首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presenilin, the catalytic component of the gamma-secretase complex, type IV prepilin peptidases, and signal peptide peptidase (SPP) are the founding members of the family of intramembrane-cleaving GXGD aspartyl proteases. SPP-like (SPPL) proteases, such as SPPL2a, SPPL2b, SPPL2c, and SPPL3, also belong to the GXGD family. In contrast to gamma-secretase, for which numerous substrates have been identified, very few in vivo substrates are known for SPP and SPPLs. Here we demonstrate that Bri2 (Itm2b), a type II-oriented transmembrane protein associated with familial British and Danish dementia, undergoes regulated intramembrane proteolysis. In addition to the previously described ectodomain processing by furin and related proteases, we now describe that the Bri2 protein, similar to gamma-secretase substrates, undergoes an additional cleavage by ADAM10 in its ectodomain. This cleavage releases a soluble variant of Bri2, the BRICHOS domain, which is secreted into the extracellular space. Upon this shedding event, a membrane-bound Bri2 N-terminal fragment remains, which undergoes intramembrane proteolysis to produce an intracellular domain as well as a secreted low molecular weight C-terminal peptide. By expressing all known SPP/SPPL family members as well as their loss of function variants, we demonstrate that selectively SPPL2a and SPPL2b mediate the intramembrane cleavage, whereas neither SPP nor SPPL3 is capable of processing the Bri2 N-terminal fragment.  相似文献   

2.
Numerous Golgi-resident enzymes implicated in glycosylation are regulated by the conserved intramembrane protease SPPL3. SPPL3-catalyzed endoproteolysis separates Golgi enzymes from their membrane anchors, enabling subsequent release from the Golgi and secretion. Experimentally altered SPPL3 expression changes glycosylation patterns, yet the regulation of SPPL3-mediated Golgi enzyme cleavage is not understood and conflicting results regarding the subcellular localization of SPPL3 have been reported. Here, we used precise genome editing to generate isogenic cell lines expressing N- or C-terminally tagged SPPL3 from its endogenous locus. Using these cells, we conducted co-localization analyses of tagged endogenous SPPL3 and Golgi markers under steady-state conditions and upon treatment with drugs disrupting Golgi organization. Our data demonstrate that endogenous SPPL3 is Golgi-resident and found predominantly in the mid-Golgi. We find that endogenous SPPL3 co-localizes with its substrates but similarly with non-substrate type II proteins, demonstrating that in addition to co-localization in the Golgi other substrate-intrinsic properties govern SPPL3-mediated intramembrane proteolysis. Given the prevalence of SPPL3-mediated cleavage among Golgi-resident proteins our results have important implications for the regulation of SPPL3 and its role in the organization of the Golgi glycosylation machinery.  相似文献   

3.
Homologues of signal peptide peptidase (SPPLs) are putative aspartic proteases that may catalyse regulated intramembrane proteolysis of type II membrane-anchored signalling factors. Here, we show that four human SPPLs are each sorted to a different compartment of the secretory pathway. We demonstrate that SPPL2a and SPPL2b, which are sorted to endosomes and the plasma membrane, respectively, are functional proteases that catalyse intramembrane cleavage of tumour necrosis factor alpha (TNFalpha). The two proteases promoted the release of the TNFalpha intracellular domain, which in turn triggers expression of the pro-inflammatory cytokine interleukin-12 by activated human dendritic cells. Our study reveals a critical function for SPPL2a and SPPL2b in the regulation of innate and adaptive immunity.  相似文献   

4.
Stimulation of mammalian cells frequently initiates phospholipase D-catalyzed hydrolysis of phosphatidylcholine in the plasma membrane to yield phosphatidic acid (PA) a novel lipid messenger. PA plays a regulatory role in important cellular processes such as secretion, cellular shape change, and movement. A number of studies have highlighted that PLD-based signaling also plays a pro-mitogenic and pro-survival role in cells and therefore anti-apoptotic. We show that human PLD1b and PLD2a contain functional caspase 3 cleavage sites and identify the critical aspartate residues within PLD1b that affect its activation by phorbol esters and attenuate phosphatidylcholine hydrolysis during apoptosis.  相似文献   

5.
Presenilin (PS1 and PS2) holoproteins are transiently incorporated into low molecular weight (MW) complexes. During subsequent incorporation into a higher MW complex, they undergo endoproteolysis to generate stable N- and C-terminal fragments. Mutation of either of two conserved aspartate residues in transmembrane domains inhibits both presenilin-endoproteolysis and the proteolytic processing of beta-amyloid precursor protein and Notch. We show that although PS1/PS2 endoproteolysis is not required for inclusion into the higher MW N- and C-terminal fragment-containing complex, aspartate mutant holoprotein presenilins are not incorporated into the high MW complexes. Aspartate mutant presenilin holoproteins also preclude entry of endogenous wild type PS1/PS2 into the high MW complexes but do not affect the incorporation of wild type holoproteins into lower MW holoprotein complexes. These data suggest that the loss of function effects of the aspartate mutants result in altered PS complex maturation and argue that the functional presenilin moieties are contained in the high molecular weight complexes.  相似文献   

6.
7.
Presenilin (PS, PS1/PS2) complexes are known to be responsible for the intramembranous gamma-secretase cleavage of the beta-amyloid precursor protein and signaling receptor Notch. PS holoprotein undergoes endoproteolysis by an unknown enzymatic activity to generate NH(2)- and COOH-terminal fragments, a process that is required for the formation of the active and stable PS/-gamma-secretase complex. Biochemical and genetic studies have recently identified nicastrin, APH-1, and PEN-2 as essential cofactors that physically interact with PS1 and are necessary for the gamma-secretase activity. However, their precise function in regulating the PS complex and gamma-secretase activity remains unknown. Here, we demonstrate that endogenous PEN-2 preferentially interacts with PS1 holoprotein. Down-regulation of PEN-2 expression by small interfering RNA (siRNA) abolishes the endoproteolysis of PS1, whereas overexpression of PEN-2 promotes the production of PS1 fragments, indicating a critical role for PEN-2 in PS1 endoproteolysis. Interestingly, accumulation of full-length PS1 resulting from down-regulation of PEN-2 is alleviated by additional siRNA down-regulation of APH-1. Furthermore, overexpression of APH-1 facilitates PEN-2-mediated PS1 proteolysis, resulting in a significant increase in PS1 fragments. Our data reveal a direct role of PEN-2 in proteolytic cleavage of PS1 and a regulatory function of APH-1, in coordination with PEN-2, in the biogenesis of the PS1 complex.  相似文献   

8.
Presenilin 1, a causative gene product of familial Alzheimer disease, has been reported to be localized mainly in the endoplasmic reticulum and Golgi membranes. However, endogenous Presenilin 1 also localizes at the plasma membrane as a biologically active molecule. Presenilin 1 interacts with N-cadherin/beta-catenin to form a trimeric complex at the synaptic site through its loop domain, whose serine residues (serine 353 and 357) can be phosphorylated by glycogen synthase kinase 3beta. Here, we demonstrate that cell-surface expression of Presenilin 1/gamma-secretase is enhanced by N-cadherin-based cell-cell contact. Physical interaction between Presenilin 1 and N-cadherin/beta-catenin plays an important role in this process. Glycogen synthase kinase 3beta-mediated phosphorylation of Presenilin 1 reduces its binding to N-cadherin, thereby down-regulating its cell-surface expression. Moreover, reduction of the Presenilin 1.N-cadherin.beta-catenin complex formation leads to an impaired activation of contact-mediated phosphatidylinositol 3-kinase/Akt cell survival signaling. Furthermore, phosphorylation of Presenilin 1 hinders epsilon-cleavage of N-cadherin, whereas epsilon-cleavage of APP remained unchanged. This is the first report that clarifies the regulatory mechanism of Presenilin 1/gamma-secretase with respect to its subcellular distribution and its differential substrate cleavage. Because the cleavage of various membrane proteins by Presenilin 1/gamma-cleavage is involved in cellular signaling, glycogen synthase kinase 3beta-mediated phosphorylation of Presenilin 1 should be deeply associated with signaling functions. Our findings indicate that the abnormal activation of glycogen synthase kinase 3beta can reduce neuronal viability and synaptic plasticity via modulating Presenilin 1/N-cadherin/beta-catenin interaction and thus have important implications in the pathophysiology of Alzheimer disease.  相似文献   

9.
The Drosophila protein Groucho is involved in the regulation of cell-determination events during insect neurogenesis and segmentation. A group of mammalian proteins, referred to as transducin-like Enhancer of split (TLE) 1 through 4, share with Groucho identical structures and molecular properties. The aim was to determine whether individual TLE proteins participate in the regulation of cell determination in mammals like their Drosophila counterpart. It is here reported that TLE family members are expressed in combinatorial ways during the in vitro differentiation of mouse P19 embryonic carcinoma cells (a model for neural determination) and rat CFK2 cells (a model for chondrocytic determination). TLE1 is up-regulated and TLE2 and TLE4 are down-regulated to different extents during early stages of differentiation. In contrast, later stages correlate with up-regulation of TLE2 and TLE4, and decreased expression of TLE1. Individual TLE proteins are also expressed in combinatorial as well as complementary patterns during the development of the cerebral cortex and spinal cord of mouse embryos. In particular, TLE1 is robustly expressed in both neural progenitor cells and postmitotic neurons of the outer layers of the cortical plate, whereas TLE4 expression marks preferentially postmitotic neurons of the inner layers. Taken together, these results strongly suggest non-redundant roles for individual TLE proteins during both cell-determination and cell-differentiation events.  相似文献   

10.
Gamma-secretase and signal peptide peptidase (SPP) are unusual GxGD aspartyl proteases, which mediate intramembrane proteolysis. In addition to SPP, a family of SPP-like proteins (SPPLs) of unknown function has been identified. We demonstrate that SPPL2b utilizes multiple intramembrane cleavages to liberate the intracellular domain of tumor necrosis factor alpha (TNFalpha) into the cytosol and the carboxy-terminal counterpart into the extracellular space. These findings suggest common principles for regulated intramembrane proteolysis by GxGD aspartyl proteases.  相似文献   

11.
12.
U Leimer  K Lun  H Romig  J Walter  J Grünberg  M Brand  C Haass 《Biochemistry》1999,38(41):13602-13609
Alzheimer's disease (AD) is characterized by the invariable accumulation of senile plaques composed of amyloid beta-peptide (Abeta). Mutations in three genes are known to cause familial Alzheimer's disease (FAD). The mutations occur in the genes encoding the beta-amyloid precursor protein (betaAPP) and presenilin (PS1) and PS2 and cause the increased secretion of the pathologically relevant 42 amino acid Abeta42. We have now cloned the zebrafish (Danio rerio) PS1 homologue (zf-PS1) to study its function in amyloidogenesis and to prove the critical requirement of an unusual aspartate residue within the seventh putative transmembrane domain. In situ hybridization and reverse PCR reveal that zf-PS1 is maternally inherited and ubiquitously expressed during embryogenesis, suggesting an essential housekeeping function. zf-PS1 is proteolytically processed to produce a C-terminal fragment (CTF) of approximately 24 kDa similar to human PS proteins. Surprisingly, wt zf-PS1 promotes aberrant Abeta42 secretion like FAD associated human PS1 mutations. The unexpected pathologic activity of wt zf-PS1 may be due to several amino acid exchanges at positions where FAD-associated mutations have been observed. The amyloidogenic function of zf-PS1 depends on the conserved aspartate residue 374 within the seventh putative transmembrane domain. Mutagenizing this critical aspartate residue abolishes endoproteolysis of zf-PS1 and inhibits Abeta secretion in human cells. Inhibition of Abeta secretion is accompanied by the accumulation of C-terminal fragments of betaAPP, suggesting a defect in gamma-secretase activity. These data provide further evidence that PS proteins are directly involved in the proteolytic cleavage of betaAPP and demonstrate that this function is evolutionarily conserved.  相似文献   

13.
The Bcl-2-family of proteins localize to intracellular membranes via a C-terminal hydrophobic membrane anchor (MA) domain, to exert their antiapoptotic or proapoptotic functions. In Drosophila, both Bcl-2 family members, DEBCL and BUFFY, contain an MA. In DEBCL the MA is necessary for the localization of protein to mitochondria and for its proapoptotic activity. BUFFY is highly similar to DEBCL but its localization and function are not clearly defined. Here, we report on comparative analysis of BUFFY and DEBCL to decipher the molecular basis for their subcellular localization. We show that these two proteins localize to distinct intracellular membranes, DEBCL predominantly to mitochondria and BUFFY to endoplasmic reticula (ER). Our results suggest that the MA-flanking residues in DEBCL, homologous to Bcl-X(L), are required for the targeting of DEBCL to mitochondria. The C-terminal positively charged residues present in DEBCL are absent in BUFFY, which allows for its localization to ER. The MA in both proteins is required for the correct targeting and proapoptotic activities of these proteins. Interestingly, a functional nuclear localization signal was identified in the N-terminal region of BUFFY and in the absence of the MA, BUFFY accumulated in the nucleus. The functional implications of these findings are discussed.  相似文献   

14.

Background

Extracellular metolloproteases have been implied in different process such as cell death, differentiation and migration. Membrane-bound metalloproteases of the ADAM family shed the extracellular domain of many cytokines and receptor controlling auto and para/juxtacrine cell signaling in different tissues. ADAM17 and ADAM10 are two members of this family surface metalloproteases involved in germ cell apoptosis during the first wave of spermatogenesis in the rat, but they have other signaling functions in somatic tissues.

Results

In an attempt to further study these two enzymes, we describe the presence and localization in adult male rats. Results showed that both enzymes are detected in germ and Sertoli cells during all the stages of spermatogenesis. Interestingly their protein levels and cell surface localization in adult rats were stage-specific, suggesting activation of these enzymes at particular events of rat spermatogenesis.

Conclusions

Therefore, these results show that ADAM10 and ADAM17 protein levels and subcellular (cell surface) localization are regulated during rat spermatogenesis.  相似文献   

15.
PS1 deficiency and expression of PS1 with substitutions of two conserved transmembrane aspartate residues ("PS1 aspartate variants") leads to the reduction of Abeta peptide secretion and the accumulation of amyloid precursor protein (APP) C-terminal fragments. To define the nature of the "dominant negative" effect of the PS1 aspartate variants, we stably expressed PS1 harboring aspartate to alanine substitutions at codons 257 (D257A) or 385 (D385A), singly or in combination (D257A/D385A), in mouse neuroblastoma, N2a cells. Expression of the PS1 aspartate variants resulted in marked accumulation of intracellular and cell surface APP C-terminal fragments. While expression of the D385A PS1 variant reduced the levels of secreted Abeta peptides, we now show that neither the PS1 D257A nor D257A/D385A variants impair Abeta production. Surprisingly, the stability of both immature and mature forms of APP is dramatically elevated in cells expressing PS1 aspartate variants, commensurate with an increase in the cell surface levels of APP. These findings lead us to conclude that the stability and trafficking of APP can be profoundly modulated by coexpression of PS1 with mutations at aspartate 257 and aspartate 385.  相似文献   

16.
Human SAP 49, a subunit of the multimeric splicing factor 3b (SF3b), contains two RNA recognition motifs (RRMs) and binds another SF3b subunit called SAP 145, whose yeast homologue is CUS1. Here we show that the predicted yeast open reading frame YOR319w (HSH49) encodes an essential yeast splicing factor. Using bacterially expressed proteins, we find that yeast HSH49 binds CUS1. Mutations that alter putative RNA-binding residues of either HSH49 RRM are lethal in vivo, but do not prevent binding to CUS1 in vitro, suggesting that the predicted RNA-binding surfaces of HSH49 are not required for interaction with CUS1. In vivo interaction tests show that HSH49 and CUS1 associate primarily through the N-terminal RRM of HSH49. Recombinant HSH49 protein has a general RNA-binding activity that does not require CUS1. The parallels in structure and interaction between two SF3b subunits from yeast implies that the mechanism of SF3b action is highly conserved.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号