共查询到20条相似文献,搜索用时 15 毫秒
1.
Ribosome-messenger recognition: mRNA target sites for ribosomal protein S1. 总被引:19,自引:4,他引:19
下载免费PDF全文

Ribosomal protein S1 is known to play an important role in translational initiation, being directly involved in recognition and binding of mRNAs by 30S ribosomal particles. Using a specially developed procedure based on efficient crosslinking of S1 to mRNA induced by UV irradiation, we have identified S1 binding sites on several phage RNAs in preinitiation complexes. Targets for S1 on Q beta and fr RNAs are localized upstream from the coat protein gene and contain oligo(U)-sequences. In the case of Q beta RNA, this S1 binding site overlaps the S-site for Q beta replicase and the site for S1 binding within a binary complex. It is reasonable that similar U-rich sequences represent S1 binding sites on bacterial mRNAs. To test this idea we have used E. coli ssb mRNA prepared in vitro with the T7 promoter/RNA polymerase system. By the methods of toeprinting, enzymatic footprinting, and UV crosslinking we have shown that binding of the ssb mRNA to 30S ribosomes is S1-dependent. The oligo(U)-sequence preceding the SD domain was found to be the target for S1. We propose that S1 binding sites, represented by pyrimidine-rich sequences upstream from the SD region, serve as determinants involved in recognition of mRNA by the ribosome. 相似文献
2.
The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA 总被引:4,自引:0,他引:4
下载免费PDF全文

The Escherichia coli DEAD protein DbpA is an RNA-specific ATPase that is activated by a 153-nt fragment within domain V of 23S rRNA. A series of RNA subfragments and sequence changes were used to identify the recognition elements of this RNA-protein interaction. Reducing the size of the fully active 153-nt RNA yields compromised substrates in which both RNA and ATP binding are weakened considerably without affecting the maximal rate of ATP hydrolysis. All RNAs that stimulate ATPase activity contain hairpin 92 of 23S rRNA, which is known to interact with the 3' end of tRNAs in the ribosomal A-site. RNAs with base mutations within this hairpin fail to activate ATP hydrolysis, suggesting that it is a critical recognition element for DbpA. Although the isolated hairpin fails to activate DbpA, RNAs with an extension of approximately 15 nt on either the 5' or 3' side of hairpin 92 elicit full ATPase activity. These results suggest that the binding of DbpA to RNA requires sequence-specific interactions with hairpin 92 as well as nonspecific interactions with the RNA extension. A model relating the RNA binding and ATPase activities of DbpA is presented. 相似文献
3.
Summary The secondary structure of the autoregulatory mRNA binding site of Escherichia coli ribosomal protein L1 has been studies using enzymatic methods. The control region of the E. coli L11 operon was cloned into a vector under control of the Salmonella phage SP6 promoter, and RNA transcribed using SP6 RNA polymerase. The secondary structure of this RNA was probed using structure-specific nucleases, and by comparison of the data with computer predictions of RNA folding, secondary structural features were deduced. The proposed model is consistent with elements of some previously proposed models, but differs in other features. Finally, secondary structure information was obtained from two mutant mRNAs and the structural features correlated with observed phenotypes of the mutants.Abbreviations MB
mung bean nuclease
- V1
cobra venom nuclease
-
sss
single-strand-specific
-
dss
double-strand-specific 相似文献
4.
Lieberman KR Firpo MA Herr AJ Nguyenle T Atkins JF Gesteland RF Noller HF 《Journal of molecular biology》2000,297(5):1129-1143
Ribosomal protein L9 consists of two globular alpha/beta domains separated by a nine-turn alpha-helix. We examined the rRNA environment of L9 by chemical footprinting and directed hydroxyl radical probing. We reconstituted L9, or individual domains of L9, with L9-deficient 50 S subunits, or with deproteinized 23 S rRNA. A footprint was identified in domain V of 23 S rRNA that was mainly attributable to N-domain binding. Fe(II) was tethered to L9 via cysteine residues introduced at positions along the alpha-helix and in the C-domain, and derivatized proteins were reconstituted with L9-deficient subunits. Directed hydroxyl radical probing targeted regions of domains I, III, IV, and V of 23 S rRNA, reinforcing the view that 50 S subunit architecture is typified by interwoven rRNA domains. There was a striking correlation between the cleavage patterns from the Fe(II) probes attached to the alpha-helix and their predicted orientations, constraining both the position and orientation of L9, as well as the arrangement of specific elements of 23 S rRNA, in the 50 S subunit. 相似文献
5.
Ribosomal proteins. XXX. Specific protein binding sites on 23S RNA of Escherichia coli 总被引:4,自引:0,他引:4
J. A. Roper Helen M. Palmer Wendy A. Watmough 《Molecular & general genetics : MGG》1972,118(2):125-133
Summary Strains of A. nidulans with a chromosome segment in duplicate (one in normal position, one translocated to another chromosome) are unstable at mitosis. During vegetative growth they produce variants which result from deletions in either of the duplicate segments.Caffeine increased the frequency of deletions from the duplicate segments of an unbalanced haploid a) without changing the proportions of the different deletion types and b) under conditions in which there were few, if any, induced breaks in the same segments of a balanced diploid. One possible explanation is that caffeine stimulates the mechanism which, in unbalanced strains, produces replication errors leading to deletions; an alternative is that it exposes the intrinsic instability of duplication strains by preventing the repair of spontaneous replication errors. 相似文献
6.
7.
The BipA protein of Escherichia coli has intriguing similarities to the elongation factor subfamily of GTPases, including EF-Tu, EF-G, and LepA. In addition, phenotypes of a bipA deletion mutant suggest that BipA is involved in regulation of a variety of pathways. These two points have led to speculation that BipA may be a novel regulatory protein that affects efficient translation of target genes through direct interaction with the ribosome. We isolated and characterized suppressors of the cold-sensitive growth phenotype exhibited by DeltabipA strains and identified insertion mutations in rluC. The rluC gene encodes a pseudouridine synthase responsible for pseudouridine modification of 23S rRNA at three sites, all located near the peptidyl transferase center. Deletion of rluC not only suppressed cold sensitivity but also alleviated the decrease in capsule synthesis exhibited by bipA mutants, suggesting that the phenotypic effects of BipA are manifested through an effect on the ribosome. The suppressor effect is specific to rluC, as deletion of other rlu genes did not relieve cold sensitivity, and further, more than a single pseudouridine residue is involved, as alteration of single residues did not produce suppressors. These results are consistent with a role for BipA in either the structure or the function of the ribosome and imply that wild-type ribosomes are dependent on BipA for efficient expression of target mRNAs and that the lack of pseudouridylation at these three sites renders the ribosomes BipA independent. 相似文献
8.
As a component of bacteriophage Qbeta replicase, S1 is required both for initiation of Qbeta minus strand RNA synthesis and for translational repression, which has been traced to the ability of the enzyme to bind to an internal site in the Qbeta RNA molecule. Previously, Senear and Steitz (Senear, A. W., and Steitz, J. A. (1976) J. Biol. Chem. 251, 1902-1912) found that isolated S1 protein binds specifically to an oligonucleotide spanning residues -38 to -63 from the 3' terminus of Qbeta RNA. Here we report that S1 also interacts strongly with a second oligonucleotide in Qbeta RNA, which is derived from the region recognized by replicase just 5' to the Qbeta coat protein cistron. Both sequences exhibit pyrimidine-rich regions. 相似文献
9.
The yeast Saccharomyces cerevisiae ribosomal protein L30 negatively autoregulates its production by binding to a helix-loop-helix structure formed in its pre-mRNA and its mRNA. A three-dimensional solution structure of the L30 protein in complex with its regulatory RNA has been solved using NMR spectroscopy. In the complex, the helix-loop-helix RNA adopts a sharply bent conformation at the internal loop region. Unusual RNA features include a purine stack, a reverse Hoogsteen base pair (G11anti-G56syn) and highly distorted backbones. The L30 protein is folded in a three-layer alpha/beta/alpha sandwich topology, and three loops at one end of the sandwich make base-specific contacts with the RNA internal loop. The protein-RNA binding interface is divided into two clusters, including hydrophobic and aromatic stacking interactions centering around G56, and base-specific hydrogen-bonding contacts to A57, G58 and G10-U60 wobble base pair. Both the protein and the RNA exhibit a partially induced fit for binding, where loops in the protein and the internal loop in the RNA become more ordered upon complex formation. The specific interactions formed between loops on L30 and the internal loop on the mRNA constitute a novel loop-loop recognition motif where an intimate RNA-protein interface is formed between regions on both molecules that lack regular secondary structure. 相似文献
10.
Attachment sites of primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli 总被引:6,自引:0,他引:6
The attachment sites of the primary binding proteins L1, L2 and L23 on 23 S ribosomal RNA of Escherichia coli were examined by a chemical and ribonuclease footprinting method using several probes with different specificities. The results show that the sites are confined to localized RNA regions within the large ribonuclease-protected ribonucleoprotein fragments that were characterized earlier. They are as follows: (1) L1 recognizes a tertiary structural motif in domain V centred on two interacting internal loops; the main protein interaction sites occur at the internal loop/helix junctions. (2) The L2 site constitutes a single irregular stem/loop structure in the centre of domain IV where non-Watson-Crick pairing is likely to occur. (3) L23 recognizes a tertiary structural motif involving a single terminal loop structure and part of an adjacent internal loop at the centre of domain III. Each of the three primary binding proteins, whose presence is essential for ribosomal assembly, has been associated with important ribosomal functions: L1 lies in the E-site for deacylated tRNA binding while L2 and L23 have been implicated in the P and A substrate sites, respectively, of the peptidyl transferase centre. Moreover, each of the protein sites, but particularly those of L2 and L23, lies at the centre of RNA domains where they can maximally influence both the assembly of secondary binding proteins and the function of the RNA region. 相似文献
11.
12.
13.
Gongadze GM Perederina AA Meshcheriakov VA Fedorov RV Moskalenko SE Rak AV Serganov AA Shcherbakov DV Nikonov SV Garber MB 《Molekuliarnaia biologiia》2001,35(4):610-616
Three 5S rRNA-binding ribosomal proteins (L5, L18, TL5) of extremely thermophilic bacterium Thermus thermophilus have earlier been isolated. Structural analysis of their complexes with rRNA requires identification of their binding sites in the 5S rRNA. Previously, a TL5-binding site has been identified, a TL5-RNA complex crystallized, and its structure determined to 2.3 A. The sites for L5 and L18 were characterized, and two corresponding 5S rRNA fragments constructed. Of these, a 34-nt fragment specifically interacted with L5, and a 55-nt fragment interacted with L5, L18, and with both proteins. The 34-nt fragment-L5 complex was crystallized; the crystals are suitable for high-resolution X-ray analysis. 相似文献
14.
Ribosomal protein S7 from Escherichia coli uses the same determinants to bind 16S ribosomal RNA and its messenger RNA 总被引:1,自引:1,他引:1
下载免费PDF全文

Ribosomal protein S7 from Escherichia coli binds to the lower half of the 3′ major domain of 16S rRNA and initiates its folding. It also binds to its own mRNA, the str mRNA, and represses its translation. Using filter binding assays, we show in this study that the same mutations that interfere with S7 binding to 16S rRNA also weaken its affinity for its mRNA. This suggests that the same protein regions are responsible for mRNA and rRNA binding affinities, and that S7 recognizes identical sequence elements within the two RNA targets, although they have dissimilar secondary structures. Overexpression of S7 is known to inhibit bacterial growth. This phenotypic growth defect was relieved in cells overexpressing S7 mutants that bind poorly the str mRNA, confirming that growth impairment is controlled by the binding of S7 to its mRNA. Interestingly, a mutant with a short deletion at the C-terminus of S7 was more detrimental to cell growth than wild-type S7. This suggests that the C-terminal portion of S7 plays an important role in ribosome function, which is perturbed by the deletion. 相似文献
15.
16.
17.
18.
Prediction of the recognition sites on 16S and 23S rRNAs from E. coli for the formation of 16S-23S rRNA complex 总被引:1,自引:0,他引:1
T A Thanaraj A S Kolaskar M W Pandit 《Journal of biomolecular structure & dynamics》1988,6(3):587-592
Interactions between RNA molecules have been postulated to play an important role in the assembly of ribosomes. Using the sequence analysis and the search of continuous complementary regions on 16S rRNA and 23S rRNA, the recognition sites involved in the formation of ribosome of E. coli are postulated. The number of postulated sites was narrowed down by taking available experimental data. The suggestive evidence for correct postulation is obtained from sequence comparison studies of 16S and 23S rRNAs from various species. The sites 891-899 and 1195-1203 on 16S rRNA along with the corresponding complementary sites 1904-1912 and 760-768 on 23S rRNA are predicted to be the most probable candidates for the sites of recognition between 16S and 23S rRNAs. The possibility of the involvement of the additional site 630-638 on 16S rRNA with its complementary site 2031-2039 on 23S rRNA cannot be ruled out. 相似文献
19.
Ribosomal protein L25 from Trypanosoma brucei: phylogeny and molecular co-evolution of an rRNA-binding protein and its rRNA binding site. 总被引:1,自引:1,他引:1
下载免费PDF全文

The gene encoding ribosomal protein L25, a primary rRNA-binding protein, was isolated from the protozoan parasite Trypanosoma brucei. Hybridization studies indicate that multiple copies of the gene are present per T. brucei haploid genome. The C-terminal domain of L25 protein from T. brucei is strikingly similar to L23a protein from rat, L25 proteins from fungal species, and L23 proteins from eubacteria, archaebacteria, and chloroplasts. A phylogenetic analysis of L23/25 proteins and the putative binding sites on their respective LSU-rRNAs (large subunit rRNAs) provides a rare opportunity to study molecular co-evolution between an RNA molecule and the protein that binds to it. 相似文献
20.
E. coli ribosomal protein L1 is a translational repressor of the synthesis in vitro of both proteins encoded in the L11 operon (L11 and L1). L1 is shown to act at a single target site within the first 160 bases of the bicistronic mRNA, near (or at) the translation initiation site of the L11 cistron. Synthesis of L1 apparently requires translation of the preceding L11 cistron, allowing regulation of the synthesis of both proteins from a single mRNA target site. This observation suggests a sequential translation mechanism that results in the equimolar synthesis rates of the two proteins observed in vivo. It was found that the presence of 23S rRNA, but not 16S rRNA, relieves translational inhibition by L1. L1 presumably recognizes structural features of the mRNA target site that are homologous to the L1-binding site of 23S rRNA. Although previous work indicated that translationally inhibited ribosomal protein mRNA is degraded in vivo, L1 repressor action in the present in vitro system was found not to involve mRNA degradation. 相似文献