首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of phorbol esters was investigated on the down-regulation of protein kinase C (PKC) and on the release of [3H]norepinephrine (NE) in synaptosomes from the rat cerebrum. Treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) promoted the translocation of PKC activity in a P2 fraction from the cytosol to the membrane fraction and then its down-regulation, in a dose-dependent manner. TPA induced a rapid down-regulation of the type II(beta) and type III(alpha) subspecies, but did not change the activity of the type I(gamma) subspecies in the cytosolic fraction for at least 15 min. The gamma-subspecies was subsequently decreased at a slower rate. In the synaptosomes thus having only the gamma-subspecies, a subsequent dose of TPA could not enhance K(+)-evoked NE release, although, in the original synaptosomes, TPA was able to enhance K(+)-evoked NE release. Pretreatment with TPA did not alter the K(+)-evoked NE release itself. TPA was also found to enhance the K(+)-evoked NE release from synaptosomes prepared from both hippocampus, which express the gamma-subspecies of PKC at a negligible level, and cerebral cortex, which have a significant level of the gamma-subspecies, to the same degree. These results suggest that the gamma-subspecies of PKC does not participate in the TPA-enhanced K(+)-evoked NE release from synaptosomes.  相似文献   

2.
Human T cell activation by phorbol esters and diacylglycerol analogues   总被引:5,自引:0,他引:5  
Activation of protein kinase C (PKC), by the phorbol ester PMA, or the membrane-permeable diacylglycerol 1-oleoyl 2-acetylglycerol (OAG), had different effects on the proliferation-associated responses of a more than 99% pure population of human T cells. Treatment with PMA or OAG caused down-regulation of the TCR-CD3 complex, but only PMA, in combination with ionomycin, was capable of stimulating IL-2R expression and proliferation. Immunocytochemical staining with antisera specific for the PKC subspecies alpha, beta I, beta II, and gamma showed that untreated resting T cells normally coexpress alpha, beta I, and beta II PKC subspecies, which are distributed diffusely throughout the cell, with some localization around the periphery of the nucleus. There was no difference between the responses of these PKC subspecies to OAG and PMA, redistributing, after 10 min of treatment, to a discrete focal area within the cell. Treatment with OAG resulted in transient redistribution of PKC, maximal at 10 min, while in PMA-stimulated cells, the PKC redistribution was prolonged, persisting for at least 24 h. The results suggest that the difference in cellular response to treatment with PMA and OAG is not a consequence of differential activation of various PKC subspecies.  相似文献   

3.
Limited proteolysis of protein kinase C (PKC) subspecies with Ca2(+)-dependent neutral protease II (calpain II) was remarkably stimulated by basic polypeptides, such as H1 histone and poly-L-lysine. This stimulatory effect was observed for proteolysis of the active form of PKC, which was associated with phospholipid and diacylglycerol. The inactive form of PKC was far less susceptible to proteolysis, both in the presence and absence of the basic polypeptides. The basic polypeptides did not appear to interact with calpain II, but made the PKC molecule more susceptible to proteolysis. The relative rates of cleavage of type I (gamma), II (beta), and III (alpha) PKC were 2:2:1. The available evidence suggests that, like calpain I, calpain II may also contribute to the down-regulation or depletion of PKC.  相似文献   

4.
Expression of protein kinase C (PKC) subspecies was studied in various human leukemia-lymphoma cell lines. The PKC in most cell lines examined was resolved into two major fractions corresponding to type II (beta-sequence) and type III (alpha-sequence) PKC of the rat brain. The amounts of these two subspecies greatly varied among the cell lines. Type I PKC (gamma-sequence) was expressed in none of the cell lines tested, but PKCs with undefined structures were frequently detected. The differential co-expression of several PKC subspecies is presumably related to the state of cell differentiation.  相似文献   

5.
It has been shown that tumor-promoting phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulates the proliferation of normal human melanocytes, whereas it inhibits the growth of human melanoma cell lines. The expression of protein kinase C (PKC) subspecies, the major intracellular receptors for TPA, was examined in normal melanocytes and the four melanoma cell lines HM3KO, MeWo, HMV-1, and G361. PKC was partially purified and then separated into subspecies by column chromatography on Mono Q and hydroxyapatite successively, and finally subjected to immunoblot analysis using antibodies specific for the PKC subspecies. Of the PKC subspecies examined, δ-, ϵ-, and ζ-PKC were detected in both normal melanocytes and the four melanoma cell lines. In contrast, both α-PKC and β-PKC were expressed in normal melanocytes, whereas either α-PKC or β-PKC was detected in melanoma cells. Specifically, HM3KO, MeWo, and HMV-1 cells were shown to contain α-PKC but not β-PKC, while G361 cells expressed β-PKC but not α-PKC. The growth of these melanoma cells was suppressed by TPA treatment, and the growth of the G361 cells lacking α-PKC was inhibited more efficiently than the other melanoma cell lines which lacked β-PKC. It was further shown that β-PKC was not detected in freshly isolated human primary or metastatic melanoma tissues. These results suggest that the expression of α-PKC or β-PKC may be altered during the malignant transformation of normal melanocytes and that loss of α-PKC or β-PKC may be related to the inhibitory effect of TPA on the growth of melanoma cells. © 1996 Wiley-Liss, Inc.  相似文献   

6.
7.
8.
Estrogen receptor-positive (MCF7) and -negative (BT20) human breast cancer cell lines, which are frequently used for studies on cancer chemotherapy with triphenylethylene (TPE) anti-estrogens, express at least three protein kinase C subspecies. Two of them are identified as type II PKC having the beta-sequence and type III PKC having the alpha-sequence. The other one shows typical characteristics of PKC which responds to Ca2+, phosphatidylserine and diacylglycerol, but shows kinetic properties subtly different from the previously known PKC subspecies. Immunoblot analysis has shown that this enzyme does not correspond to any of the well defined subspecies with known sequence structures. All of these PKC subspecies are similarly susceptible to the TPE antiestrogens.  相似文献   

9.
Modulation of CD5 expression by TPA was investigated on T-leukemic cell lines corresponding to different stages of ontogeny. These CD5 changes have been analyzed simultaneously with modifications of cell growth, cell cycle, cell surface phenotype, and PKC content. CD5 expression was found 6- to 17-fold increased by TPA in a dose-dependent manner on phenotypically mature T-cells (Jurkat, JM, and T-CLL) while T-cells from earlier stages of differentiation (CEM III, CEM 95, and CEM 44) were found unresponsive. CD5 upregulation on TPA-sensitive JM cells appears correlated with inhibition of cell growth, blockage in G1 phase, and phenotypic maturation (downregulation of CD7 and CD1 antigens) and seemed to be related to PKC activation since DiC8 (a PKC activator) mimicked this TPA effect and H7 (a PKC inhibitor) partially reduced it. On the other hand, on CEM III cells TPA induced no modulation of CD5 antigen, a less dramatic effect on cell growth and cell cycle, but a CD7 downregulation. TPA appeared fully effective in binding and translocating PKC in both CEM III and JM cells, although the PKC activity level was three times higher in the latter. Finally, our study suggests that CD5 expression is at least partially under control of PKC in phenotypically mature neoplastic T-cells while PKC could not be directly involved in the regulation of CD5 antigen in leukemic cells arrested at earlier stages of differentiation.  相似文献   

10.
The tumor promotor 12-O-tetradecanoylphorbol-13-acetate (TPA) has diverse effects on lymphoid cell function. Two of the early effects were the induction of early activation antigen EA1 and the down-regulation of certain T cell differentiation antigens (CD3, CD4, CD7). The mechanisms of these TPA effects were investigated. It was confirmed that EA1 expression was dependent on protein kinase C (PKC) activation. Synthetic diacylglycerols were capable of inducing EA1 expression. In addition, inhibition of PKC by the kinase inhibitor, H7, led to the inhibition of EA1 expression induced by TPA and synthetic diacylglycerols. In contrast, down-regulation of T cell differentiation antigens by TPA was not dependent on PKC activation. Synthetic diacylglycerols did not induce down-regulation of T cell antigens and H7 had no effect on the down-regulation of T cell antigens induced by TPA. These data would suggest that TPA exerted its effects on T cell function by mechanisms in addition to the activation of PKC alone. One possible mechanism would be the activation of the calmodulin-dependent pathway(s) since its inhibition resulted in the reversal of TPA-induced down-regulation of the T cell differentiation antigens.  相似文献   

11.
Since insulin effects on glucose transport persist in phorbol ester "desensitized" or "down-regulated" BC3H-1 myocytes, we reexamined the evidence for protein kinase C (PKC) depletion. After 24 hrs of 5 microM 12-0-tetradecanoyl phorbol-13-acetate (TPA) treatment, PKC-directed histone phosphorylation and acute TPA effects on glucose transport were lost, but PKC-dependent vinculin phosphorylation was still evident. Hydroxylapatite (HAP) chromatography revealed loss of a type III, but not a type II, PKC-dependent vinculin phosphorylation. Immunoblots of cytosolic preparations of PKC-"depleted" myocytes confirmed the retention of PKC. Our findings indicate that TPA "down-regulated" BC3H-1 myocytes contain immunoreactive and functionally active PKC. The latter may explain the continued effectiveness of both insulin and diacylglycerol (DiC8) for stimulating glucose transport in "down-regulated" cells.  相似文献   

12.
The results of several recent studies have indicated that protein kinase C (PKC) may be involved in the prolactin (PRL) stimulation of mitogenesis in the Nb2 node lymphoma cell line. The PKC activator 12-O-tetradeconylphorbol-13-acetate (TPA) at certain concentrations has been shown to potentiate the mitogenic effect of PRL, whereas at higher concentrations, TPA inhibits the PRL response. Several inhibitors of PKC have also been shown to impair the PRL stimulation of metabolic process in the Nb2 cells. These studies provide further evidence for the likely involvement of PKC in the PRL stimulation of mitogenesis in the Nb2 cells. A transient, time-dependent accumulation of PKC in the particulate fraction of the Nb2 cells is observed in response to PRL. TPA is also shown to elicit a similar effect, albeit at a much earlier time and with a greater magnitude. On long-term exposure (3 days), high concentrations of TPA down-regulate the PKC enzyme; this down-regulation likely accounts for the inhibitory effect of high concentrations of TPA on the PRL stimulation of cell division. In further studies, the PKC inhibitors H-7 and gossypol were shown to inhibit the PRL stimulation of cell division in a concentration-dependent fashion.  相似文献   

13.
The heterogeneity of protein kinase C in various rat tissues   总被引:21,自引:0,他引:21  
Expression of multiple subspecies of protein kinase C (PKC) was studied in various rat tissues. Three types of the enzyme designated type I, II, and III were analyzed, which have the structures of gamma-, beta- (beta I- and beta II-), and alpha-sequence, respectively. Type I enzyme was found only in the central nervous tissue, whereas type III enzyme appeared to be commonly present in various tissues such as liver, spleen, lung, testis, heart, and kidney. Type II enzyme was also found in these tissues. However, immunoblot and biochemical analysis indicated that type II enzyme of lung and heart was distinct from that of other tissues. The tissue-specific expression of PKC suggests that each subspecies of this enzyme has a defined function in processing and modulating tissue responses to external stimuli.  相似文献   

14.
15.
12-O-Tetradecanoylphorbol-13-acetate (TPA), a tumor-promoting phorbol ester, induced the proliferation of connective tissue-type mast cells (CTMC) synergistically with IL-3 in a methylcellulose culture, as well as with IL-4. The culture of single CTMC and the serum-free culture of CTMC fractionated by Percoll density gradient centrifugation showed that this synergistic action of IL-3 and TPA required no effects of accessory cells or other humoral factors. Although the populations of CTMC acted on by TPA and IL-4 seemed to be close to each other, the velocity of colony growth induced by the simultaneous stimulation of the combination of TPA and IL-4 was faster than that induced by either TPA or IL-4 in the presence of IL-3. In addition, the addition of anti-IL-4 antibody did not neutralize the effect of TPA on the proliferation of CTMC. These results suggest that TPA and IL-4 act on the proliferation of CTMC synergistically with IL-3 via a different pathway. Beside TPA, other phorbol derivatives capable of activating protein kinase C (PKC) induced the proliferation of CTMC synergistically with IL-3, but phorbol derivatives which were unable to activate PKC did not. These results indicate that the activation of PKC is involved in the process of TPA action on the proliferation of CTMC. Furthermore, the facts that 1-oleoyl-2-acetylglycerol, which activated membrane PKC transiently, and staurosporine, which has been reported to inhibit PKC, did not induce the proliferation of CTMC in the presence of IL-3 and that the effect of TPA was exhibited by the sustained stimulation suggest that the action of TPA on the proliferation of CTMC requires at least two steps. The first one is the primary activation of membrane PKC and the second one is the disappearance of PKC from the cells, "down-regulation."  相似文献   

16.
A protein kinase C alpha (PKC alpha) cDNA confers increased phorbol ester binding activity to intact cells when transiently expressed in COS cells or expressed stably in transfected rat 3Y1 fibroblasts. A point mutant (PKC alpha K----R) of PKC alpha, where Lys368 at the putative ATP-binding site is replaced with Arg, confers enhanced phorbol ester binding activity to both transiently and stably expressed COS and 3Y1 cells, respectively. Like endogenous and exogenously expressed wild type PKC alpha, the mutant PKC alpha K----R is translocated from the cytosol to the particulate fraction when cells are treated with a phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). On the other hand, the mutant PKC alpha K----R is not degraded when cells are treated with TPA, making a clear contrast to wild type PKC alpha; i.e. the mutant is resistant to TPA-mediated down-regulation. The mutant lacks kinase activity as expected, as judged by autophosphorylation and by a kinase assay using a peptide substrate, although the phorbol ester binding activity remains intact. These results suggest a link between the kinase activity of PKC alpha and the sensitivity to TPA-mediated proteolytic degradation. We propose that autophosphorylation of PKC alpha is a prerequisite for proteolytic cleavage associated with the down-regulation of PKC alpha.  相似文献   

17.
Y Shiraishi 《The EMBO journal》1985,4(10):2553-2560
The effects of the carcinogens (4NQO, 4-nitroquinoline-N-oxide; MNNG, N-methyl-N'-nitro-N-nitrosoguanidine; AFLG1, aflatoxin G1; AFLB1, aflatoxin B1; BNU, butylnitrosourea; MNU, methylnitrosourea) and the tumor promoter (TPA, 12-O-tetradecanoylphorbol-13-acetate) on sister chromatid exchanges (SCE), chromosome aberrations and colony formation (CF) were examined in three types of Bloom syndrome (BS) B-lymphoblastoid cell lines (B-LCLs); type I with normal SCE and normal karyotype; type II with high SCE and normal karyotypes; type III with high SCE and abnormal karyotypes. BS type I cells had the same SCE and CF response as normal cells to these carcinogens and TPA. In BS type II and III cells treated with carcinogens the SCE frequency increased to 140/cell from a baseline of 70/cell versus an increase of only 10/cell in normal cells. Colony formation occurred at the concentrations that caused the highest SCE. TPA caused a significant SCE increase and highly enhanced CF with dose dependency only in type III cells, suggesting that type III cells may be already in a pre-malignant state; type II cells appear to be one step behind those of type III in the process of becoming malignant. BS type II and III cells may be usable to establish a sensitive system to detect SCE-inducing agents.  相似文献   

18.
The expression of protein kinase C (PKC) subspecies in synaptosomes prepared from a number of adult brain regions was compared. Cerebral cortical and thalamic/striatal synaptosomes were found to express three peaks of enzyme activity upon hydroxyapatite chromatography, corresponding to the type I(gamma), type II(beta), and type III(alpha) subspecies. Synaptosomes prepared from either the hippocampus or the cerebellar cortex, however, contained only two major peaks, corresponding to the alpha- and beta-subspecies, with barely detectable levels of the gamma-subspecies, even though these tissue areas were enriched in the latter enzyme. When the ontogenic pattern of hippocampal synaptosomal PKC subspecies was examined, it was found that at postnatal day 7, significant quantities of the gamma-subspecies were present and that this subspecies reached its peak levels at around postnatal day 14, before steadily declining to its adult level. Similar changes were observed also for the gamma-subspecies in cerebellar cortex synaptosomes. The dynamic changes in the synaptosomal PKC subspecies take place at a critical period in the development of the rat brain, concomitant with an active period of synaptogenesis, suggesting that it may play a role in synaptogenesis.  相似文献   

19.
M Mitsuhashi  D G Payan 《Life sciences》1988,43(18):1433-1440
The present study was undertaken in order to examine the effect of protein kinase C (PKC) on histamine H1 receptors (H1R) present on the smooth muscle cell line, DDT1MF-2. [3H]-pyrilamine binding revealed that specific [3H]-pyrilamine binding sites were reduced by pretreatment with 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, but not the Kd. The TPA analogue, 4 alpha phorbol 12,13-didecanoate, which does not activate PKC, failed to induce down-regulation of H1R. TPA-induced down-regulation of H1R was inhibited by pretreatment with 1-(5-Isoquinilinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), a PKC inhibitor, in a dose dependent manner. The H-7 analogue, H-8, which is a less potent inhibitor of PKC, but a potent inhibitor of cyclic nucleotide dependent protein kinase, had no effect on H1R. Moreover, treatment with TPA inhibited histamine-induced increases in [Ca2+]i in cells loaded with the fluorescent indicator, indo-1. These data suggest that H1R in DDT1MF-2 cells are functionally regulated by PKC.  相似文献   

20.
The possibility that Sertoli cell responses to testosterone are modulated by the calcium/phospholipid-dependent protein kinase (protein kinase C; PKC) was examined in rat Sertoli cells in culture. Both soluble and particulate cell fractions showed low constitutive phosphotransferase activity. Incubation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA; 10(-7) M) was associated with a transient induction in both cell fractions of calcium/phosphatidylserine-dependent PKC activity, which was elevated from 15 min to 1 h. Consistent with this, mRNAs for the calcium/phospholipid-dependent isomeric forms of PKC (alpha, beta, and gamma) were detected. The expression levels of mRNAs for PKCalpha and PKCbeta were also up-regulated (2.5- to 3-fold) by TPA (10(-7) M), but these effects were much slower (peaking after 12 h) than those on phosphotransferase activity. In the presence of TPA (10(-7) M), expression of androgen receptor (AR) mRNA showed a transient time-dependent down-regulation ( approximately 70%), in which the nadir was reached after 6 h and baseline expression was again obtained after 12 h. The regulatory effect of PKC activation on AR mRNA was confirmed by the absence of response to a biologically inactive phorbol ester. A concentration-dependent decrease (half-maximal effect at approximately 10(-8) M TPA) of AR mRNA was also observed. These data suggest that Sertoli cell responses to testosterone may be inhibited by a transiently active PKC with a wide intracellular distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号