originate as a result of dissociation into the R- and S-forms and competition between the corresponding subpopulations for oxygen and the common substrate.  相似文献   

15.
Periodic phenomena in Proteus mirabilis swarm colony development.   总被引:5,自引:0,他引:5       下载免费PDF全文
Proteus mirabilis colonies exhibit striking geometric regularity. Basic microbiological methods and imaging techniques were used to measure periodic macroscopic events in swarm colony morphogenesis. We distinguished three initial phases (lag phase, first swarming phase, and first consolidation phase) followed by repeating cycles of subsequent swarming plus consolidation phases. Each Proteus swarm colony terrace corresponds to one swarming-plus-consolidation cycle. The duration of the lag phase was dependent upon inoculation density in a way that indicated the operation of both cooperative and inhibitory multicellular effects. On our standard medium, the second and subsequent swarm phases displayed structure in the form of internal waves visible with reflected and dark-field illumination. These internal waves resulted from organization of the migrating bacteria into successively thicker cohorts of swarmer cells. Bacterial growth and motility were independently modified by altering the composition of the growth medium. By varying the glucose concentration in the substrate, it was possible to alter biomass production without greatly affecting the kinetics of colony surface area expansion. By varying the agar concentration in the substrate, initial bacterial biomass production was unaffected but colony expansion dynamics were significantly altered. Higher agar concentrations led to slower, shorter swarm phases and longer consolidation phases. Thus, colony growth was restricted by higher agar concentrations but the overall timing of the swarming-plus-consolidation cycles remained constant. None of a variety of factors which had significant effects on colony expansion altered terracing frequencies at 32 degrees C, but the length of the swarming-plus-consolidation cycle was affected by temperature and medium enrichment. Some clinical isolates displayed significant differences in terracing frequencies at 32 degrees C. Our results defined a number of readily quantifiable parameters in swarm colony development. The data showed no connection between nutrient (glucose) depletion and the onset of different phases in swarm colony morphogenesis. Several observations point to the operation of density-dependent thresholds in controlling the transitions between distinct phases.  相似文献   

16.
Several protocols for bacterial isolation and techniques for aerobic plate counting rely on the use of a spiral plater to deposit concentration gradients of microbial suspensions onto a circular agar plate to isolate colony growth. The advantage of applying a gradient of concentrations across the agar surface is that the original microbiological sample can be applied at a single concentration rather than as multiple serial dilutions. The spiral plater gradually dilutes the sample across a compact area and therefore saves time preparing dilutions and multiple agar plates. Commercial spiral platers are not automated and require manual sample loading. Dispensing of the sample volume and rate of gradients are often very limited in range. Furthermore, the spiral sample application cannot be used with rectangular microplates. Another limitation of commercial spiral platers is that they are useful only for dilute, filtered suspensions and cannot plate suspensions of coarse organic particles therefore precluding the use of many kinds of microorganism-containing substrata. An automated agar plate spreader capable of processing 99 rectangular microplates in unattended mode is described. This novel instrument is capable of dispensing discrete volumes of sample in a linear pattern. It can be programmed to dispense a sample suspense at a uniform application rate or across a decreasing concentration gradient.  相似文献   

17.
Summary Growth, morphology, visibility of sporangia and colony colour of 10 isolates of Catenaria anguillulae were compared on six media: linseed oil-cake agar, mustard oil-cake agar, neem oil-cake agar, beef extract agar, Emerson agar and YPSS agar with a view to selecting the best growth medium. In general, maximum radial growth of most of the isolates was recorded on linseed oil-cake agar medium, whereas neem oil-cake agar medium supported least growth of all the isolates of C. anguillulae. Linseed oil-cake agar medium also maintained the typical characters of the fungus and clear visibility of morphological details.  相似文献   

18.
pH gradients through colonies of Bacillus cereus and the surrounding agar.   总被引:3,自引:0,他引:3  
pH-sensitive microelectrodes, constructed with a tip diameter of about 4 microns, were deployed through 24 h and 48 h colonies of Bacillus cereus incubated on CYS medium (Casamino acids, yeast extract, salts), with and without glucose. Measurements of pH were used to construct pH profiles through the colony and the surrounding agar. pH gradients could be detected for at least 800 microns into the agar beneath a 24 h colony, and to approximately 10 mm horizontally away from the edge of the colony. In older colonies, the lateral gradient extended for over 20 mm. The pH of the underlying agar was increased by up to 1.45 pH units after 48 h growth without glucose. When colonies were grown with glucose, a significant area of acidification was observed within the colony in addition to a zone of alkalinization present at its periphery. Acidification was thought to be due to the anaerobic fermentation of glucose producing organic acids whilst alkalinization was due to the aerobic oxidation of amino acids releasing ammonia.  相似文献   

19.
Development of surface grown cultures of Aspergillus niger no. 10 was studied at two experimental levels: (a) following the time course of the biomass density (X [=] mg cm(-2)) and fitting the data by the logistic expression, which yielded a macroscopic specific growth rate expressed as mu(obs) = (dX/Xdt)[1-(X/X(max))](-1); and (b) measuring morphometric parameters like the specific elongation rate (k) of the germ tubes and their diameters (D(h)), the colony rate of radial extension (u(r)), and the mean length of distal hyphae (L(av)) to estimate the specific growth rate with the following proposed expression: mu(calc) = u(r)ln2[L(av)ln(L(av)/D(h))](-1). Increases in the initial glucose concentration (10, 40, 70, 120, 200, and 300 g L(-1)) caused reductions in the specific growth rates, the elongation kinetics of the germ tubes, and the hyphal diameter, nevertheless, u(r) and X(max) presented parabolic behavior, showing their maxima in the interval of 90 to 120 g L(-1) of glucose. The overall macroscopic effect of the tested concentrations of glucose on surface grown cultures of A. niger was to produce densely packed and slowly extending colonies, where changes in hyphal lengths and diameters were significant. There was good agreement between mu(obs) and mu(calc) values. Hence, this work validates a kinetic model based on morphometric data to estimate the specific growth rate of molds, obtained from dry weight data, using mold cultures grown in the same solid medium i.e., agar plates. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 287-294, 1997.  相似文献   

20.
The phosphatidylcholine (PC) content of Aspergillus nidulans choC was varied by growing the auxotroph in medium containing various concentrations of choline chloride. Direct linear correlations were observed between PC content and in vivo chitin synthase activity, between in vivo chitin synthase activity and mean hyphal extension rate, and between mean hyphal extension rate and hyphal growth unit length; hyphal growth unit length is a measure of hyphal branching. Further, there was a correlation between PC content and colony radial growth rate. Thus, membrane composition is an important determinant of both hyphal (and colony) extension rate and mycelial morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号