首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One innate immune response pathway of insects is a serine protease cascade that activates prophenol oxidase (pro-PO) in plasma. However, details of this pathway are not well understood, including the number and order of proteases involved. Protease inhibitors from the serpin superfamily appear to regulate the proteases in the pathway. Manduca sexta serpin-4 and serpin-5 suppress pro-PO activation in plasma, apparently by inhibiting proteases upstream of the direct activator of pro-PO. To identify plasma proteases inhibited by these serpins, we used immunoaffinity chromatography with serpin antibodies to isolate serpin-protease complexes that formed after activation of the cascade by exposure of plasma to bacteria or lipopolysaccharide. Covalent complexes of serpin-4 with hemolymph proteases HP-1 and HP-6 appeared in plasma activated by Gram-positive or Gram-negative bacteria, whereas serpin-4 complexes with HP-21 and two unidentified proteases were unique to plasma treated with Gram-positive bacteria. HP-1 and HP-6 were also identified as target proteases of serpin-5, forming covalent complexes after bacterial activation of the cascade. These results suggest that HP-1 and HP-6 may be components of the pro-PO activation pathway, which are activated in response to infection and regulated by serpin-4 and serpin-5. HP-21 and two unidentified proteases may participate in a Gram-positive bacteria-specific branch of the pathway. Several plasma proteins that co-purified with serpin-protease complexes, most notably immulectins and serine protease homologs, are known to be components of the pro-PO activation pathway. Our results suggest that after activation by exposure to bacteria, components of the pro-PO pathway associate to form a large noncovalent complex, which localizes the melanization reaction to the surface of invading microorganisms.  相似文献   

2.
Polyclonal antibodies were raised against the isolated hemolymph serine proteinase inhibitors (serpins) of Manduca sexta larvae. Two of these antibodies, MsH49a and MsH49b, displayed characteristic differences in labelling patterns of hemocytes, fat body, integumental epidermis and cuticle on immunoblots, and in light- and electronmicroscopic sections. The serpin composition of the latter three tissue homogenates was determined by native immunoblots and inhibitor binding assays. The results were compared to the hemolymph samples containing all the known inhibitors encoded by the well-characterized serpin-1 gene. The enzyme specificity of the MsH49b-labelled cuticular serpin was similar to serpin-1J, although its electrophoretic mobility on native PAGE was not identical with any of the known proteinase inhibitors encoded by the serpin-1 gene. Based on these data, we suggest that the cuticle and hemolymph may contain novel serpin(s) encoded by a gene other than the serpin-1 gene. Since the serpin-1J proved to be involved in the activation pathway of the prophenoloxidase system in the hemolymph, the in vivo function of cuticular MsH49b serpin was investigated by prophenoloxidase tests in native cuticular homogenates. Our results demonstrated that the cuticular serpin(s) that are labelled by the MsH49b antibody may play a determinant role in the regulation of the prophenoloxidase system of the integumental cuticle.  相似文献   

3.
Analogous to blood coagulation and complement activation in mammals, some insect defense responses (e.g. prophenoloxidase (proPO) activation and Toll pathway initiation) are mediated by serine proteinase cascades and regulated by serpins in hemolymph. We recently isolated Manduca sexta serpin-6 from hemolymph of the bacteria-challenged larvae, which selectively inhibited proPO-activating proteinase-3 (PAP-3) (Wang, Y., and Jiang, H. (2004) Insect Biochem. Mol. Biol. 34, 387-395). To further characterize its structure and function, we cloned serpin-6 from an induced fat body cDNA library using a PCR-derived probe. M. sexta serpin-6 is 55% similar in amino acid sequence to Drosophila melanogaster serpin-5, an immune-responsive protein. We produced serpin-6 in an Escherichia coli expression system and purified the soluble protein by nickel affinity and hydrophobic interaction chromatography. The recombinant protein specifically inhibited PAP-3 and blocked proPO activation in vitro in a concentration-dependent manner. Matrix-assisted laser desorption ionization-time of flight mass spectrometry indicated that the cleavage site of serpin-6 is between Arg373 and Ser374. Serpin-6 is constitutively present in hemolymph of naive larvae, and its mRNA and protein levels significantly increase after a bacterial injection. The association rate constant of serpin-6 and PAP-3 is 2.6 x 10(4) m(-1) s(-1), indicating that serpin-6 may contribute to the inhibitory regulation of PAP-3 in the hemolymph. We also identified the covalent complex of serpin-6 and PAP-3 in induced hemolymph by immunoaffinity chromatography and mass spectrometry. Furthermore, immulectin-2, serine proteinase homologs, proPO, PO, attacin-2, and a complex of serpin-6 and hemolymph proteinase-8 were also detected in the proteins eluted from the immunoaffinity column using serpin-6 antibody. These results suggest that serpin-6 plays important roles in the regulation of immune proteinases in the hemolymph.  相似文献   

4.
Extracellular serine proteinase cascades stimulate prophenoloxidase (proPO) activation and antimicrobial peptide production in insect innate immune responses. Serpins in plasma regulate such cascades by selective inhibition of proteinases, in reactions which result in the formation of covalent serpin-proteinase complexes. We carried out experiments to identify plasma proteinases that are inhibited by Manduca sexta serpin-3, an immune-inducible serpin known to regulate proPO activation. Immunoaffinity chromatography, using antiserum to serpin-3, yielded serpin-3 complexes with proteinases identified by immunoblot analysis as prophenoloxidase-activating proteinase (PAP)-1, PAP-2, PAP-3, and hemolymph proteinase 8 (HP8). HP8 can cleave and activate the Toll ligand, Spätzle, leading to synthesis of antimicrobial peptides. Analysis by mass spectrometry of tryptic peptides derived from the serpin-3 complexes confirmed the presence of PAP-1, PAP-3, and HP8. Purified recombinant serpin-3 and active HP8 formed an SDS-stable complex in vitro. Identification of serpin-3-proteinase complexes in plasma provides insight into proteinase targets of serpin-3 and extends the understanding of serpin/proteinase function in the immune response of M. sexta.  相似文献   

5.
Insect immune responses include prophenoloxidase (proPO) activation and Toll pathway initiation, which are mediated by serine proteinase cascades and regulated by serpins. Manduca sexta hemolymph proteinase-6 (HP6) is a component of both pathways. It cleaves and activates proPO activating proteinase 1 (PAP1) and hemolymph proteinase-8 (HP8), which activates proSpätzle. Inhibitors of HP6 could have the capability of regulating both of these innate immune proteinase cascade pathways. Covalent complexes of HP6 with serpin-4 and serpin-5 were previously isolated from M. sexta plasma using immunoaffinity chromatography with serpin antibodies. We investigated the inhibition of purified, recombinant HP6 by serpin-4 and serpin-5. Both serpin-4 and serpin-5 formed SDS-stable complexes with HP6 in vitro, and they inhibited the activation of proHP8 and proPAP1. Serpin-5 inhibited HP6 more efficiently than did serpin-4. Injection of serpin-5 into larvae resulted in decreased bacteria-induced antimicrobial activity in hemolymph and reduced the bacteria-induced expression of attacin, cecropin and hemolin genes in fat body. Injection of serpin-4 had a weaker effect on antimicrobial peptide expression. These results indicate that serpin-5 may regulate the activity of HP6 to modulate proPO activation and antimicrobial peptide production during immune responses of M. sexta.  相似文献   

6.
Serine proteinase inhibitors from the serpin superfamily have been identified as hemolymph proteins from several groups of arthropods, including horseshoe crabs, crayfish, and insects. In the tobacco hornworm, Manduca sexta, one group of serpins present in plasma is generated by alternate exon splicing from serpin gene-1. We have identified a second serpin gene from this insect, M. sexta serpin-2. A serpin-2 DNA clone was isolated from a fifth instar larval cDNA library. The full-length cDNA is 1.5 kb long and encodes a protein of 381 amino acid residues. Amino acid sequence comparisons with other invertebrate serpins reveal approximately 25-40% identity with serpin-2. An expressed sequence tag from Bombyx mori, which is very similar to M. sexta serpin-2, was identified, and the corresponding full-length cDNA sequence was determined. This silkworm homolog of serpin-2 is 57% identical to M. sexta serpin-2. Recombinant M. sexta serpin-2 was used as an antigen to generate a rabbit polyclonal antiserum. This antiserum recognized a 43 kDa protein present in hemocytes but absent from plasma. Western and Northern blot results revealed that serpin-2 gene expression increased dramatically after larvae were injected with bacteria. In situ hybridization showed that the serpin-2 mRNA is present in granular hemocytes of immune-stimulated larvae. Serpin-2 purified from hemocytes obtained 24 h after injection of larvae with bacteria lacked inhibitory activity for all proteinases tested except for human cathepsin G. The intracellular location of serpin-2 suggests a function for serpin-2 different from the plasma serpin-1 proteins.  相似文献   

7.
Upon wounding or infection, a serine proteinase cascade in insect hemolymph leads to prophenoloxidase (proPO) activation and melanization, a defense response against invading microbes. In the tobacco hornworm Manduca sexta, this response is initiated via hemolymph proteinase 14 (HP14), a mosaic protein that interacts with bacterial peptidoglycan or fungal beta-1,3-glucan to autoactivate. In this paper, we report the expression, purification, and functional analysis of M. sexta HP21 precursor, an HP14 substrate similar to Drosophila snake. The recombinant proHP21 is a 51.1 kDa glycoprotein with an amino-terminal clip domain, a linker region, and a carboxyl-terminal serine proteinase domain. HP14, generated by incubating proHP14 with beta-1,3-glucan and beta-1,3-glucan recognition protein-2, activated proHP21 by limited proteolysis between Leu(152) and Ile(153). Active HP21 formed an SDS-stable complex with M. sexta serpin-4, a physiological regulator of the proPO activation system. We determined the P1 site of serpin-4 to be Arg(355) and, thus, confirmed our prediction that HP21 has trypsin-like specificity. After active HP21 was added to the plasma, there was a major increase in PO activity. HP21 cleaved proPO activating proteinase-2 precursor (proPAP-2) after Lys(153) and generated an amidase activity, which activated proPO in the presence of serine proteinase homolog-1 and 2. In summary, we have discovered and reconstituted a branch of the proPO activation cascade in vitro: beta-1,3-glucan recognition--proHP14 autoactivation--proHP21 cleavage--PAP-2 generation--proPO activation--melanin formation.  相似文献   

8.
9.
Infection stimulates the innate immune responses of insects, including activation of prophenol oxidase (pro-PO) in plasma as the last step of a serine protease cascade. To investigate the roles of protease inhibitors in regulating this pathway, we cloned cDNAs for two new serpins (serpin-4 and serpin-5) from the tobacco hornworm, Manduca sexta. Serpin-4 and serpin-5 mRNAs are constitutively expressed at a low level in larval hemocytes and fat body and increased dramatically upon bacterial challenge. These serpins are present in larval plasma at approximately 3 (serpin-4) and approximately 1 mug/ml (serpin-5) and increased 3-8-fold by 24 h after injection of bacteria or fungi. Recombinant serpin-4 and serpin-5 decreased pro-PO activation when added to plasma, but they did not directly inhibit the pro-PO-activating proteases. Instead, they apparently regulate the pathway by inhibiting one or more target proteases upstream of the pro-PO-activating proteases.  相似文献   

10.
11.
Phenoloxidase (PO) is a key enzyme implicated in several defense mechanisms in insects and crustaceans. It is converted from prophenoloxidase (proPO) through limited proteolysis by prophenoloxidase-activating proteinase (PAP). We previously isolated PAP-1 from integument and PAP-2 from hemolymph of the tobacco hornworm, Manduca sexta. Here, we report the purification, characterization, and regulation of PAP-3 from the hemolymph. Similar to M. sexta PAP-2, PAP-3 consists of two amino-terminal clip domains followed by a carboxyl-terminal catalytic domain, whereas PAP-1 contains only one clip domain at its amino-terminus. Purified PAP-3 cleaved proPO at Arg51 and generated a low level of PO activity. However, the enzyme efficiently activated proPO when M. sexta serine proteinase homolog-1 and -2 were present. These proteinase-like proteins associate with immulectin-2, a pattern-recognition receptor for lipopolysaccharide. M. sexta PAP-3 was inhibited by recombinant serpin-1J, which formed an SDS-stable complex with the enzyme. PAP-3 mRNA was detected at a low level in the fat body or hemocytes of naive larvae, but was elevated in insects that had been challenged with bacteria. These data, along with our previous results on PAP-1 and PAP-2, indicate that proPO activation by PAPs is a tightly regulated process. Individual PAPs could play different roles during immune responses and developmental processes.  相似文献   

12.
A serine proteinase pathway in insect hemolymph leads to prophenoloxidase activation, an innate immune response against pathogen infection. In the tobacco hornworm Manduca sexta, recombinant hemolymph proteinase 14 precursor (pro-HP14) interacts with peptidoglycan, autoactivates, and initiates the proteinase cascade (Ji, C., Wang, Y., Guo, X., Hartson, S., and Jiang, H. (2004) J. Biol. Chem. 279, 34101-34106). Here, we report the purification and characterization of pro-HP14 from the hemolymph of bacteria-injected M. sexta larvae. The zymogen, consisting of a single polypeptide with a molecular mass of 68.5 kDa, is truncated at the amino terminus. It is converted to a two-chain active form in the presence of beta-1,3-glucan (a fungal cell wall component) and beta-1,3-glucan recognition protein-2. The 45-kDa heavy chain contains four low-density lipoprotein receptor A repeats, one Sushi domain, and one unique cysteine-rich region, whereas the 30-kDa light chain contains a serine proteinase domain, which was labeled by [(3)H]diisopropyl fluorophosphate. Pro-HP14 in the plasma strongly binds curdlan, zymosan, and yeast and interacts with peptidoglycan and Micrococcus luteus. Addition of autoactivated HP14 elevated phenoloxidase activity level in the larval plasma. Recombinant M. sexta serpin-1I reduced prophenoloxidase activation by inhibiting HP14. These data are consistent with the current model on initiation and regulation of the prophenoloxidase activation cascade upon recognition of pathogen-associated molecular patterns by specific pattern recognition proteins.  相似文献   

13.
Serine protease cascade-mediated prophenolxidase activation is a prominent innate immune response in insect defense against the invading pathogens. Serpins regulate this reaction to avoid excessive activation. However, the function of serpins in most insect species, especially in some non-model agriculture insect pests, is largely unknown. We here cloned a full-length cDNA for a serpin, named as serpin-3, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of serpin-3 encodes 462-amino acid residue protein with a 19-residue signal peptide. It contains a reactive center loop strikingly similar to the proteolytic activation site in prophenoloxidase. Sequence comparison indicates that O. furnacalis serpin-3 is an apparent ortholog of Manduca sexta serpin-3, a defined negative regulator of melanization reaction. Serpin-3 mRNA and protein levels significantly increase after a bacterial or fungal injection. Recombinant serpin-3 efficiently blocks prophenoloxidase activation in larval plasma in a concentration-dependent manner. It forms SDS-stable complexes with serine protease 13 (SP13), and prevents SP13 from cleaving prophenoloxidase. Injection of recombinant serpin-3 into larvae results in decreased fungi-induced melanin synthesis and reduced the expression of attacin, cecropin, gloverin, and peptidoglycan recognition protein-1 genes in the fat body. Altogether, serpin-3 plays important roles in the regulation of prophenoloxidase activation and antimicrobial peptide production in O. furnacalis larvae.  相似文献   

14.
The proteolytic activation of prophenoloxidase (proPO) is a critical defense mechanism in insects and crustaceans. We have isolated three prophenoloxidase-activating proteinases (PAPs) from cuticular extracts or hemolymph of Manduca sexta pharate pupae, which are negatively regulated by serpin-1J and serpin-3. To test if other serpins may also inhibit the PAPs, we fractionated the induced hemolymph by ammonium sulfate precipitation, gel filtration, and lectin affinity chromatography. A 47 kDa protein, designated M. sexta serpin-6, was identified in concanavalin A-bound fractions, which formed an SDS-stable complex with PAP-3. This inhibitor, not recognized by the serpin-1 or serpin-3 antibodies, was further purified on HPLC anion exchange and hydroxylapatite columns. The molecular mass and isoelectric point of serpin-6 were found to be 46,710 +/- 10 Da and 5.4. While its amino terminus was blocked, we obtained five internal peptide sequences, one of which is highly similar to M. sexta serpins-1, -2, and -3. Serpin-6 strongly inhibited PAP-3 but not PAP-1 or PAP-2, suggesting that the proPO activation by PAPs is differentially regulated by multiple serpins. When included in the reaction mixture containing proPO, PAP-3, and its cofactor, serpin-6 efficiently blocked the cleavage activation of proPO.  相似文献   

15.
Serpins are a superfamily of proteins, most of which inhibit cognate serine proteases by forming inactive acyl-enzyme complexes. In the tobacco hornworm Manduca sexta, serpin-1, -3 through -7 negatively regulate a hemolymph serine protease system that activates precursors of the serine protease homologs (SPHs), phenoloxidases (POs), Spätzles, and other cytokines. Here we report the cloning and characterization of M. sexta serpin-9 and -13. Serpin-9, a 402-residue protein most similar to Drosophila Spn77Ba, has R366 at the P1 position right before the cleavage site; Serpin-13, a 444-residue ortholog of Drosophila Spn28Dc, is longer than the other seven serpins and has R410 as the P1 residue. Both serpins are mainly produced in fat body and secreted into plasma to function. While their mRNA and protein levels were not up-regulated upon immune challenge, they blocked protease activities and affected proPO activation in hemolymph. Serpin-9 inhibited human neutrophil elastase, cathepsin G, trypsin, and chymotrypsin to different extents; serpin-13 reduced trypsin activity to approximately 10% at a molar ratio of 4:1 (serpin: enzyme). Serpin-9 was cleaved at Arg366 by the enzymes with different specificity, but serpin-13 had four P1 sites (Arg410 for trypsin-like proteases, Gly406 and Ala409 for the elastase and Thr404 for cathepsin G). Supplementation of induced cell-free hemolymph (IP, P for plasma) with recombinant serpin-9 did not noticeably affect proPO activation, but slightly reduced the PO activity increase after 0–50% ammonium sulfate fraction of the IP had been elicited by bacteria. In comparison, addition of recombinant serpin-13 significantly inhibited proPO activation in IP and the suppression was stronger in the fraction of IP. Serpin-9- and -13-containing protein complexes were isolated from IP using their antibodies. Hemolymph protease-1 precursor (proHP1), HP6 and HP8 were found to be associated with serpin-9, whereas proHP1, HP2 and HP6 were pulled downed with serpin-13. These results indicate that both serpins regulate immune proteases in hemolymph of M. sexta larvae.  相似文献   

16.
To elucidate the biochemical activation mechanism of the insect pro-phenoloxidase (pro-PO) system, we purified a 45-kDa protein to homogeneity from the hemolymph of Tenebrio molitor (mealworm) larvae, and cloned its cDNA. The overall structure of the 45-kDa protein is similar to Drosophila masquerade serine proteinase homologue, which is an essential component in Drosophila muscle development. This Tenebrio masquerade-like serine proteinase homologue (Tm-mas) contains a trypsin-like serine proteinase domain in the C-terminal region, except for the substitution of Ser to Gly at the active site triad, and a disulfide-knotted domain at the amino-terminal region. When the purified 45-kDa Tm-mas was incubated with CM-Toyopearl eluate solution containing pro-PO and other pro-PO activating factors, the resulting phenoloxidase (PO) activity was shown to be independent of Ca2+. This suggests that the purified 45-kDa Tm-mas is an activated form of pro-PO activating factor. The55-kDa zymogen form of Tm-mas was detected in the hemolymph when PO activity was not evident. However, when Tenebrio hemolymph was incubated with Ca2+, a 79-kDa Tenebrio pro-PO and the 55-kDa zymogen Tm-mas converted to 76-kDa PO and 45-kDa Tm-mas, respectively, with detectable PO activity. Furthermore, when Tenebrio hemolymph was incubated with Ca2+ and beta-1,3-glucan, the conversion of pro-PO to PO and the 55-kDa zymogen Tm-mas to the 45-kDa protein, was faster than in the presence of Ca2+ only. These results suggest that the cleavage of the 55-kDa zymogen of Tm-mas by a limited proteolysis is necessary for PO activity, and the Tm-mas is a pro-PO activating cofactor.  相似文献   

17.
Hemolymph of Manduca sexta contains a number of serine proteinase inhibitors from the serpin superfamily. During formation of a stable complex between a serpin and a serine proteinase, the enzyme cleaves a specific peptide bond in an exposed loop (the reactive-site region) at the surface of the serpin. The amino acid residue on the amino-terminal side of this scissile bond, the P1 residue, is important in defining the selectivity of a serpin for inhibiting different types of serine proteinases. M. sexta serpin-1B, with alanine at the position predicted from sequence alignments to be the P1 residue, was previously named alaserpin. This alanyl residue was changed by site-directed mutagenesis to lysine (A343K) and phenylalanine (A343F). The serpin-1B cDNA and its mutants were inserted into an expression vector, H6pQE-60, and the serpin proteins were expressed in Escherichia coli. Affinity-purified recombinant serpins selectively inhibited mammalian serine proteinases: serpin-1B inhibited elastase; serpin-1B(A343K) inhibited trypsin, plasmin, and thrombin; serpin-1B(A343F) inhibited chymotrypsin as well as trypsin. All three serpins inhibited human cathepsin G. This insect serpin and its site-directed mutants associated with mammalian serine proteinases at rates similar to those reported for mammalian serpins. Serpin-1B and its mutants formed SDS-stable complexes with the enzymes they inhibited. The scissile bond was determined to be between residues 343 and 344 in wild-type serpin-1B and in serpin-1B with mutations at residue 343. These results demonstrate that the P1 alanine residue defines the primary selectivity of serpin-1B for elastase-like enzymes, and that this selectivity can be altered by mutations at this position.  相似文献   

18.
19.
Prophenoloxidase activation is a component of the immune system in insects and crustaceans. We recently purified and cloned a new prophenoloxidase-activating proteinase (PAP-2) from hemolymph of the tobacco hornworm Manduca sexta [J. Biol. Chem. 278, 3552-3561]. As the terminal component of a putative serine proteinase cascade, this enzyme activates prophenoloxidase (proPO) via limited proteolysis. To purify and study the activating proteinase for PAP-2 from this insect, we expressed the zymogen of PAP-2 (proPAP-2) in insect cells infected by a recombinant baculovirus that harbors the cDNA. To facilitate the purification of proPAP-2, we modified a commercial vector (pFastBac1) by inserting a synthetic DNA fragment encoding a hexahistidine sequence, allowing fusion of the affinity tag to the carboxyl terminus of a protein. After Spodoptera frugiperda Sf21 cells were infected by the virus, recombinant proPAP-2 was efficiently secreted into the media at a concentration of 5.9 microg/ml under the optimal conditions. After ammonium sulfate precipitation, the proenzyme was purified to near homogeneity by affinity chromatography on Ni(2+)-NTA agarose. Western blot analysis indicated that the recombinant proPAP-2 has a mobility slightly lower than that of the zymogen from M. sexta hemolymph. The molecular mass and isoelectric point of proPAP-2 were determined to be 47,573+/-11Da and 6.6, respectively. After the purified proenzyme was added to hemolymph from induced M. sexta larvae, it was rapidly activated by an unknown proteinase in the presence of peptidoglycan.  相似文献   

20.
Melanization, an insect immune response, requires a set of hemolymph proteins including pathogen recognition proteins that initiate the response, a cascade of mostly unknown serine proteinases, and phenoloxidase. Until now, only initial and final proteinases in the pathways have been conclusively identified. Four such proteinases have been purified from the larval hemolymph of Manduca sexta: hemolymph proteinase 14 (HP14), which autoactivates in the presence of microbial surface components, and three prophenoloxidase-activating proteinases (PAP1-3). In this study, we have used two complementary approaches to identify a serine proteinase that activates proPAP3. Partial purification from hemolymph of an activator of proPAP3 resulted in an active fraction with two abundant polypeptides of approximately 32 and approximately 37 kDa. Labeling of these polypeptides with a serine proteinase inhibitor, diisopropyl fluorophosphate, indicated that they were active serine proteinases. N-terminal sequencing revealed that both were cleaved forms of the previously identified hemolymph serine proteinase, HP21. Surprisingly, cleavage of proHP21 had occurred not at the predicted activation site but more N-terminal to it. In vitro reactions carried out with purified HP14 (which activates proHP21), proHP21, proPAP3, and site-directed mutant forms of the latter two proteinases confirmed that HP21 activates proPAP3 by limited proteolysis. Like the HP21 products purified from hemolymph, HP21 that was activated by HP14 in the in vitro reactions was not cleaved at its predicted activation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号