首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
In yeast, remodeling of PHO5 promoter chromatin upon activation is accompanied by transient hyperacetylation and subsequent eviction of histones from the promoter in trans. In the course of rerepression, nucleosomes have to be reassembled on the promoter. We have analyzed where the histones for reassembly of the inactive promoter chromatin come from. The use of a strain with two differently tagged and differently regulated versions of histone H3 allowed us to discriminate between histones originating from the chromatin fraction and histones arising from the soluble histone pool. In this way, we show that the incorporated histones originate from a source in trans. Promoter closure occurs very rapidly, and the histone chaperones Asf1 and Hir1 as well as the SWI/SNF nucleosome remodeling complex appear to be important for rapid reassembly of nucleosomes at the PHO5 promoter.  相似文献   

6.
7.
8.
Eukaryotic gene expression starts off from a largely obstructive chromatin substrate that has to be rendered accessible by regulated mechanisms of chromatin remodeling. The yeast PHO5 promoter is a well known example for the contribution of positioned nucleosomes to gene repression and for extensive chromatin remodeling in the course of gene induction. Recently, the mechanism of this remodeling process was shown to lead to the disassembly of promoter nucleosomes and the eviction of the constituent histones in trans. This finding called for a histone acceptor in trans and thus made histone chaperones likely to be involved in this process. In this study we have shown that the histone chaperone Asf1 increases the rate of histone eviction at the PHO5 promoter. In the absence of Asf1 histone eviction is delayed, but the final outcome of the chromatin transition is not affected. The same is true for the coregulated PHO8 promoter where induction also leads to histone eviction and where the rate of histone loss is reduced in asf1 strains as well, although less severely. Importantly, the final extent of chromatin remodeling is not affected. We have also presented evidence that Asf1 and the SWI/SNF chromatin remodeling complex work in distinct parallel but functionally overlapping pathways, i.e. they both contribute toward the same outcome without being mutually strictly dependent.  相似文献   

9.
A Almer  H Rudolph  A Hinnen  W H?rz 《The EMBO journal》1986,5(10):2689-2696
The chromatin fine structure in the promoter region of PHO5, the structural gene for a strongly regulated acid phosphatase in yeast, was analyzed. An upstream activating sequence 367 bp away from the start of the coding sequence that is essential for gene induction was found to reside in the center of a hypersensitive region under conditions of PHO5 repression. Under these conditions three related elements at positions -469, -245 and -185 are contained within precisely positioned nucleosomes located on both sides of the hypersensitive region. Upon PHO5 induction the chromatin structure of the promoter undergoes a defined transition, in the course of which two nucleosomes upstream and two nucleosomes downstream of the hypersensitive site are selectively removed. In this way approximately 600 bp upstream of the PHO5 coding sequence become highly accessible and all four elements are free to interact with putative regulatory proteins. These findings suggest a mechanism by which the chromatin structure participates in the functioning of a regulated promoter.  相似文献   

10.
A Schmid  K D Fascher  W H?rz 《Cell》1992,71(5):853-864
Activation of the PHO5 gene in S. cerevisiae by phosphate starvation was previously shown to be accompanied by the disappearance of four positioned nucleosomes from the promoter. To investigate the mechanism, we replaced the PHO80 gene, a negative regulator of PHO5, by a temperature-sensitive allele. As a consequence, PHO5 can be activated in the presence of phosphate by a temperature shift from 24 degrees C to 37 degrees C. Under these conditions, the promoter undergoes the same chromatin transition as in phosphate-starved cells. Disruption of the nucleosomes by the temperature shift also occurs when DNA replication is prevented. Nucleosomes re-form when the temperature is shifted from 37 degrees C back to 24 degrees C in nondividing cells. Glucose is required for the disruption of the nucleosomes during the temperature upshift, not for their re-formation during the temperature downshift. These experiments prove that DNA replication is not required for the transition between the nucleosomal and the non-nucleosomal state at the PHO5 promoter.  相似文献   

11.
The yeast PHO5 promoter is a model system for the role of chromatin in eukaryotic gene regulation. Four positioned nucleosomes in the repressed state give way to an extended DNase I hypersensitive site upon induction. Recently this hypersensitive site was shown to be devoid of histone DNA contacts. This raises the mechanistic question of how histones are removed from the promoter. A displacement in trans or movement in cis, the latter according to the well established nucleosome sliding mechanism, are the major alternatives. In this study, we embedded the PHO5 promoter into the context of a small plasmid which severely restricts the space for nucleosome sliding along the DNA in cis. Such a construct would either preclude the chromatin transition upon induction altogether, were it to occur in cis, or gross changes in chromatin around the plasmid would be the consequence. We observed neither. Instead, promoter opening on the plasmid was indistinguishable from opening at the native chromosomal locus. This makes a sliding mechanism for the chromatin transition at the PHO5 promoter highly unlikely and points to histone eviction in trans.  相似文献   

12.
13.
The coregulated PHO5 and PHO8 genes in Saccharomyces cerevisiae provide typical examples for the role of chromatin in promoter regulation. It has been a long-standing question why the cofactors Snf2 and Gcn5 are essential for full induction of PHO8 but dispensable for opening of the PHO5 promoter. We show that this discrepancy may result from different stabilities of the two promoter chromatin structures. To test this hypothesis, we used our recently established yeast extract in vitro chromatin assembly system, which generates the characteristic PHO5 promoter chromatin. Here we show that this system also assembles the native PHO8 promoter nucleosome pattern. Remarkably, the positioning information for both native patterns is specific to the yeast extract. Salt gradient dialysis or Drosophila embryo extract does not support proper nucleosome positioning unless supplemented with yeast extract. By competitive assemblies in the yeast extract system we show that the PHO8 promoter has greater nucleosome positioning power and that the properly positioned nucleosomes are more stable than those at the PHO5 promoter. Thus we provide evidence for the correlation of inherently more stable chromatin with stricter cofactor requirements.  相似文献   

14.
K D Fascher  J Schmitz    W Hrz 《The EMBO journal》1990,9(8):2523-2528
Induction of the PHO5 gene in Saccharomyces cerevisiae by phosphate starvation was previously shown to be accompanied by the removal of four positioned nucleosomes from the promoter. We have now investigated the role of two trans-activating proteins, encoded by PHO2 and PHO4, which bind to the PHO5 promoter. Both proteins are absolutely required for the chromatin transition to occur as shown by analysis of null mutants of the two genes. Transformation of these mutant strains with plasmids containing the respective genes restores the wild type chromatin response. Increasing the gene dosage of PHO2 and of PHO4 makes it possible to differentiate functionally between the two proteins. From over-expressing PHO4 in a wild type and also in a pho2 null mutant strain and complementary experiments with PHO2, it is concluded that the PHO4 protein is the primary trigger for the chromatin transition, consistent with one of its two binding sites being located between positioned nucleosomes in repressed chromatin and thereby accessible. PHO2, the binding site of which is located within a nucleosome under conditions of PHO5 repression, contributes to the chromatin transition either by destabilizing histone-DNA interactions or by under-going interactions with PHO4.  相似文献   

15.
16.
17.
18.
19.
A functional role for nucleosomes in the repression of a yeast promoter.   总被引:29,自引:11,他引:18       下载免费PDF全文
C Straka  W Hrz 《The EMBO journal》1991,10(2):361-368
Induction of the PHO5 gene in S. cerevisiae was previously shown to be accompanied by the removal of four positioned nucleosomes from the promoter. In order to assess the role of nucleosomes in the cascade of gene activation, DNA corresponding to one of these nucleosomes was excised. In its place two foreign DNA segments of the same length were inserted: a fragment from the African green monkey alpha-satellite DNA which is known to associate with histones in a highly specific fashion to give a uniquely positioned nucleosome or, alternatively, a fragment derived from pBR322 DNA. The promoter constructs were fused to the lacZ gene on centromere plasmids and transformed into yeast cells. The satellite fragment formed a nucleosome which persisted under inducing conditions. At the same time the inducibility of the PHO5 promoter was virtually abolished. When various subfragments containing between 35 and 100 bp of the satellite segment were tested, they were all found to decrease the inducibility of the promoter, full repression required the full length molecule, however. In contrast, the pBR fragment made the promoter weakly constitutive, and induction proceeded to levels even higher than with a promoter lacking an insert. Analysis of the chromatin structure reveals a nucleosome on the pBR segment at noninducing conditions which is removed upon induction. It is concluded that the quality of the histone-DNA interactions at the promoter makes an intrinsic contribution to the regulation of the gene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号