首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic fusion of coding ORFs or connection of proteins in a post translational process are rather novel techniques to build products called fusion proteins that possess combined characteristics of their parental biomolecules. This attractive strategy used to create new enzymes not only diversifies their functionality by improving thermostability, thermo- and catalytic activity, substrate specificity, regio- or enantio-selectivity but also facilitates their purification and increases their yield. Many examples of microbial synthetic fusion biocatalysts are associated with fused enzymes that are involved in biomass degradation. However, one of the leading production segments is occupied by microbial lipolytic enzymes (lipases and esterases). As powerful biocatalysts these enzymes found their application in detergent, food, oil and fat, pulp and paper, leather, textile, cosmetics, biodiesel production industries. Moreover, lipolytic enzymes market is predicted to maintain leadership up to the year of 2024 and exceed millions of dollars. Recently, creation of lipolytic fusion biocatalysts for industrial applications gained more attention since it is not only a way of achievement of enzymes with improved properties but also a way to reduce industrial energy costs and ensure other economic benefits. This paper provides a comprehensive review on current state of microbial lipolytic fusion enzymes and their future potential.  相似文献   

2.
生物催化是指将酶或生物有机体用于有用的化学转化的过程,在人们对传统化学催化的环境影响抱有忧虑的情况下,生物催化提供了一种有吸引力的选择。在过去的几十年里,对生物催化剂的研究每出现一次大的进步,生物催化的发展就会出现一次高潮。因此,生物催化剂的发现与改造已成为当今研究的热点。宏基因组文库技术的出现克服了许多微生物不可培养的障碍,人们能够从自然资源中获得丰富的潜在的生物催化剂。而基于理性设计的分子改造技术的发展,可以使得人们对潜在的生物催化剂进行快速而有效的改造以满足工业化生产的需求。随着生物催化剂发现与改造的手段不断进步,更多的优良生物催化剂得到了广泛的应用,生物催化在工业生产中也得到了更深入的应用。结合作者的研究工作,总结了生物催化剂发现与改良的一些研究进展,以为获得更多优良的、能够实现工业应用的生物催化剂奠定理论基础。  相似文献   

3.
Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.  相似文献   

4.
Lignocellulosic biomass is recognized as potential sustainable source for production of power, biofuels and variety of commodity chemicals which would potentially add economic value to biomass. Recalcitrance nature of biomass is largely responsible for the high cost of its conversion. Therefore, it is necessary to introduce some cost effective pretreatment processes to make the biomass polysaccharides easily amenable to enzymatic attack to release mixed fermentable sugars. Advancement in systemic biology can provide new tools for the development of such biocatalysts for sustainable production of commodity chemicals from biomass. Integration of functional genomics and system biology approaches may generate efficient microbial systems with new metabolic routes for production of commodity chemicals. This paper provides an overview of the challenges that are faced by the processes converting lignocellulosic biomass to commodity chemicals. The critical factors involved in engineering new microbial biocatalysts are also discussed with more emphasis on commodity chemicals.  相似文献   

5.
Surface display is a powerful technique that uses natural microbial functional components to express proteins or peptides on the cell exterior. Since the reporting of the first surface-display system in the mid-1980s, a variety of new systems have been reported for yeast, Gram-positive and Gram-negative bacteria. Non-conventional display methods are emerging, eliminating the generation of genetically modified microorganisms. Cells with surface display are used as biocatalysts, biosorbents and biostimulants. Microbial cell-surface display has proven to be extremely important for numerous applications, ranging from combinatorial library screening and protein engineering to bioremediation and biofuels production.  相似文献   

6.
The biotechnological application of enzymes necessitates a permanent quest for new biocatalysts. Among others, improvement of catalytic activity, modification of substrate specificity, or increase in stability of the enzymes are desirable goals. The exploration of homologous enzymes from various sources or DNA-based methods, like site-directed mutagenesis or directed evolution, yield an incredible variety of biocatalysts but they all rely on the restricted number of canonical amino acids. Chemistry offers an almost unlimited palette of additional modifications which can endow the proteins with improved or even completely new properties. Numerous techniques to furnish proteins with non-natural amino acids or non-proteinogenic modules have been introduced and are reviewed with special focus on expressed protein ligation, a method that combines the potential of protein biosynthesis and chemical synthesis. An erratum to this article can be found at  相似文献   

7.
This review attempts to demonstrate the importance of goal-orientated screening for new biocatalysts. Examples of enzymes and microorganisms that have been developed and that have acquired commercial applications are described so as to illustrate the technological potential of biocatalysts. A survey of screening techniques and recently reported examples of screening from food, chemical, pharmaceutical and waste disposal applications etc. are also presented to demonstrate the feasibility of this approach for generating new biocatalysts. An appreciation of some of the difficulties involved, the achievements of Japanese researchers and some examples of the cornucopia of largely unrecognized and potentially valuable microbial activities are also given. An increased effort in screening would have the following benefits: an increased range of biocatalysts with different enzyme activities would be available and more biocatalysts with improved characteristics, suitable for use under industrial conditions, such as resistance to elevated temperatures, extremes of pH and organic solvents would be discovered. Secondly the manpower and other resources required to carry out screening programmes would be reduced, for instance by developing automated techniques. Thirdly, screening procedures would be made much more accessible to non-specialists. Fourthly, improved efforts and expertise in screening would supplement other emerging techniques such as protein engineering. The development of selective, non-random, goal-orientated screening techniques, methods of evaluating biocatalyst performance under operational conditions, and an approach that is more orientated towards commercially desirable goals are essential if these objectives are to be achieved. Screening of naturally occurring microorganisms still appears to be the best way to obtain new strains and/or enzymes for commercial applications. However, two major problems appear to exist. Firstly in identifying applications that are technically feasible and that have sufficient commercial potential to justify the research and development required to generate a new commercially viable biocatalyst and secondly the relatively small number of scientists outside Japan with skill and experience in screening for biocatalysts.  相似文献   

8.
A cascade of hydantoinase, N-carbamoylase and hydantoinracemase can be used for the production of natural and unnatural chiral D- and L-amino acids from chemically synthesized hydantoin derivatives. Potentially, 100% conversion and 100% optically pure amino acids can be obtained at the same time if racemic substrates are used. Recent research activities concentrate on newly isolated or improved enzymes and include directed evolution techniques, structure elucidation, studies of fusion proteins and the use of specially designed whole cell biocatalysts.  相似文献   

9.
Lignocellulosic biomass is an attractive alternate to petroleum for production of both fuels and commodity chemicals. This conversion of biomass would require a new generation of microbial biocatalysts that can convert all the sugars present in the biomass to the desired compounds. In this review, the critical factors that need to be considered in engineering such microbial biocatalysts for cost-effective fermentation of sugars are discussed with specific emphasis on commodity chemicals such as lactic acid, succinic acid and acetic acid.  相似文献   

10.
The recent rapid growth of the biodiesel industry has generated a significant amount of glycerol as a byproduct. As a result, the price of glycerol is currently relatively low, making it an attractive starting material for the production of chemicals with higher values. Crude glycerol can be directly converted through microbial fermentation into various chemicals such as hydrogen. In this study, we optimized immobilization of a facultative hydrogen producing microorganism, Enterobacter aerogenes, with the goal of developing biocatalysts that was appropriate for the continuous hydrogen production from glycerol. Several carriers were tested and agar was found to be the most effective. In addition, it was clearly shown that variables such as the carrier content and cell loading should be controlled for the immobilization of biocatalysts with high hydrogen productivity, stability, and reusability. After optimization of these variables, we were able to obtain reusable biocatalysts that could directly convert the byproduct stream from biodiesel processes into hydrogen in continuous processes.  相似文献   

11.
The production of enzymes is a pursuit central to the modern biotechnology industry. Markets for traditional industrial enzymes continue to grow while the continued emphasis on biotechnological endeavours has generated demand for an ever increasing number of additional biocatalysts. The advent of genetic engineering has now facilitated the large-scale production of enzymes and other proteins which are produced naturally only in minute quantities. This development is particularly significant with regard to the production of enzymes and other proteins of therapeutic significance, which are now available in clinically useful quantities.

The level of downstream processing to which any enzyme is subjected is dependent upon its intended application. Industrial enzymes produced in bulk generally require little downstream processing, and hence are relatively crude preparations. Enzymes destined for therapeutic applications are subject to a far higher degree of downstream processing, often incorporating 3–4 chromatographic steps.

While enzymology is one of the longest established branches of the biochemical sciences, it continues to be an area of ongoing, active research. The continual discovery of new enzymes and a greater understanding of previously discovered enzymes and their functional significance suggests many novel applications for these catalytic activities. The intestinal production and utilization of enzymes will continue to be of central importance in the biotechnology industry.  相似文献   


12.
The enzymatic production of trehalose from dextrins was studied as a series reaction in a packed bed reactor containing immobilized recombinant Escherichia coli cells, expressing either the Sulfolobus solfataricus (strain MT4) trehalosyl-dextrin forming enzyme (TDFE) or the trehalose-forming enzyme (TFE). The cells, subjected to thermal treatments to increase cell permeability and to inactivate the unwanted host proteins, were entrapped separately or together in a calcium alginate polymeric matrix. The biocatalyst beads were used to pack a tubular glass reactor that was operated in a recycle mode. The performances of a bioreactor containing alternate layers of EcTFE and EcTDFE alginate beads were evaluated and compared with the performance of the co-immobilized biocatalysts. The latter showed a superior throughput, therefore the bioreactor packed with the co-entrapped biocatalysts was tested for the production of trehalose from concentrated dextrin solutions (10%-30% w/v) and a conversion up to 90% was obtained. This conversion corresponded to a production of 127 g trehalose h(-1) kg(-1) of biocatalyst. The results obtained suggest that the bioprocess described may be of interest in the development of a large-scale industrial process for trehalose production at high temperature.  相似文献   

13.
A novel biomethanation process configuration is described which uses improved biocatalysts to enhance the productivity and stability of waste biomethanation systems. The design facilitates the maintenance of acetogenic and methanogenic bacteria under optimum substrate concentrations far above their K(s) values in a two-stage biomethanation system with closed loop reactors. Volatile fatty acid anions (VFA anions) are provided as substrates for the methanogenic stage by using an anion exchange unit coupled to the acidogenic stage. The slow growing and sensitive acetogenic and methanogenic bacteria are protected from oxygen, cationic pollutants, toxins, and microbial contamination by use of the substrate shuttle process. Due to the closed loop process configuration, washout of the ecoengineered biocatalysts is excluded. The modular system configuration allows industrial mass production of the system components. The new biomethanation process enhances both the BTU content of the gas and the methane production over state-of-the-art anaerobic digestor bioreactor concepts.  相似文献   

14.
Yeast cell-surface display—applications of molecular display   总被引:11,自引:0,他引:11  
In a cell-surface engineering system established using the yeast Saccharomyces cerevisiae, novel, so-called arming yeasts are constructed that are armed with biocatalysts in the form of enzymes, functional proteins, antibodies, and combinatorial protein libraries. Among the many advantages of the system, in which proteins are genetically displayed on the cell surface, are easy reproduction of the displayed biocatalysts and easy separation of product from catalyst. As proteins and peptides of various kinds can be displayed on the yeast cell surface, the system is expected to allow the preparation of tailor-made functional proteins. With its ability to express many of the functional proteins necessary for post-translational modification and in a range of different sizes, the yeast-based molecular display system appears uniquely useful among the various display systems so far developed. Capable of conferring novel additional abilities upon living cells, cell-surface engineering heralds a new era of combinatorial bioengineering in the field of biotechnology. This mini-review describes molecular display using yeast and its various applications.  相似文献   

15.
The Pseudomonas genus is one of the most diverse and ecologically significant groups of known bacteria, and it includes species that have been isolated worldwide in all types of environments. The bacteria from this genus are characterized by an elevated metabolic versatility, which is due to the presence of a complex enzymatic system. Investigations since the early 1960s have demonstrated their potential as biocatalysts for the production of industrially relevant and value-added flavor compounds from terpenes. Although terpenes are often removed from essential oils as undesirable components, its synthetic oxy-functionalized derivatives have broad applications in flavors/fragrances and pharmaceutical industries. Hence, biotransformation appears to be an effective tool for the structural modification of terpene hydrocarbons and terpenoids to synthesize novel and high-valued compounds. This review highlights the potential of Pseudomonas spp. as biocatalysts for the bioconversion of terpenes and summarizes the presently known bioflavors that are obtained from these processes.  相似文献   

16.
Commercial scale biocatalysis: myths and realities   总被引:11,自引:0,他引:11  
The unique ways in which enzymes are differentiated from other catalysts translate into special advantages. Understanding these advantages is the key toward better matching of biocatalysts needs in industrial chemistry. Specific cases where enzymes and biotransformations have been used successfully at the production scale are examined, permitting the realities of using biocatalysts to be separated from the misconceptions and myths. Five such misconceptions will be examined in the context of examples of some commercially-successful biocatalytic processes.  相似文献   

17.
Enzyme immobilization often achieves reusable biocatalysts with improved operational stability and solvent resistance. However, these modifications are generally associated with a decrease in activity or detrimental modifications in catalytic properties. On the other hand, protein engineering aims to generate enzymes with increased performance at specific conditions by means of genetic manipulation, directed evolution and rational design. However, the achieved biocatalysts are generally generated as soluble enzymes, ?thus not reusable- and their performance under real operational conditions is uncertain.Combined protein engineering and enzyme immobilization approaches have been employed as parallel or consecutive strategies for improving an enzyme of interest. Recent reports show efforts on simultaneously improving both enzymatic and immobilization components through genetic modification of enzymes and optimizing binding chemistry for site-specific and oriented immobilization. Nonetheless, enzyme engineering and immobilization are usually performed as separate workflows to achieve improved biocatalysts.In this review, we summarize and discuss recent research aiming to integrate enzyme immobilization and protein engineering and propose strategies to further converge protein engineering and enzyme immobilization efforts into a novel “immobilized biocatalyst engineering” research field. We believe that through the integration of both enzyme engineering and enzyme immobilization strategies, novel biocatalysts can be obtained, not only as the sum of independently improved intrinsic and operational properties of enzymes, but ultimately tailored specifically for increased performance as immobilized biocatalysts, potentially paving the way for a qualitative jump in the development of efficient, stable biocatalysts with greater real-world potential in challenging bioprocess applications.  相似文献   

18.
Overexpression of genes from thermophiles in Escherichia coli is an attractive approach towards the large-scale production of thermostable biocatalysts. However, various factors can challenge efficient heterologous protein expression--one example is the formation of stable 5' mRNA secondary structures that can impede an efficient translation initiation. In this work, we describe the expression optimization of purine nucleoside phosphorylase from the thermophilic microbe Deinococcus geothermalis in E. coli. Poor expression levels caused by stable secondary 5' mRNA structure formation were addressed by two different approaches: (i) increasing the cultivation temperature above the range used typically for recombinant protein expression and (ii) optimizing the 5' mRNA sequence for reduced secondary structures in the translation initiation region. The increase of the cultivation temperature from 30°C to 42°C allowed a more than 10-fold increase of activity per cell and optimizing the 5' mRNA gene sequence further increased the activity per cell 1.7-fold at 42°C. Thus, the combination of high-temperature cultivation and 5' sequence optimization is described as an effective approach to overcome poor expression levels resulting from stable secondary 5' mRNA structure formation. We suggest that this method is especially suitable for improving the expression of proteins derived from thermophiles in E. coli.  相似文献   

19.
Industrial microorganisms have been developed as biocatalysts to provide new or to optimize existing processes for the biotechnological production of chemicals from renewable plant biomass. Rational strain development by metabolic engineering is crucial to successful processes, and is based on efficient genetic tools and detailed knowledge of metabolic pathways and their regulation. This review summarizes recent advances in metabolic engineering of the industrial model bacteria Escherichia coli and Corynebacterium glutamicum that led to efficient recombinant biocatalysts for the production of acetate, pyruvate, ethanol, d- and l-lactate, succinate, l-lysine and l-serine.  相似文献   

20.
The use of oxidoreductases as biocatalysts for the production of a wide number of chiral building blocks is presently a mature (bio-)technology. In this context some industrial applications are currently performed by means of those enzymatic approaches, and new examples are expected to be realized. Moreover, oxidoreductases provide an interesting academic platform to undertake fundamental research in enzymology, to acquire a better understanding on catalytic mechanisms, and to facilitate the development of new biocatalytic applications. Within this area, a wide number of oxidoreductases from genus Candida spp. have been characterized and used as biocatalysts. These enzymes are rather diverse, and are able to carry out many useful reactions, like highly (enantio)selective keto-reductions, (de)racemizations and stereoinversions, and promiscuous catalytic imine reductions. In addition, some Candida spp. dehydrogenases are very useful for regenerating the cofactors, with the aid of sacrificial substrates. Addressing those features, the present paper aims to give an overview of these enzymes, by focusing on practical applications that these biocatalysts can provide. Furthermore, when possible, academic insights on the enzymatic performances will be discussed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号