首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosynthetic bacterium Rhodobacter sphaeroides is capable of producing H2 via nitrogenase when grown photoheterotrophically in the absence of N2. By using 14C-labeled malate, it was found that greater than 95% of this substrate was catabolized completely to CO2 during H2 production. About 60% of this catabolism was associated with H2 biosynthesis, while almost 40% provided reductant for other cellular purposes. Thus, only a small fraction of malate provided carbon skeletons. The addition of ammonium, which inhibited nitrogenase activity, increased substrate conversion into carbon skeletons threefold. Catabolism of malate occurred primarily via the tricarboxylic acid cycle, but gluconeogenesis was also observed. The wild-type organism grew poorly on glucose, accumulated gluconate and 2-keto-3-deoxygluconate, and did not produce H2. More than 50% of metabolized glucose appeared in carbon skeletons or in storage compounds. A glucose-utilizing mutant was five times more effective in utilizing this substrate. This mutant produced H2 from glucose, using 74% of metabolized substrate for this purpose. Glucose converted to storage products or to other carbon skeletons was reduced to 8%. Fixation of CO2 competed directly with H2 production for reducing equivalents and ATP. Refixation of CO2 released from these substrates under H2-producing conditions was, at most, 10 to 12%. Addition of ammonium increased refixation of respired CO2 to 83%. Patterns of carbon flow of fixation products were associated with the particular strains and culture conditions.  相似文献   

2.
The production of biomass, polysaccharide storage material and H2 from malate was studied in the wild-type and mutants RdcI, RdcII and RdcI/cII of Rhodobacter capsulatus. The mutants are defective in either copy I, copy II or both copies of the nitrogenase genes nifA and nifB. Stationary phase levels of biomass, polysaccharide and H2 were determined in phototrophic batch cultures grown with 30 mM of d,l-malate and either 2, 5, or 8 mM of ammonium or 7 mM of glutamate. Calculation of the amounts of malate converted into the three products revealed that, at 8 mM of ammonium and 7 mM of glutamate, malate consumption and product formation were balanced. But with decreasing ammonium concentrations malate not converted into biomass was utilized with decreasing efficiency in polysaccharide and H2 formation. This suggests formation of unknown products at the lower ammonium concentrations. Under conditions of optimal N supply, 80% of the malate not used for biomass production was converted by the wild-type and strain RdcII to H2 and CO2. Mutant RdcI exhibited slightly decreased H2 production. The double mutant did not evolve H2 but accumulated increased amounts of polysaccharide. However, the amounts of polysaccharide were lower than should be expected if all of the spare malate, not utilized by the double mutant for H2 production, was converted into storage material. This and incomplete conversion of malate into known products at low ammonium supplies suggests that polysaccharide accumulation does not compete with the process of H2 formation for malate.  相似文献   

3.
The nitrogenase from wild-type Klebsiella pneumoniae reduces cyclopropene to cyclopropane and propene in the ratio 1:2 at pH 7.5. We show in this paper that the nitrogenase from a nifV mutant of K. pneumoniae also reduces cyclopropene to cyclopropane and propene, but the ratio of products is now 1:1.4. However, both nitrogenases exhibit the same Km for cyclopropene (2.1 x 10(4) +/- 0.2 x 10(4) Pa), considerably more than the Km for the analogous reaction with Azotobacter vinelandii nitrogenase under the same conditions (5.1 x 10(3) Pa). Analysis of the data shows that the different product ratio arises from the slower production of propene compared with cyclopropane by the mutant nitrogenase. During turnover, both nitrogenases use a large proportion of the electron flux for H2 production. CO inhibits the reduction of cyclopropene by both K. pneumoniae proteins, but the mutant nitrogenase exhibits 50% inhibition at approx. 10 Pa, whereas the corresponding value for the wild-type nitrogenase is approx. 110 Pa. However, H2 evolution by the mutant enzyme is much less affected than is cyclopropene reduction. CO inhibition of cyclopropene reduction by the nitrogenases coincides with a relative increase in H2 evolution, so that in the wild-type (but not the mutant) the electron flux is approximately maintained. The cyclopropane/propene production ratios are little affected by the presence of CO within the pressure ranges studied at least up to 50% inhibition.  相似文献   

4.
The metabolism of pyruvate and lactate by rat adipose tissue was studied. Pyruvate and lactate conversion to fatty acids is strongly concentration-dependent. Lactate can be used to an appreciable extent only by adipose tissue from fasted-refed rats. A number of compounds, including glucose, pyruvate, aspartate, propionate, and butyrate, stimulated lactate conversion to fatty acids. Based on studies of incorporation of lactate-2-(3)H and lactate-2-(14)C into fatty acids it was suggested that the transhydrogenation sequence of the "citrate-malate cycle"(1) was not providing all of the NADPH required for fatty acid synthesis from lactate. An alternative pathway for NADPH formation involving the conversion of isocitrate to alpha-ketoglutarate via cytosolic isocitrate dehydrogenase was proposed. Indirect support for this proposal was provided by the rapid labeling of glutamate from lactate-2-(14)C by adipose tissue incubated in vitro, as well as the demonstration that glutamate can be readily metabolized by adipose tissue via reactions localized largely in the cytosol. Furthermore, isolated adipose tissue mitochondria convert alpha-ketoglutarate to malate, or in the presence of added pyruvate, to citrate. Glutamate itself can not be metabolized by these mitochondria, a finding in keeping with the demonstration of negligible levels of NAD-glutamate dehydrogenase activity in adipose tissue mitochondria. Pyruvate stimulated alpha-ketoglutarate and malate conversion to citrate and reduced their oxidation to CO(2). It is proposed that under conditions of excess generation of NADH malate may act as a shuttle carrying reducing equivalents across the mitochondrial membrane. Malate at low concentrations increased pyruvate conversion $$Word$$ citrate and markedly decreased the formation of CO(2) by isolated adipose tissue mitochondria. Malate also stimulated citrate and isocitrate metabolism by these mitochondria, an effect that could be blocked by 2-n-butylmalonate. This potentially important role of malate in the regulation of carbon flow during lipogenesis is underlined by the observation that 2-n-butylmalonate inhibited fatty acid synthesis from pyruvate, but not from glucose and acetate, and decreased the stimulatory effect of pyruvate on acetate conversion to fatty acids.  相似文献   

5.
Photoproduction of H2 and activation of H2 for CO2 reduction (photoreduction) by Rhodopseudomonas capsulata are catalyzed by different enzyme systems. Formation of H2 from organic compounds is mediated by nitrogenase and is nto inhibited by an atmosphere of 99% H2. Cells grown photoheterotrophically on C4 dicarboxylic acids (with glutamate as N source) evolve H2 from the C4 acids and also from lactate and pyruvate; cells grown on C3 carbon sources, however, are inactive with the C4 acids, presumably because they lack inducible transport systems. Ammonia is known to inhibit N2 fixation by photosynthetic bacteria, and it also effectively prevents photoproduction of H2; these effects are due to inhibition and, in part, inactivation of nitrogenase. Biosynthesis of the latter, as measured by both H2 production and acetylene reduction assays, is markedly increased when cells are grown at high light intensity; synthesis of the photoreduction system, on the other hand, is not appreciably influenced by light intensity during photoheterotrophic growth. The photoreduction activity of cells grown on lactate + glutamate (which contain active nitrogenase) is greatly activated by NH4+, but this effect is not observed in cells grown with NH4+ as N source (nitrogenase repressed) or in a Nif- mutant that is unable to produce H2. Lactate, malate, and succinate, which are readily used as growth substrates by R. capsulata and are excellent H donors for photoproduction of H2, abolish photoreduction activity. The physiological significances of this phenomenon and of the reciprocal regulatory effects of NH4+ on H2 production and photoreduction are discussed.  相似文献   

6.
Under anaerobic conditions, the yeast Saccharomyces bulderi rapidly ferments delta-gluconolactone to ethanol and carbon dioxide. We propose that a novel pathway for delta-gluconolactone fermentation operates in this yeast. In this pathway, delta-gluconolactone is first reduced to glucose via an NADPH-dependent glucose dehydrogenase (EC 1.1.1.47). After phosphorylation, half of the glucose is metabolized via the pentose phosphate pathway, yielding the NADPH required for the glucose-dehydrogenase reaction. The remaining half of the glucose is dissimilated via glycolysis. Involvement of this novel pathway in delta-gluconolactone fermentation in S. bulderi is supported by several experimental observations. (i) Fermentation of delta-gluconolactone and gluconate occurred only at low pH values, at which a substantial fraction of the substrate is present as delta-gluconolactone. Unlike gluconate, the latter compound is a substrate for glucose dehydrogenase. (ii) High activities of an NADP(+)-dependent glucose dehydrogenase were detected in cell extracts of anaerobic, delta-gluconolactone-grown cultures, but activity of this enzyme was not detected in glucose-grown cells. Gluconate kinase activity in cell extracts was negligible. (iii) During anaerobic growth on delta-gluconolactone, CO(2) production exceeded ethanol production by 35%, indicating that pyruvate decarboxylation was not the sole source of CO(2). (iv) Levels of the pentose phosphate pathway enzymes were 10-fold higher in delta-gluconolactone-grown anaerobic cultures than in glucose-grown cultures, consistent with the proposed involvement of this pathway as a primary dissimilatory route in delta-gluconolactone metabolism.  相似文献   

7.
The mutant deficient in glucose-6-phosphate dehydrogenase (G6PDH) was constructed by disrupting zwf gene by one-step inactivation protocol using polymerase chain reaction primers. The knockout of zwf gene was shown to have different influence on the metabolism of Escherichia coli grown on glucose or acetate. The decreased rates of substrate uptake and CO(2) production were found for the mutant grown on acetate, whereas these two rates were increased during the growth on glucose. The metabolic flux analysis based on (13)C-labeling experiments indicates that the metabolism of the mutant grown on glucose is related to the higher flux via tricorboxylic acid (TCA) cycle to generate anabolic reducing equivalents normally provided by the oxidative pentose phosphate pathway. However, the metabolism of the mutant grown on acetate shows a lower flux towards the TCA cycle as compared with the parent strain. The decreased flux through TCA cycle is associated with an increased flux via the glyoxylate shunt, by which the carbon source can bypass the two decarboxylative steps of TCA cycle in which CO(2) is released, thus conserving more carbon for biosynthesis in response to the decreased uptake rate of the carbon source.  相似文献   

8.
In Saccharomyces carlsbergensis the two malate dehydrogenase activities, which are localized in different compartments of the cell, were found to differ in their response to glucose. The cytoplasmic malate dehydrogenase activity appears to be sensitive to inactivation by very low concentrations of glucose. The mitochondrial malate dehydrogenase activity is only repressed at a higher glucose concentration. Maltose permease is also sensitive to inactivation by glucose. Conditions were found such that the maltose permease was present while the cytoplasmic malate dehydrogenase was inactivated. The different sensitivities of the two malate dehydrogenases and maltose permease to the effect of glucose may explain the preferential use of glucose, maltose, and products of glucose metabolism (2- and 3-carbon skeletons) as carbon sources for growth in the order as mentioned.  相似文献   

9.
光合细菌产氢因子的研究进展   总被引:11,自引:0,他引:11  
光合细菌在固氮的同时释放氢气。产氢与固氮是同步进行的。固氮酶与氢酶共同影响光合细菌的产氢活性,而外源生理条件又影响着固氮酶与氢酶的活性,其中有机碳阻抑吸氢酶表达,促进产氢;氨则抑制固氮活性而降低产氢量;氧气的存在使固氮酶与氢酶都失活,从而抑制放氢反应的进行。  相似文献   

10.
Growth of Rhodobacter capsulatus with molecular dinitrogen as the sole N source via the alternative Fe-only nitrogenase requires all seven gene products of the anfHDGK-1-2-3 operon. In contrast to mutant strains carrying lesions in the structural genes of nitrogenase (anfH, anfD, anfG, and anfK), strains defective for either anf1, anf2, or anf3 are still able to reduce the artificial substrate acetylene, although with diminished activity. To obtain further information on the role of Anf1, we screened an R. capsulatus genomic library designed for use in yeast two-hybrid studies with Anf1 as bait. Two genes, which we propose to call ranR and ranT (for genes related to alternative nitrogenase), coding for products that interact with Anf1 were identified. A ranR mutant exhibited a phenotype similar to that of an anf1 mutant strain (no growth with N2 in the absence of molybdenum, but significant reduction of acetylene via the Fe-only nitrogenase), whereas a ranT mutant retained the ability to grow diazotrophically, but growth was clearly delayed compared to the parental strain. In contrast to the situation for anf1, expression of neither ranR nor ranT was regulated by ammonium or molybdenum. A putative role for Anf1, RanR, and RanT in the acquisition and/or processing of iron in connection with the Fe-only nitrogenase system is discussed.  相似文献   

11.
Non-autotrophic ( Aut -) mutants of Rhodopseudomonas capsulata B10 were tested for their efficiency of nitrogenase-mediated H2 production. Three of these mutants ( IR3 , IR4 and IR5 ) showed an increase stoichiometry of H2 production, mediated by nitrogenase, from certain organic substrates. For example, in a medium containing 7 mM-L-glutamate as nitrogen source, strain IR4 produced 10-20% more H2 than did the wild type with DL-lactate or L-malate as major carbon source, 20-50% more H2 with DL-malate, and up to 70% more with D-malate. Strain IR4 was deficient in 'uptake' hydrogenase activity as measured by H2-dependent reduction of Methylene Blue or Benzyl Viologen. However, this observation did not explain the increased efficiency of H2 production, since H2 uptake (H2 recycling) was undetectable in cells of the wild type. Instead, increased H2 production by the mutant appeared to be due to an improved conversion of organic substrates to H2 and CO2, presumably due to an altered carbon metabolism. The metabolism of D-malate by different strains was studied. An NAD+-dependent D-malic enzyme was synthesized constitutively by the wild type, and showed a Km for D-malate of 3 mM. The activity of this enzyme was approx. 50% higher in strain IR4 than in the wild type, and the mutant also grew twice as fast as the wild type with D-malate as sole carbon source.  相似文献   

12.
Due to the effect of catabolite repression, sugar mixtures cannot be metabolized in a rapid and efficient way implicating in lower productivity in bioprocesses using lignocellulosic hydrolysates. In gram-negative bacteria, this mechanism is mediated by the phosphotransferase system (PTS), which concomitantly internalizes and phosphorylates sugars. In this study, we isolated a UV mutant of Burkholderia sacchari, called LFM828, which transports hexoses and pentoses by a non-PTS uptake system. This mutant presented released glucose catabolite repression over the pentoses. In mixtures of glucose, xylose, and arabinose, specific growth rates and the specific sugar consumption rates were, respectively, 10 and 23% higher in LFM828, resulting in a reduced time to exhaust all sugars in the medium. However, in polyhydroxybutyrate (PHB) biosynthesis experiments it was necessary the supplementation of yeast extract to maintain higher values of growth rate and sugar consumption rate. The deficient growth in mineral medium was partially recovered by replacing the ammonium nitrogen source by glutamate. It was demonstrated that the ammonium metabolism is not defective in LFM828, differently from ammonium, glutamate can also be used as carbon and energy allowing an improvement on the carbohydrates utilization for PHB production in LFM828. In contrast, higher rates of ammonia consumption and CO(2) production in LFM828 indicate altered fluxes through the central metabolism in LFM828 and the parental. In conclusion, PTS plays an important role in cell physiology and the elimination of its components has a significant impact on catabolite repression, carbon flux distribution, and PHB biosynthesis in B. sacchari.  相似文献   

13.
1. Glutamine and glucose metabolism was studied in bovine blood lymphocytes incubated at 37 degrees C in the presence of Krebs-Ringer bicarbonate buffer (pH 7.4) containing 1 mM [U-14C]glutamine and 5 mM [U-14C]glucose, respectively. 2. The major metabolic products from glutamine were ammonia, glutamate, and to a lesser extent, aspartate and CO2. Glucose was metabolized mainly to lactate and, to a lesser extent, pyruvate and CO2. These findings indicate incomplete oxidation of glutamine and glucose carbons in bovine blood lymphocytes. 3. Glucose provided three-fold greater amounts of energy to bovine blood lymphocytes than did glutamine on the basis of their measured end-products. Glycolysis accounted for 50% of glucose-derived ATP production. 4. Our findings suggest similar metabolic patterns of glutamine and glucose in lymphocytes between ruminants and non-ruminant species (e.g. rats). However, in contrast to rat peripheral lymphocytes, glucose, rather than glutamine, was a major energy substrate for bovine blood lymphocytes.  相似文献   

14.
1. [U-14C]Glucose and [3-3H]glucose were infused into fed and starved lactating goats in order to study glucose metabolism in the mammary gland. 2. Glucose carbon was oxidized and metabolizet to milk lactose, citrate and triacylglycerol in the lactating goat udder. 3. Recycling of glucose carbon in the lactating animal accounted for 10-20% of the total glucose turnover in the whole animal. Recycling of glucose 6-phosphate in the udder accounted for about 25% of the glucose 6-phosphate metabolized. 4. Flux of glucose 6-phosphate through the pentose phosphate pathway was sufficient to account for 34% of the NADPH required for fatty acid synthesis in the gland in the fed animal. 5. Net metabolism of glucose 6-phosphate via the pentose phosphate pathway accounted for 17.8 and 1.2% of the glucose phosphorylated by the mammary gland in the fed and starved animal respectively. Metabolism of glucose 6-phosphate via the pentose phosphate pathway was sufficient to account for all the CO2 produced from glucose in the fed animal, but only 17% of the CO2 produced from glucose in the starved animal.  相似文献   

15.
The ability of Schistosoma mansoni to generate energy through aerobic metabolic processes was examined in adult parasites in vitro. Parasite catabolism of radiolabeled glucose, glutamine, and other amino acids to CO2 and Krebs cycle intermediates was measured under a variety of incubation conditions. L-Glutamine was metabolized to CO2 via the intermediates glutamate, alpha-ketoglutaramate, and alpha-ketoglutarate in worms incubated in a balanced salts solution containing this amino acid as the only organic constituent. Of the other amino acids tested, CO2 production was detected from L-glutamate and L-asparagine. The catabolism of L-glutamine to CO2 was reduced by the respiratory inhibitor antimycin A. The motility of schistosomes in culture was maintained for at least 24 hr when L-glutamine was the only carbon source available to the worms. Under these conditions, motility was reduced when parasites were exposed to a respiratory inhibitor such as KCN, antimycin A, rotenone, or oligomycin, but it was completely restored by the addition of glucose to the medium. These results suggest that while the schistosome is capable of limited aerobic energy-generating processes under certain conditions, survival is not contingent upon these processes in the presence of glucose.  相似文献   

16.
Bradyrhizobium japonicum bacteroids were isolated anaerobically and supplied with 14C-labeled succinate, malate, aspartate, or glutamate for periods of up to 60 min in the presence of myoglobin to control the O2 concentration. Succinate and malate were absorbed about twice as rapidly as glutamate and aspartate. Conversion of substrate to CO2 was most rapid for malate, followed by succinate, glutamate, and aspartate. When CO2 production was expressed as a proportion of total carbon taken up, malate was still the most rapidly respired substrate, with 68% of the label absorbed converted to CO2. The comparable values for succinate, glutamate, and aspartate were 37, 50, and 38%, respectively. Considering the fate of labeled substrate not respired, greater than 95% of absorbed glutamate remained as glutamate in the bacteroids. In contrast, from 39 to 66% of the absorbed succinate, malate, or aspartate was converted to glutamate. An increase in the rate of CO2 formation from labeled substrates after 20 min appeared to coincide with a maximum accumulation of label in glutamate. The results indicate the presence of a substantial glutamate pool in bacteroids and the involvement of glutamate in the respiratory metabolism of bacteroids.  相似文献   

17.
The insect cell baculovirus expression vector system (BEVS) is one of the most commonly used expression systems for recombinant protein production. This system is also widely used for the production of recombinant virus and virus-like particles. Although several published reports exist on recombinant protein expression using insect cells, information dealing with their metabolism in vitro is relatively scarce. In this work we have analyzed the metabolism of glucose and glutamine, the main carbon and/or energy compounds, of the two most commonly used insect cell lines, Spodoptera frugiperda (Sf-9) and the Trichoplusia ni BTI-Tn-5B1-4 (Tn-5). Radiolabeled substrates have been used to determine the flux of glucose carbon entering the tricarboxylic acid cycle (TCA) and the pentose phosphate (PP) pathway by direct measurement of 14CO2 produced. The percentage of total glucose metabolized to CO2 via the TCA cycle was higher in the case of the Sf-9 (2.7%) compared to Tn-5 (0.6%) cells, while the percentage of glucose that is metabolized via the PP pathway was comparable at 14% and 16% for the two cell lines, respectively. For both cell lines, the remaining 83% of glucose is metabolized through other pathways generating, for example, lactate, alanine, etc. The percentage of glutamine oxidized in the TCA cycle was approximately 5-fold higher in the case of the Tn-5 (26.1%) as compared to the Sf-9 cells (4.6%). Furthermore, the changes in the metabolic fluxes of glucose and glutamine in Tn-5-PYC cells, which have been engineered to express a cytosolic pyruvate carboxylase, have been studied and compared to the unmodified cells Tn-5. As a result of this metabolic engineering, significant increase in the percentage of glucose oxidized in the TCA cycle (3.2%) as well as in the flux through the PP pathway (34%) of the Tn-5-PYC were observed.  相似文献   

18.
Malate plays a central role in plant nutrition   总被引:5,自引:0,他引:5  
Schulze  J.  Tesfaye  M.  Litjens  R. H. M. G.  Bucciarelli  B.  Trepp  G.  Miller  S.  Samac  D.  Allan  D.  Vance  C. P. 《Plant and Soil》2002,247(1):133-139
Malate occupies a central role in plant metabolism. Its importance in plant mineral nutrition is reflected by the role it plays in symbiotic nitrogen fixation, phosphorus acquisition, and aluminum tolerance. In nitrogen-fixing root nodules, malate is the primary substrate for bacteroid respiration, thus fueling nitrogenase. Malate also provides the carbon skeletons for assimilation of fixed nitrogen into amino acids. During phosphorus deficiency, malate is frequently secreted from roots to release unavailable forms of phosphorus. Malate is also involved with plant adaptation to aluminum toxicity. To define the genetic and biochemical regulation of malate formation in plant nutrition we have isolated and characterized genes involved in malate metabolism from nitrogen-fixing root nodules of alfalfa and those involved in organic acid excretion from phosphorus-deficient proteoid roots of white lupin. Moreover, we have overexpressed malate dehydrogenase in alfalfa in attempts to improve nutrient acquisition. This report is an overview of our efforts to understand and modify malate metabolism, particularly in the legumes alfalfa and white lupin.  相似文献   

19.
Rhodopseudomonas sphaeroides produces molecular H2 and CO2 from reduced organic compounds which serve as electron sources and from light which provides energy in the form of adenosine 5'-triphosphate. This process is mediated by a nitrogenase enzyme. A mutant has been found that, unlike the wild type, will quantitatively convert glucose to H2 and CO2. Techniques for isolating other strains capable of utilizing other unusual electron sources are presented. Metabolism of glucose by the wild-type strain leads to an accumulation of gluconate. The isolated mutant strain does not appear to accumulate gluconate.  相似文献   

20.
Aerobic thermoacidophilic chemolithotrophic bacteria Sulfobacillus thermosulfidooxidans 1269T and Sulfobacillus thermosulfidooxidans subsp. asporogenes 41 were shown to be resistant to stress factors, including high concentrations of Zn2+ (0.8 M) and H+ (pH 1.2) that exceeded the optimum values. The growth and biomass gain rates decreased, but bacteria retained their functions. The activity of nearly all enzymes involved in carbon metabolism decreased. Glucose was primarily metabolized via the Entner--Doudoroff pathway. The activity tricarboxylic acid cycle enzymes decreased compared to that in cells grown under normal conditions. After saturation of the growth medium with 5 vol % CO2, sulfobacteria utilized glucose by the Embden-Meyerhof and pentose phosphate pathways under mixotrophic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号