首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structure of the G protein Gialpha1 complexed with the nonhydrolyzable GTP analog guanosine-5'-(betagamma-imino)triphosphate (GppNHp) has been determined at a resolution of 1.5 A. In the active site of Gialpha1. GppNHp, a water molecule is hydrogen bonded to the side chain of Glu43 and to an oxygen atom of the gamma-phosphate group. The side chain of the essential catalytic residue Gln204 assumes a conformation which is distinctly different from that observed in complexes with either guanosine 5'-O-3-thiotriphosphate or the transition state analog GDP.AlF4-. Hydrogen bonding and steric interactions position Gln204 such that it interacts with a presumptive nucleophilic water molecule, but cannot interact with the pentacoordinate transition state. Gln204 must be released from this auto-inhibited state to participate in catalysis. RGS proteins may accelerate the rate of GTP hydrolysis by G protein alpha subunits, in part, by inserting an amino acid side chain into the site occupied by Gln204, thereby destabilizing the auto-inhibited state of Galpha.  相似文献   

2.
Carboxypeptidase B (EC 3.4.17.2) (CPB) is commonly used in the industrial insulin production and as a template for drug design. However, its ability to discriminate substrates with hydrophobic, hydrophilic, and charged side chains is not well understood. We report structure of CPB complex with a transition state analog N-sulfamoyl-L-phenylalanine solved at 1.74Å. The study provided an insight into structural basis of CPB substrate specificity. Ligand binding is affected by structure-depended conformational changes of Asp255 in S1’-subsite, interactions with Asn144 and Arg145 in C-terminal binding subsite, and Glu270 in the catalytic center. Side chain of the non-specific substrate analog SPhe in comparison with that of specific substrate analog SArg (reported earlier) not only loses favorable electrostatic interactions and two hydrogen bonds with Asp255 and three fixed water molecules, but is forced to be in the unfavorable hydrophilic environment. Thus, Ser207, Gly253, Tyr248, and Asp255 residues play major role in the substrate recognition by S1’-subsite.  相似文献   

3.
Phenylacetone, 4-phenyl-2-butanone, and 4-oxopentyltrimethylammonium chloride were tested as potential transition state analogs for eel acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7). Phenylacetone is a competitive inhibitor of the enzyme but not a transition state analog, since its binding constant is similar to that for the substrate phenyl acetate. 4-Phenyl-2-butanone binds 6-18 times more tightly than the inhibitors 4-phenyl-2-butanol and N-benzylacetamide and the substrate benzyl acetate and also blocks inactivation of the enzyme with methanesulfonyl fluoride. However, its binding is independent of pH in the range 5-7.5, whereas both V and V/Km for benzyl acetate hydrolysis decrease with decreasing pH in this range. These data indicate a specific but weak interaction between the ketone carbonyl and the enzyme, but probably do not justify considering this compound a transition state analog. 4-oxopentyltrimethylammonium iodide has previously been shown to bind about 125 times more strongly than the substrate acetylcholamine. It also binds about 375 times more strongly than the alcohol 4-hydroxypentyltrimethylammonium iodide. Furthermore, the ketone protects the enzyme from inactivation by methansulfony fluoride, while the corresponding quaternary ammonium alcohol accelerates this inactivation reaction. This additional information confirms that the ketone is a transition state analog.  相似文献   

4.
Human angiotensin-converting enzyme (ACE) has two homologous domains, the N and C domains, with differing substrate preferences. X-ray crystal structures of the C and N domains complexed with various inhibitors have allowed identification of active site residues that might be important for the molecular basis of this selectivity. However, it is unclear to what extent the different residues contribute to substrate domain selectivity. Here, cocrystal structures of human testis ACE, equivalent to the C domain, have been determined with two novel C domain-selective ketomethylene inhibitors, (5 S)-5-[( N-benzoyl)amino]-4-oxo-6-phenylhexanoyl- l-tryptophan (kAW) and (5 S)-5-[( N-benzoyl)amino]-4-oxo-6-phenylhexanoyl- l-phenylalanine (kAF). The ketone groups of both inhibitors bind to the zinc ion as a hydrated geminal diolate, demonstrating the ability of the active site to catalyze the formation of the transition state. Moreover, active site residues involved in inhibitor binding have been mutated to their N domain counterparts, and the effect of the mutations on inhibitor binding has been determined. The C domain selectivity of these inhibitors was found to result from interactions between bulky hydrophobic side chain moieties and C domain-specific residues F391, V518, E376, and V380 (numbering of testis ACE). Mutation of these residues decreased the affinity for the inhibitors 4-20-fold. T282, V379, E403, D453, and S516 did not contribute individually to C domain-selective inhibitor binding. Further domain-selective inhibitor design should focus on increasing both the affinity and selectivity of the side chain moieties.  相似文献   

5.
Incubation of (20R)-20-phenyl-5-pregnene-3beta,20-diol, an aromatic analog of (23S)-20-hydroxycholesterol, with an adrenal mitochondrial preparation leads to the formation of four compounds: pregnenolone, phenol, a C8 ketone, acetophenone, and a nonpolar C19 compound. This latter compound has now been identified by reverse isotope dilution analysis and by gas chromatography/mass spectrometry as 17-methyl-18-norandrosta-5,13(17)-dien-3beta-ol. From these results it is evident that enzymatic fission of the C-17,20 bond of this synthetic derivative occurs. On the other hand, when (20S)-20-hydroxy[21-14C]cholesterol was used as substrate, the analogous cleavage did not take place. Thus, substitution of an aromatic group on C-20 facilitates side chain cleavage between that carbon atom and the nucleus whereas neither of the naturally occuring precursors, cholesterol or its 20-hydroxylated counterpart, are metabolized to a C8 fragment.  相似文献   

6.
Transition state binding theory utilizes non-enzymic and enzymic rate ratios to predict the ratio of transition state analog dissociation constants to substrate dissociation constants. In this paper we show that enzyme rate accelerations due solely to lessened entropy requirements, arising from the juxtaposition of a catalytic group and a substrate binding site at an enzyme active site, will result in a ratio of transition state and substrate dissociation constants which is different, in general, from the ratio of non-enzymic and enzymic rate constants. The arguments presented in this paper provide a possible explanation for the frequently observed large discrepancy between the measured and predicted values for transition state analog dissociation constants.  相似文献   

7.
The cholesterol esterase-catalyzed hydrolysis of the water-soluble substrate p-nitrophenyl butyrate occurs via an acylenzyme mechanism, and is competitively inhibited by boronic acid transition state analog inhibitors. Accordingly, we undertook to dimensionally map the enzyme's active site via synthesis and characterization of a series of n-alkyl boronic acid inhibitors. The most potent of these is n-hexaneboronic acid, with a Ki = 13 +/- 1 microM, since inhibitor potency declines for both longer and shorter boronic acids. No inhibition is observed for methaneboronic acid and n-octaneboronic acid inhibits poorly, with a Ki of 7 mM. These results indicate that the ability of the enzyme to form tight complexes with boron-containing transition state analog inhibitors is sensitive to alkyl chain length. The trend in inhibitor potency is discussed in terms of substrate specificity of and transition state stabilization by cholesterol esterase, and has important implications for the design of optimal reversible inhibitors of the enzyme.  相似文献   

8.
Antibody 7A1 hydrolyzes cocaine to produce nonpsychoactive metabolites ecgonine methyl ester and benzoic acid. Crystal structures of 7A1 Fab' and six complexes with substrate cocaine, the transition state analog, products ecgonine methyl ester and benzoic acid together and individually, as well as heptaethylene glycol have been analyzed at 1.5-2.3 angstroms resolution. Here, we present snapshots of the complete cycle of the cocaine hydrolytic reaction at atomic resolution. Significant structural rearrangements occur along the reaction pathway, but they are generally limited to the binding site, including the ligands themselves. Several interacting side chains either change their rotamers or alter their mobility to accommodate the different reaction steps. CDR loop movements (up to 2.3 angstroms) and substantial side chain rearrangements (up to 9 angstroms) alter the shape and size (approximately 320-500 angstroms3) of the antibody active site from "open" to "closed" to "open" for the substrate, transition state, and product states, respectively.  相似文献   

9.
Structural and kinetic data show that Arg-599 of β-galactosidase plays an important role in anchoring the "open" conformations of both Phe-601 and an active-site loop (residues 794-803). When alanine was substituted for Arg-599, the conformations of Phe-601 and the loop shifted towards the "closed" positions because interactions with the guanidinium side chain were lost. Also, Phe-601, the loop, and Na+, which is ligated by the backbone carbonyl of Phe-601, lost structural order, as indicated by large B-factors. IPTG, a substrate analog, restored the conformations of Phe-601 and the loop of R599A-β-galactosidase to the open state found with IPTG-complexed native enzyme and partially reinstated order. ?-Galactonolactone, a transition state analog, restored the closed conformations of R599A-β-galactosidase to those found with ?-galactonolactone-complexed native enzyme and completely re-established the order. Substrates and substrate analogs bound R599A-β-galactosidase with less affinity because the closed conformation does not allow substrate binding and extra energy is required for Phe-601 and the loop to open. In contrast, transition state analog binding, which occurs best when the loop is closed, was several-fold better. The higher energy level of the enzyme?substrate complex and the lower energy level of the first transition state means that less activation energy is needed to form the first transition state and thus the rate of the first catalytic step (k2) increased substantially. The rate of the second catalytic step (k3) decreased, likely because the covalent form is more stabilized than the second transition state when Phe-601 and the loop are closed. The importance of the guanidinium group of Arg-599 was confirmed by restoration of conformation, order, and activity by guanidinium ions.  相似文献   

10.
The Met-542 residue of β-galactosidase is important for the enzyme's activity because it acts as a guide for the movement of the benzyl side chain of Phe-601 between two stable positions. This movement occurs in concert with an important conformational change (open vs. closed) of an active site loop (residues 794-803). Phe-601 and Arg-599, which interact with each other via the π electrons of Phe-601 and the guanidium cation of Arg-599, move out of their normal positions and become disordered when Met-542 is replaced by an Ala residue because of the loss of the guide. Since the backbone carbonyl of Phe-601 is a ligand for Na(+), the Na(+) also moves out of its normal position and becomes disordered; the Na(+) binds about 120 times more poorly. In turn, two other Na(+) ligands, Asn-604 and Asp-201, become disordered. A substrate analog (IPTG) restored Arg-599, Phe-601, and Na(+) to their normal open-loop positions, whereas a transition state analog d-galactonolactone) restored them to their normal closed-loop positions. These compounds also restored order to Phe-601, Asn-604, Asp-201, and Na(+). Binding energy was, however, necessary to restore structure and order. The K(s) values of oNPG and pNPG and the competitive K(i) values of substrate analogs were 90-250 times higher than with native enzyme, whereas the competitive K(i) values of transition state analogs were ~3.5-10 times higher. Because of this, the E?S energy level is raised more than the E?transition state energy level and less activation energy is needed for galactosylation. The galactosylation rates (k?) of M542A-β-galactosidase therefore increase. However, the rate of degalactosylation (k?) decreased because the E?transition state complex is less stable.  相似文献   

11.
Olucha J  Ouellette AN  Luo Q  Lamb AL 《Biochemistry》2011,50(33):7198-7207
An isochorismate-pyruvate lyase with adventitious chorismate mutase activity from Pseudomonas aerugionsa (PchB) achieves catalysis of both pericyclic reactions in part by the stabilization of reactive conformations and in part by electrostatic transition-state stabilization. When the active site loop Lys42 is mutated to histidine, the enzyme develops a pH dependence corresponding to a loss of catalytic power upon deprotonation of the histidine. Structural data indicate that the change is not due to changes in active site architecture, but due to the difference in charge at this key site. With loss of the positive charge on the K42H side chain at high pH, the enzyme retains lyase activity at ~100-fold lowered catalytic efficiency but loses detectable mutase activity. We propose that both substrate organization and electrostatic transition state stabilization contribute to catalysis. However, the dominant reaction path for catalysis is dependent on reaction conditions, which influence the electrostatic properties of the enzyme active site amino acid side chains.  相似文献   

12.
Cysteine is the only variant of D169, a cofactor-binding residue in thymidylate synthase, that shows in vivo activity. The 2.4 A crystal structure of Escherichia coli thymidylate synthase D169C in a complex with dUMP and the antifolate CB3717 shows it to be an asymmetric dimer, with only one active site covalently bonded to dUMP. At the active site with covalently bound substrate, C169 S gamma adopts the roles of both carboxyl oxygens of D169, making a 3.6 A S...H[bond]N hydrogen bond to 3-NH of CB3717 and a 3.4 A water-mediated hydrogen bond to H212. Analogous hydrogen bonds formed during the enzyme reaction are important for cofactor binding and are postulated to contribute to catalysis. The C169 side chain is likely to be ionized, making it a better hydrogen bond acceptor than a neutral sulfhydryl group. At the second active site, C169 S gamma makes a shorter (3 A) hydrogen bond to the 3-NH of CB3717, CB3717 is approximately 1.5 A out of its binding site and there is no covalent bond between dUMP and the catalytic cysteine. Changes to partitioning among productive and non-productive conformations of reaction intermediates may contribute as much, if not more, to the diminished activity of this mutant than reduced stabilization of transition states.  相似文献   

13.
The previous notion that the amino acid side chain at position 104 of subtilisins is involved in the binding of the side chain at position P4 of the substrate has been investigated. The amino acid residue Val104 in subtilisin 309 has been replaced by Ala, Arg, Asp, Phe, Ser, Trp and Tyr by site-directed mutagenesis. It is shown that the P4 specificity of this enzyme is not determined solely by the amino acid residue occupying position 104, as the enzyme exhibits a marked preference for aromatic groups in P4, regardless of the nature of the position-104 residue. With hydrophilic amino acid residues at this position, no involvement is seen in binding of either hydrophobic or hydrophilic amino acid residues at position P4 of the substrates. The substrate with Asp in P4 is an exception, as the preference for this substrate is increased dramatically by introduction of an arginine residue at position 104 in the enzyme, presumably due to a substrate-induced conformational change. However, when position 104 is occupied by hydrophobic residues, it is highly involved in binding of hydrophobic amino acid residues, either by increasing the hydrophobicity of S4 or by determining the size of the pocket. The results suggest that the amino acid residue at position 104 is mobile such that it is positioned in the S4 binding site only when it can interact favourably with the substrate's side chain at position P4.  相似文献   

14.
The role of several active site residues of alpha-chymotrypsin in the prototypical refolding transition between active and inactive forms of this enzyme is examined using chemical modification. Oxidation of Met-192 to the sulfoxide results in a derivative which remains entirely in an active state from pH 6 to 9. The derivative becomes inactive only at high pH with pKa = 10.3, delta H0 = 9.5 kcal and delta S0 = -15 eu., indicating the sulfoxide group supplies about 2.1 kcal of active state stabilization relative to the unoxidized methionine side chain. The refolding transition of N-methyl-His-57-alpha-chymotrypsin, in which a nitrogen of the "charge relay" histidine is methylated, displays one ionization process with an apparent pKa of 9.45. The absence of an additional ionization process with a pKa near 7 provides evidence that one of the ionizations in the six state mechanism which describes this transition in alpha-chymotrypsin is linked to the charge relay system. We also demonstrate, using alpha-chymotrypsin, Met-192-sulfoxide-alpha-chymotrypsin and N-methyl-His-57-alpha-chymotrypsin, that the 230 nm circular dichroism band is a quantitative probe of the active-inactive equilibrium, although the chromophore or chromophores responsible for this and another very large negative band at 202 nm have not been identified. Circular dichroism was used to observe the active-inactive equilibrium in methan sulfonyl-alpha-chymotrypsin and phenylmethane sulfonyl-alpha-chymotrypsin. The enhanced stability of the active state of these derivatives relative to alpha-chymotrypsin can be rationalized in terms of steric effects in the substrate side chain binding site.  相似文献   

15.
Malate dehydrogenase specifically oxidizes malate to oxaloacetate. The specificity arises from three arginines in the active site pocket that coordinate the carboxyl groups of the substrate and stabilize the newly forming hydroxyl/keto group during catalysis. Here, the role of Arg-153 in distinguishing substrate specificity is examined by the mutant R153C. The x-ray structure of the NAD binary complex at 2.1 A reveals two sulfate ions bound in the closed form of the active site. The sulfate that occupies the substrate binding site has been translated approximately 2 A toward the opening of the active site cavity. Its new location suggests that the low catalytic turnover observed in the R153C mutant may be due to misalignment of the hydroxyl or ketone group of the substrate with the appropriate catalytic residues. In the NAD.pyruvate ternary complex, the monocarboxylic inhibitor is bound in the open conformation of the active site. The pyruvate is coordinated not by the active site arginines, but through weak hydrogen bonds to the amide backbone. Energy minimized molecular models of unnatural analogues of R153C (Wright, S. K., and Viola, R. E. (2001) J. Biol. Chem. 276, 31151-31155) reveal that the regenerated amino and amido side chains can form favorable hydrogen-bonding interactions with the substrate, although a return to native enzymatic activity is not observed. The low activity of the modified R153C enzymes suggests that precise positioning of the guanidino side chain is essential for optimal orientation of the substrate.  相似文献   

16.
17.
18.
The hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases (PTPases) was studied with the aim of providing a mechanistic framework for the reactions of this important class of substrate analogues. O-arylphosphorothioates are hydrolyzed 2 to 3 orders of magnitude slower than O-aryl phosphates by PTPases. This is in contrast to the solution reaction where phosphorothioates display 10-60-fold higher reactivity than the corresponding oxygen analogues. Kinetic analyses suggest that PTPases utilize the same active site and similar kinetic and chemical mechanisms for the hydrolysis of O-arylphosphorothioates and O-aryl phosphates. Thio substitution has no effect on the affinity of substrate or product for the PTPases. Bronsted analyses suggest that like the PTPase-catalyzed phosphoryl transfer reaction the transition state for the PTPase-catalyzed thiophosphoryl transfer is highly dissociative, similar to that of the corresponding solution reaction. The side chain of the active-site Arg residue forms a bidentate hydrogen bond with two of the terminal phosphate oxygens in the ground state and two of the equatorial oxygens in a transition state analog complex with vanadate [Denu et al. (1996) Proc. Natl. Acad. Sci. USA 93, 2493-2498; Zhang, M. et al. (1997) Biochemistry 36, 15-23; Pannifer et al. (1998) J. Biol. Chem. 273, 10454-10462]. Replacement of the active-site Arg409 in the Yersinia PTPase by a Lys reduces the thio effect by 54-fold, consistent with direct interaction and demonstrating strong energetic coupling between Arg409 and the phosphoryl oxygens in the transition state. These results suggest that the large thio effect observed in the PTPase reaction is the result of inability to achieve precise transition state complementarity in the enzyme active site with the larger sulfur substitution.  相似文献   

19.
Kinetic analysis of decarboxylation catalyzed by S154A, Q215A, and S154A/Q215A mutant yeast orotidine 5'-monophosphate decarboxylases with orotidine 5'-monophosphate (OMP) and with a truncated nucleoside substrate (EO) activated by phosphite dianion shows (1) the side chain of Ser-154 stabilizes the transition state through interactions with the pyrimidine rings of OMP or EO, (2) the side chain of Gln-215 interacts with the phosphodianion group of OMP or with phosphite dianion, and (3) the interloop hydrogen bond between the side chains of Ser-154 and Gln-215 orients the amide side chain of Gln-215 to interact with the phosphodianion group of OMP or with phosphite dianion.  相似文献   

20.
Continuing our theoretical studies of glucosamine synthase catalysis, we have carried out MNDO and ab initio calculations of the first stage of the reaction, which involves the attack of a cysteine thiol group from the enzyme active site on the side chain carboxyamide group of glutamine, producing ammonia and thioester. The reactants were modelled by methyl mercaptate and acetamide, respectively. For two considered mechanisms of the reaction the energy surfaces were evaluated. Mechanism I, proposed by Chmara et al. (1985) involves the nucleophilic attack of a deprotonated thiol group on the carbonyl carbon atom. Mechanism II, postulated in our previous work (Tempczyk et al. 1989), assumes the concerted binding of the mercaptate sulphur to the carbonyl carbon and the sulfhydryl hydrogen to the amide nitrogen with simultaneous breaking of the S-H bond. The energy surface of mechanism I shows no minimum on the approach of the mercaptide anion towards the carbonyl carbon, which is also consistent with ab initio calculations in a 4-31 G basis set. Therefore, mechanism I seems to be unlikely. The same analysis of mechanism II shows that it leads to the desired products: methyl thioacetate and ammonia. The presence of a sulfhydryl hydrogen causes apparent pyramidicity of the amido nitrogen and lengthening of the C-N bond in the transition state, making conditions for the release of the ammonia molecule. The MNDO calculated energy barrier of the reaction is 50.1 kcal/mol and the approximate 4-31 G ab initio barrier (at the MNDO geometries of the substrate complex and the transition state) is 63 kcal/mol. The biggest energy contribution to the barrier comes from the breaking of the S-H bond, which also causes a large charge separation in the transition state. The latter affect may result in the stabilisation of the transition state in a real enzymatic environment when compared to the gas phase, e.g. by the interaction of the reacting center with a pair of oppositely charged amino acid side chains such as lysinium and glutamate (aspartate), which are present in the enzyme studied. To estimate the magnitude of this effect, molecular mechanics calculations were carried out on the reaction center at the transition state in our proposed model of the enzymatic active site. The site was supplemented by ammonium and acetate ion, which were to mimic the lysinium and glutamate/aspartate side chains. A transition state stabilization energy of 20 kcal/mol was obtained and this lowers the energy barrier to about 30 kcal/mol. This value is within the thermal energy range of an average protein and indicates that our mechanism is a possible route of glucosamine synthase catalysis. Offprint requests to: E. Borowski  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号