共查询到20条相似文献,搜索用时 15 毫秒
1.
Polarization is a common feature of many types of cells, and we are beginning to understand how cells become polarized. The role of cell polarity in development and tissue morphogenesis, however, is much less well understood. Our previous analysis of the mosaic eyes (moe) mutations revealed that moe is required for retinal lamination and also suggested that zebrafish moe function is required in the retinal pigmented epithelium (RPE) for the proper localization of adjacent retinal cell divisions at the apical neuroepithelial surface. To understand the function of moe in the RPE, we cloned the moe locus and show that it encodes a novel FERM (for 4.1 protein, ezrin, radixin, moesin) domain-containing protein. Expression of moe in the eye, kidney, and brain reflects phenotypes found in moe(-) mutants, including RPE and retinal lamination defects, edema, and small or absent brain ventricles. We show that moe function is required for tight junction formation in the RPE. We suggest that moe may be a necessary component of the crumbs pathway that regulates apical cell polarity and also may play a role in photoreceptor morphogenesis. 相似文献
2.
The vertebrate retina develops from a sheet of neuroepithelial cells. Because adherens and tight junctions are critical for epithelial and neuronal differentiation in a variety of eukaryotic systems, we examined the role of Par-3, a PDZ scaffold protein that is critical in cellular membrane junction formation. We cloned the zebrafish Par-3 ortholog (pard3), which encodes two Pard3 proteins (150 and 180 kDa) that differ in their carboxyl-terminus. Immunohistochemistry revealed that Pard3 localized to the apical region of the retinal and brain neuroepithelium, partially overlapping the adherens junction-associated actin bundles. After retinal lamination, the Pard3 protein was restricted to the outer limiting membrane and the outer and inner plexiform layers in the retina. Reducing Pard3 expression with antisense morpholinos caused loss of the retinal pigmented epithelia, disruption of retinal lamination, and cell death in the ventral diencephalon, which resulted in cyclopia. Overexpressing Pard3 by injection of wild-type pard3 mRNA resulted in cyclopia and eyeless embryos. Thus, Pard3 plays a critical role in the origination and separation of zebrafish eye fields and retinal lamination. 相似文献
3.
Hans W. Laale 《In vitro cellular & developmental biology. Plant》1981,17(8):701-705
Summary Blastoderm explants fromBrachydanio rerio (Teleostei: Cyprinidae) high blastulas exhibited limited differentiation of optic structures in culture. A number of explants
showed migration of pigmented retinal epithelial cells and formation of monolayers. The findings permit comparative studies
in vitro on phenomena pertaining to pigmented retinal epithelial cell morphology, function, and differentiation.
This investigation was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. 相似文献
4.
5.
Embryonic chick retinal pigmented epithelium (RPE) has been grown on glass derivatized with covalently bound proteins of basement membrane and treated with transforming growth factor-beta (TGF-beta). In the present paper we show that over the concentration range tested (0.1-10 ng/ml) TGF-beta has no effect on RPE cell proliferation either in the presence or the absence of serum, cell motility and the organization of cytoskeleton-extracellular matrix linkage complexes with respect to their structure and presence of actin, vinculin, talin, integrin and fibronectin. The protein profiles of total cell/ECM extracts of cells grown in the presence or the absence of TGF-beta are similar although some stimulation of protein synthesis and of production of fibronectin-containing extracellular matrix has been detected. 相似文献
6.
Andrew J. Pittman 《Developmental biology》2010,344(2):784-794
In the zebrafish retinotectal system, retinal ganglion cells (RGCs) project topographically along anterior-posterior (A-P) and dorsal-ventral (D-V) axes to innervate their primary target, the optic tectum. In the nevermind (nev) mutant, D-V positional information is not maintained by dorsonasal retinal axons as they project through the optic tract to the tectum. Here we present a detailed phenotypic analysis of the retinotectal projection in nev and show that dorsonasal axons do eventually find their correct location on the tectum, albeit after taking a circuitous path. Interestingly, nev seems to be specifically required for retinal axons but not for several non-retinal axon tracts. In addition, we find that nev is required both cell autonomously and cell nonautonomously for proper lamination of the retina. We show that nev encodes Cyfip2 (Cytoplasmic FMRP interacting protein 2) and is thus the first known mutation in a vertebrate Cyfip family member. Finally, we show that CYFIP2 acts cell autonomously in the D-V sorting of dorsonasal RGC axons in the optic tract. CYFIP2 is a highly conserved protein that lacks known domains or structural motifs but has been shown to interact with Rac and the fragile-X mental retardation protein, suggesting intriguing links to cytoskeletal dynamics and RNA regulation. 相似文献
7.
Summary Melanosomal metabolism, including both formation and degradation of melanosomes, was studied in the retinal pigmented epithelium (RPE) of the adult opossum. The majority of the observations were made on a transitional zone between the tapetal and non-tapetal RPE, the region where melanosome metabolism was at its highest level. Formation of melanosomes, demonstrated ultrastructurally by the presence of stage-II and -III premelanosomes, was also examined autoradiographically following the incorporation of the melanin precursor, dihydroxyphenylalanine. The autoradiographic evidence indicated that many newly formed melanosomes were rapidly incorporated into complexes. Ultrastructural observations suggested that melanosome complexes were formed by at least two methods, via the fusion of melanosomes with phagosomes derived from outer segments of photoreceptors, or by the sequestration of melanosomes by cisternae. A central finding of this study, supported by both ultrastructural and histochemical data, is that there are specialized cellular regions that vary in melanosomal formation and lysosomal activity. Stage-II premelanosomes were observed only in the basal parts of the RPE cells, whereas stage-III and -IV melanosomes were found primarily in the apical RPE. Both ultrastructural and cytochemical observations indicated that degradation of melanosomes occurs only in the basal RPE. These findings are interpreted in terms of the expression of both tapetal and nontapetal characteristics in transitional cells. Finally, this study illustrates the role of lysosomal enzymes in shaping the pattern of pigmentation, and shows that the association of lysosomal activity with melanosomes depends on the functional state of the melanosome.This investigation was supported by National Institutes of Health research grant EY 01429 and, in part, by a Bob Hope award from Fight for Sight, Inc., New York City (to R.H. Steinberg), and a Fight for Sight, Inc. Summer Fellowship to K.G. Herman 相似文献
8.
The retinal pigment epithelium (RPE) plays numerous critical roles in maintaining vision and this is underscored by the prevalence of degenerative blinding diseases like age-related macular degeneration (AMD), in which visual impairment is caused by progressive loss of RPE cells. In contrast to mammals, zebrafish possess the ability to intrinsically regenerate a functional RPE layer after severe injury. The molecular underpinnings of this regenerative process remain largely unknown yet hold tremendous potential for developing treatment strategies to stimulate endogenous regeneration in the human eye. In this study, we demonstrate that the mTOR pathway is activated in RPE cells post-genetic ablation. Pharmacological and genetic inhibition of mTOR activity impaired RPE regeneration, while mTOR activation enhanced RPE recovery post-injury, demonstrating that mTOR activity is essential for RPE regeneration in zebrafish. RNA-seq of RPE isolated from mTOR-inhibited larvae identified a number of genes and pathways dependent on mTOR activity at early and late stages of regeneration; amongst these were components of the immune system, which is emerging as a key regulator of regenerative responses across various tissue and model systems. Our results identify crosstalk between macrophages/microglia and the RPE, wherein mTOR activity is required for recruitment of macrophages/microglia to the RPE injury site. Macrophages/microglia then reinforce mTOR activity in regenerating RPE cells. Interestingly, the function of macrophages/microglia in maintaining mTOR activity in the RPE appeared to be inflammation-independent. Taken together, these data identify mTOR activity as a key regulator of RPE regeneration and link the mTOR pathway to immune responses in facilitating RPE regeneration. 相似文献
9.
Cell cycle-dependent nuclear localization of yeast RNase III is required for efficient cell division 下载免费PDF全文
Catala M Lamontagne B Larose S Ghazal G Elela SA 《Molecular biology of the cell》2004,15(7):3015-3030
Members of the double-stranded RNA-specific ribonuclease III (RNase III) family were shown to affect cell division and chromosome segregation, presumably through an RNA interference-dependent mechanism. Here, we show that in Saccharomyces cerevisiae, where the RNA interference machinery is not conserved, an orthologue of RNase III (Rnt1p) is required for progression of the cell cycle and nuclear division. The deletion of Rnt1p delayed cells in both G1 and G2/M phases of the cell cycle. Nuclear division and positioning at the bud neck were also impaired in Deltarnt1 cells. The cell cycle defects were restored by the expression of catalytically inactive Rnt1p, indicating that RNA cleavage is not essential for cell cycle progression. Rnt1p was found to exit from the nucleolus to the nucleoplasm in the G2/M phase, and perturbation of its localization pattern delayed the progression of cell division. A single mutation in the Rnt1p N-terminal domain prevented its accumulation in the nucleoplasm and slowed exit from mitosis without any detectable effects on RNA processing. Together, the data reveal a new role for a class II RNase III in the cell cycle and suggest that at least some members of the RNase III family possess catalysis-independent functions. 相似文献
10.
The yeast MYO1 gene encoding a myosin-like protein required for cell division. 总被引:28,自引:4,他引:28 下载免费PDF全文
A yeast gene MYO1 that contains regions of substantial sequence homology with the nematode muscle myosin gene (unc54) has been isolated and sequenced. Although the disruption of MYO1 is not lethal, it leads to aberrant nuclear migration and cytokinesis. The 200-kd myosin heavy chain-like protein, the product of MYO1, cross-reacts with anti-nematode myosin heavy chain IgG and is present in wild-type strains but not in strains carrying the disrupted gene. Instead, a truncated polypeptide with a molecular mass of 120 kd can be detected in some myo1 mutants. 相似文献
11.
12.
Difference in the retinal cone mosaic pattern between zebrafish and medaka: cell-rearrangement model
In fish retina, four kinds of photoreceptor cells (or cones) are two-dimensionally arranged in a very regular manner, forming cone mosaics. Mosaic pattern differs between species--two typical patterns are "row mosaic" and "square mosaic", exemplified by the cone mosaics in zebrafish and in medaka, respectively. In this paper, we study a cell-rearrangement model. Cells with pre-fixed fate exchange their locations between nearest neighbors and form regular mosaic patterns spontaneously, if the adhesive force between nearest neighbors and between next-nearest neighbors depend on their cell types in an appropriate manner. The same model can produce both row and square mosaic patterns. However, if the cell-cell interaction is restricted to nearest neighbors only, the square mosaic (medaka pattern) cannot be generated, showing the importance of interaction between next-nearest neighbors. In determining whether row mosaic (zebrafish pattern) or square mosaic (medaka pattern) is to be formed, two shape factors are very important, which control the way adhesions in different geometric relations are combined. We also developed theoretical analysis of the parameter ranges for the row mosaic and the square mosaic to have higher total adhesion than alternative spatial patterns. 相似文献
13.
The proneural gene ascl1a is required for endocrine differentiation and cell survival in the zebrafish adenohypophysis 总被引:1,自引:0,他引:1
Pogoda HM von der Hardt S Herzog W Kramer C Schwarz H Hammerschmidt M 《Development (Cambridge, England)》2006,133(6):1079-1089
Mammalian basic helix-loop-helix proteins of the achaete-scute family are proneural factors that, in addition to the central nervous system, are required for the differentiation of peripheral neurons and sensory cells, derivatives of the neural crest and placodal ectoderm. Here, in identifying the molecular nature of the pia mutation, we investigate the role of the zebrafish achaete-scute homologue ascl1a during development of the adenohypophysis, an endocrine derivative of the placodal ectoderm. Similar to mutants deficient in Fgf3 signaling from the adjacent ventral diencepahalon, pia mutants display failure of endocrine differentiation of all adenohypophyseal cell types. Shortly after the failed first phase of cell differentiation, the adenohypophysis of pia mutants displays a transient phase of cell death, which affects most, but not all adenohypophyseal cells. Surviving cells form a smaller pituitary rudiment, lack expression of specific adenohypophyseal marker genes (pit1, neurod), while expressing others (lim3, pitx3), and display an ultrastructure reminiscent of precursor cells. During normal development, ascl1a is expressed in the adenohypophysis and the adjacent diencephalon, the source of Fgf3 signals. However, chimera analyses show that ascl1a is required cell-autonomously in adenohypophyseal cells themselves. In fgf3 mutants, adenohypophyseal expression of ascl1a is absent, while implantation of Fgf3-soaked beads into pia mutants enhances ascl1a, but fails to rescue pit1 expression. Together, this suggests that Ascl1a might act downstream of diencephalic Fgf3 signaling to mediate some of the effects of Fgf3 on the developing adenohypophysis. 相似文献
14.
15.
Fumiyasu Imai Asuka Yoshizawa Ayako MatsuzakiEri Oguri Masato AraragiYuko Nishiwaki Ichiro Masai 《Developmental biology》2014
In the developing retina, neurogenesis and cell differentiation are coupled with cell proliferation. However, molecular mechanisms that coordinate cell proliferation and differentiation are not fully understood. In this study, we found that retinal neurogenesis is severely delayed in the zebrafish stem-loop binding protein (slbp) mutant. SLBP binds to a stem-loop structure at the 3′-end of histone mRNAs, and regulates a replication-dependent synthesis and degradation of histone proteins. Retinal cell proliferation becomes slower in the slbp1 mutant, resulting in cessation of retinal stem cell proliferation. Although retinal stem cells cease proliferation by 2 days postfertilization (dpf) in the slbp mutant, retinal progenitor cells in the central retina continue to proliferate and generate neurons until at least 5 dpf. We found that this progenitor proliferation depends on Notch signaling, suggesting that Notch signaling maintains retinal progenitor proliferation when faced with reduced SLBP activity. Thus, SLBP is required for retinal stem cell maintenance. SLBP and Notch signaling are required for retinal progenitor cell proliferation and subsequent neurogenesis. We also show that SLBP1 is required for intraretinal axon pathfinding, probably through morphogenesis of the optic stalk, which expresses attractant cues. Taken together, these data indicate important roles of SLBP in retinal development. 相似文献
16.
Components of the cytoskeleton in the retinal pigmented epithelium of the chick 总被引:2,自引:3,他引:2 下载免费PDF全文
The retinal pigmented epithelium (RPE) is a simple cuboidal epithelium with apical processes which, unlike many epithelia, do not extend freely into a lumen but rather interdigitate closely with the outer segments of the neural retina. To determine whether this close association was reflected in the cytoskeletal organization of the RPE, we studied the components of the cytoskeleton of the RPE and their localization in the body of the cell and in the apical processes. By relative mobility on SDS gels and by immunoblotting, we identified actin, vimentin, myosin, spectrin (240/235), and alpha-actinin as major components, and vinculin as a minor component. In addition, the RPE cytoskeleton contains polypeptides of Mr 280,000 and 250,000; the latter co-electrophoreses with actin-binding protein. By immunofluorescence, the terminal web region appeared similar to the comparable region of the intestinal epithelium that consists of broad belts of microfilaments containing myosin, actin, spectrin, and alpha-actinin. However, the components of the apical processes were very different from those of intestinal microvilli. We observed staining along the process for myosin, actin, spectrin, alpha-actinin, and vinculin. The presence in the apical processes of contractile proteins and also of proteins typically found at sites of cell attachments suggests that the RPE may actively adhere to, and exert tension on, the neural retina. 相似文献
17.
Shimizu T Yabe T Muraoka O Yonemura S Aramaki S Hatta K Bae YK Nojima H Hibi M 《Mechanisms of development》2005,122(6):747-763
E-cadherin is a member of the classical cadherin family and is known to be involved in cell-cell adhesion and the adhesion-dependent morphogenesis of various tissues. We isolated a zebrafish mutant (cdh1(rk3)) that has a mutation in the e-cadherin/cdh1 gene. The mutation rk3 is a hypomorphic allele, and the homozygous mutant embryos displayed variable phenotypes in gastrulation and tissue morphogenesis. The most severely affected embryos displayed epiboly delay, decreased convergence and extension movements, and the dissociation of cells from the embryos, resulting in early embryonic lethality. The less severely affected embryos survived through the pharyngula stage and showed flattened anterior neural tissue, abnormal positioning and morphology of the hatching gland, scattered trigeminal ganglia, and aberrant axon bundles from the trigeminal ganglia. Maternal-zygotic cdh1(rk3) embryos displayed epiboly arrest during gastrulation, in which the enveloping layer (EVL) and the yolk syncytial layer but not the deep cells (DC) completed epiboly. A similar phenotype was observed in embryos that received antisense morpholino oligonucleotides (cdh1MO) against E-cadherin, and in zebrafish epiboly mutants. Complementation analysis with the zebrafish epiboly mutant weg suggested that cdh1(rk3) is allelic to half baked/weg. Immunohistochemistry with an anti-beta-catenin antibody and electron microscopy revealed that adhesion between the DCs and the EVL was mostly disrupted but the adhesion between DCs was relatively unaffected in the MZcdh1(rk3) mutant and cdh1 morphant embryos. These data suggest that E-cadherin-mediated cell adhesion between the DC and EVL plays a role in the epiboly movement in zebrafish. 相似文献
18.
The activity of the enzyme 2',3'-cyclic nucleotide 3'-phosphohydrolase (CNPase, E.C.3.1.4.37) has been studied in the retina of three vertebrate species. Activity was highest in the goldfish, followed by Xenopus laevis and Rana pipiens. Also, high activity levels were found in goldfish retinal pigment epithelium and choroid, but not in the other two species. When added to in vitro culture systems, 2',3'-cyclic nucleotides were found to have no effect on goldfish cone retinomotor movement, but caused a marked inhibition of Rana pipiens rod outer segment disc membrane shedding. It is suggested that CNPase may play a role in cellular processes requiring membrane structural reorganization. 相似文献
19.
20.
Ezrin promotes morphogenesis of apical microvilli and basal infoldings in retinal pigment epithelium 总被引:5,自引:0,他引:5
Ezrin, a member of the ezrin/radixin/moesin (ERM) family, localizes to microvilli of epithelia in vivo, where it bridges actin filaments and plasma membrane proteins. Here, we demonstrate two specific morphogenetic roles of ezrin in the retinal pigment epithelium (RPE), i.e., the formation of very long apical microvilli and of elaborate basal infoldings typical of these cells, and characterize the role of ezrin in these processes using antisense and transfection approaches. In the adult rat RPE, only ezrin (no moesin or radixin) was detected at high levels by immunofluorescence and immunoelectron microscopy at microvilli and basal infoldings. At the time when these morphological differentiations develop, in the first two weeks after birth, ezrin levels increased fourfold to adult levels. Addition of ezrin antisense oligonucleotides to primary cultures of rat RPE drastically decreased both apical microvilli and basal infoldings. Transfection of ezrin cDNA into the RPE-J cell line, which has only trace amounts of ezrin and moesin, sparse and stubby apical microvilli, and no basal infoldings, induced maturation of microvilli and the formation of basal infoldings without changing moesin expression levels. Taken together, the results indicate that ezrin is a major determinant in the maturation of surface differentiations of RPE independently of other ERM family members. 相似文献