首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mitochondria-free membrane fraction prepared from rat myometrium accumulated 45Ca2+ in the presence of oxalic acid and ATP. The rate of transport of Ca2+ into the membranous vesicles was increased by greater than 50% in the presence of 3',5'-cyclic AMP, but not by 2',3'-cyclic AMP or 5'AMP. Membrane ATPase activity was stimulated by Mg2+; slight additional stimulation was obtained in the presence of Na+ and K+ but not in the presence of Ca+2. Despite the cyclic AMP sensitivity of membrane ATPase activity, the absence of any effect of inhibitors of Ca2+-transport suggest it has little to do with Ca2+ accumulation by the membranes. Cyclic AMP-induced increase in Ca2+-transport and membrane ATPase activity was duplicated in vivo by incubating uteri in 10(-4)M isoproterenol prior to membrane isolation. Isoproterenol has been previously shown to increase myometrial cyclic AMP levels, and changes in Ca2+-transport by cell membranes in relation to intracellular cyclic AMP levels may be the mechanism through which hormones modulate uterine contractility.  相似文献   

2.
The plasma membrane potential of hepatocytes was calculated from the distribution of 36Cl-. The potential observed under several conditions was equivalent to that previously measured using microelectrodes in perfused liver. Dibutyryl cAMP increased the membrane potential. Replacement of bicarbonate ions by morpholinosulphonate decreased the potential and reduced the effect of cAMP. The effect of both bicarbonate and cAMP was abolished by ouabain. Both bicarbonate and cAMP stimulated the activity of the (Na+ + K+)-ATPase as measured by ouabain-inhibitable 86Rb+ uptake. It is suggested that the stimulation of alanine transport by these effectors is mediated by an increase in cell membrane potential via stimulation of the (Na+ + K+)-ATPase.  相似文献   

3.
(1) Cyclic AMP stimulated alanine transport in isolated hepatocytes by approx. 30%, in the range 0.2-5 mM alanine. (2) Alanine utilisation was also stimulated by cyclic AMP. The rates of transport and metabolism were comparable, both in the presence and absence of cyclic AMP. (3) At concentrations of alanine above 1 mM, addition of ouabain, or the reduction of the Na+ concentration, could partially inhibit transport without affecting the rate of metabolism. (4) At these alanine concentrations, stimulation of metabolism by cyclic AMP was associated with a decrease in the intracellular to extracellular alanine concentration ratio. (5) At alanine concentrations below 0.5 mM, or at higher concentrations when transport was inhibited by reducing the Na+ concentration, cyclic AMP caused an increase in the alanine concentration ratio. (6) It is concluded that at concentrations of alanine above 1 mM, alanine transport is not rate-limiting for alanine metabolism in hepatocytes from fed rats, and cyclic AMP stimulates alanine metabolism primarily by an effect on an intracellular reaction. At physiological concentrations of alanine, however, alanine transport appears to be rate-limiting in agreement with a previous report.  相似文献   

4.
Energy coupling of L-glutamate transport in brain synaptic vesicles has been studied. ATP-dependent acidification of the bovine brain synaptic vesicles was shown to require CI-, to be accelerated by valinomycin and to be abolished by ammonium sulfate, nigericin or CCCP plus valinomycin, and K+. On the other hand, ATP-driven formation of a membrane potential (positive inside) was found to be stimulated by ammonium sulfate, not to be affected by nigericin and to be abolished by CCCP plus valinomycin and K+. Like formation of a membrane potential, ATP-dependent L-[3H]glutamate uptake into vesicles was stimulated by ammonium sulfate, not affected by nigericin and abolished by CCCP plus valinomycin and K+. The L-[3H]glutamate uptake differed in specificity from the transport system in synaptic plasma membranes. Both ATP-dependent H+ pump activity and L-glutamate uptake were inhibited by bafilomycin and cold treatment (common properties of vacuolar H(+)-ATPase). ATP-dependent acidification in the presence of L-glutamate was also observed, suggesting that L-glutamate uptake lowered the membrane potential to drive further entry of H+. These results were consistent with the notion that the vacuolar H(+)-ATPase of synpatic vesicles formed a membrane potential to drive L-glutamate uptake. ATPase activity of the vesicles was not affected by the addition of Cl-, glutamate or nigericin, indicating that an electrochemical H+ gradient had no effect on the ATPase activity.  相似文献   

5.
Potassium transport coupled to ATP hydrolysis has been reconstituted in proteoliposomes using a highly purified plasma membrane Mg2+-dependent ATPase of the yeast Schizosaccharomyces pombe. The ATPase activity in the incorporated enzyme was strongly stimulated (2.2-fold) by the H+-conducting agent carbonyl cyanide m-chlorophenylhydrazone (CCCP). The H+/K+ exchanger nigericin (in the presence of K+) stimulated 1.6-fold the ATPase activity. When both ionophores were added together, the stimulation was increased up to 2.7-fold. When a potassium concentration gradient (high K+ in) was applied to the proteoliposome membrane, a significant drop in the CCCP-stimulated ATPase activity was observed. Inversion of the K+ concentration gradient (high K+ out) did not decrease the stimulation by CCCP. High Na+ in also decreased the stimulation induced by CCCP in the absence but not in the presence of external K+. However, high Li+ in had no effect. Direct potassium efflux from the proteolyposomes was detected upon addition of MgATP using a selective K+ electrode. The ATP-dependent potassium efflux was abolished in CCCP and/or nigericin-pretreated proteoliposomes. However, during steady state ATP hydrolysis, a transient and small K+ efflux was observed upon addition of a CCCP pulse. I propose that the plasma membrane Mg2+-dependent ATPase in yeast cells not only carries out electrogenic H+ ejection but also drives the uptake of potassium via a voltage-sensitive gate which is closed in the absence and open in the presence of the membrane potential.  相似文献   

6.
A Na+/K+/Cl- cotransport pathway has been examined in the HT29 human colonic adenocarcinoma cell line using 86Rb as the K congener. Ouabain-resistant bumetanide-sensitive (OR-BS) K+ influx in attached HT29 cells was 17.9 +/- 0.9 nmol/min per mg protein at 25 degrees C. The identity of this pathway as a Na+/K+/Cl- cotransporter has been deduced from the following findings: (a) OR-BS K+ influx ceased if the external Cl- (Cl-o) was replaced by NO3- or the external Na+ (Na+o) by choline; (b) neither OR-BS 24Na+ nor 36Cl- influx was detectable in the absence of external K+ (K+o); and (c) concomitant measurements of 86Rb+, 22Na+, and 36Cl- influx indicated that the stoichiometry of the cotransport system approached a ratio of 1N+:1K+:2Cl-. In addition, OR-BS K+ influx was exquisitely sensitive to cellular ATP levels. Depletion of the normal ATP content of 35-40 nmol/mg protein to 10-15 nmol/mg protein, a concentration at which the ouabain-sensitive K+ influx was unaffected, completely abolished K+ cotransport. OR-BS K+ influx was slightly reduced by the divalent cations Ca2+, Ba2+, Mg2+ and Mn2+. Although changes in cell volume, whether shrinking or swelling, did not influence OR-BS K+ influx, ouabain-sensitive K+ influx was activated by cell swelling. As in T84 cells, we found that the OR-BS K+ influx in HT29 cells was stimulated by exogenous cyclic AMP analogues and by augmented cyclic AMP content in response to vasoactive intestinal peptide, forskolin, norepinephrine and forskolin or prostaglandin E1.  相似文献   

7.
Selectively permeable membrane vesicles isolated from Simian virus 40-transformed mouse fibroblasts catalyzed Na+ gradient-coupled active transport of several neutral amino acids dissociated from intracellular metabolism. Na+-stimulated alanine transport activity accompanied plasma membrane material during centrifugation in discontinuous dextran 110 gradients. Carrier-mediated transport into the vesicle was demonstrated. When Na+ was equilibrated across the membrane, countertransport stimulation of L-[3H]alanine uptake occurred in the presence of accumulated unlabeled L-alanine, 2-aminoisobutyric acid, or L-methionine. Competitive interactions among neutral amino acids, pH profiles, and apparent Km values for Na+ gradient-stimulated transport into vesicles were similar to those previously described for amino acid uptake in Ehrlich ascites cells, which suggests that the transport activity assayed in vesicles is a component of the corresponding cellular uptake process. Both the initial rate and quasi-steady state of uptake were stimulated as a function of a Na+ gradient (external Na+ greater than internal Na+) applied artificially across the membrane and were independent of endogenous (Na+ + K+)-ATPase activity. Stimulation by Na+ was decreased when the Na+ gradient was dissipated by monensin, gramicidin D or Na+ preincubation. Na+ decreased the apparent Km for alanine, 2-aminoisobutyric acid, and glutamine transport. Na+ gradient-stimulated amino acid transport was electrogenic, stimulated by conditions expected to generate an interior-negative membrane potential, such as the presence of the permeant anions NO3- and SCN-. Na+-stimulated L-alanine transport was also stimulated by an electrogenic potassium diffusion potential (K+ internal greater than K+ external) catalyzed by valinomycin; this stimulation was blocked by nigericin. These observations provide support for a mechanism of active neutral amino acid transport via the "A system" of the plasma membrane in which both a Na+ gradient and membrane potential contribute to the total driving force.  相似文献   

8.
Crystallization of alpha 1-acid glycoprotein   总被引:1,自引:0,他引:1  
A possible link between cellular cyclic AMP content and Na+K+ATPase activity was investigated in homogenates of rat kidney. Enzyme kinetics of Mg2+ and Na+K+ATPase were run in the presence of cyclic AMP, dibutyryl cAMP and compounds expected to elevate cyclic AMP levels such as forskolin, a potent adenylate cyclase activator, IBMX, an inhibitor of phosphodiesterases, and the beta-agonist isoproterenol. Medullary Na+K+ATPase is strongly inhibited by cyclic AMP whereas cortical Na+K+ATPase was stimulated in the same conditions. The correlation between ATPase activity and cellular cyclic AMP content supports the concept of a possible regulation of the enzyme by cyclic AMP.  相似文献   

9.
The effect of Ca+2 on the transport and intracellular distribution of Na+ and K+ in Ehrlich ascites tumor cells was investigated in an effort to establish the mechanism of Ca+2-induced hyperpolarization of the cell membrane. Inclusion of Ca+2 (2 mM) in the incubation medium leads to reduced cytoplasmic concentrations of Na+, K+ and Cl- in steady cells. In cells inhibited by ouabain, Ca+2 causes a 41% decrease in the rate of net K+ loss, but is without effect on the rate of net Na+ accumulation. Net K+ flux is reduced by 50%, while net Na+ flux is unchanged in the transport-inhibited cells. The membrane potential of cells in Ca+2-free medium (-13.9 +/- 0.8 mV) is unaffected by the addition of ouabain. However, the potential of cells in Ca+2-containing medium (-23.3 +/- 1.2 mV) declines in one hour after the addition of ouabain to values comparable to those of control cells (-15.2 +/- 0.7 mV). The results of these experiments are consistent with the postulation that Ca+2 exerts two effects on Na+ and K+ transport. First, Ca+2 reduces the membrane permeability to K+ by 25%. Second, Ca+2 alters the coupling of the Na/K active transport mechanism leading to an electrogenic hyperpolarization of the membrane.  相似文献   

10.
The present study was designed to investigate Cl- transport across rat ileal basolateral membranes. Basolateral membrane vesicles were prepared by a well-validated technique. The purity of the basolateral membrane vesicles was verified by marker enzyme studies and by studies of d-glucose and calcium uptake. Cl- uptake was studied by a rapid filtration technique. Neither an outwardly directed pH gradient, nor a HCO3- gradient, or their combination could elicit any stimulation of Cl- transport when compared with no gradient. 4,4-Diisothiocyanostilbene-2,2-disulfonic acid at 5 mM concentration did not inhibit Cl- uptake under gradient condition. Similarly, the presence of the combination of outwardly directed Na+ and HCO3- gradients did not stimulate Cl- uptake compared with the combination of K+ and HCO3- gradients or no HCO3- gradient. This is in contrast to our results in the brush border membranes, where an outwardly directed pH gradient caused an increase in Cl- uptake. Cl- uptake was stimulated in the presence of combined Na+ and K+ gradient. Bumetanide at 0.1 mM concentration inhibited the initial rate of Cl- uptake in the presence of combined Na+ and K+ gradients. Kinetic studies of bumetanide-sensitive Cl- uptake showed a Vmax of 5.6 +/- 0.7 nmol/mg protein/5 sec and a Km of 30 +/- 8.7 mM. Cl- uptake was stimulated by an inside positive membrane potential induced by the ionophore valinomycin in the setting of inwardly directed K+ gradient compared with voltage clamp condition. These studies demonstrate two processes for Cl- transport across the rat ileal basolateral membrane: one is driven by an electrogenic diffusive process and the second is a bumetanide-sensitive Na+/K+/2 Cl- process. Cl- uptake is not enhanced by pH gradient, HCO3- gradient, their combination, or outwardly directed HCO3- and Na+ gradients.  相似文献   

11.
Potassium chloride is the major salt recycled in most insect secretory systems. Ion and water reabsorption occur in the rectum by active transport of Cl- and largely passive movement of K+. Both these processes are stimulated several fold by a neuropeptide hormone acting via cyclic AMP (cAMP). This Cl- transport process was investigated by using intracellular ion-sensitive microelectrodes, radiotracer flux measurements, voltage clamping, ion substitutions and inhibitors. the mucosal entry step for Cl- is energy-requiring and highly-selective, and is stimulated directly by cAMP and luminal K+. Under some experimental conditions, measured electrochemical potentials for cations across the mucosal membrane are too small to drive C;- entry by NaCl or KCl cotransport mechanisms; moreover, net 36Cl- flux is independent of the apical Na+ potential. Similarly no evidence for a HCO3- -Cl- exchange was obtained. We conclude that Cl- transport in locust gut is different from mechanisms currently proposed for vertebrate tissues.  相似文献   

12.
The mucosa that lines the airways is covered with a fluid film forming a hypophase between mucus and cell surface. To study the function of this epithelium aims at describing the mechanisms by which fluid is normally produced. Another goal to be pursued consists in looking for the origin of pathological situations, such as cystic fibrosis, in which the functioning of epithelial cell is altered. The elucidation of transport mechanisms present in the apical and in the basolateral membrane results in a conceptual model that illustrates the asymmetrical functioning of epithelial cells. Recent discoveries enlarge our understanding of membrane transport processes; in particular, a concerted, reciprocal regulation of the activity of both membranes was shown to be exerted via the intracellular composition. The tracheal epithelium absorbs Na+ and secretes Cl-. These two transports are active and electrogenic; their sum corresponds approximately to the short-circuit current measured in vitro. Na+ absorption is sensitive to amiloride from the luminal side and also to ouabain added to the serosal compartment. The process is a primary active transport, analogous to that found in amphibian epithelia or in mammalian colon. Cl- secretion is abolished by furosemide (or bumetanide), by ouabain or by Na+ suppression in the serosal incubation solution. The mechanism is a secondary active transport: Cl- influx across the basolateral membrane is coupled to Na+ (probably through Na+, K+, Cl- symport); energy is dissipated by the Na+-K+-ATPase localised in the basolateral membrane. Thus, Na+ is recirculated across that membrane by the pump activity, which maintains a favorable gradient for influx via the symport. Cl- efflux takes place by diffusion through the luminal membrane. This model applies to other epithelia in which Na+-coupled Cl- secretion was shown to take place. It is confirmed by isotopic fluxes measurements and by electrophysiologic properties of the apical and the basolateral membrane. Various agents are known to influence ion transports. In particular Cl- secretion is stimulated by substances that increase the intracellular concentration of cyclic AMP. At the membrane level, the number of active Cl- channels in the apical membrane is primarily controlled, then the basolateral membrane K+ permeability. Yet, species differences are worth to note: the trachea of the cow is barely sensitive to agents that exert a marked action on dog trachea. The tracheal epithelium is used as an experimental model for studying cystic fibrosis, a disease in which the apical membrane is almost devoid of functional Cl- channels, so that Cl- permeability is quite low.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
In renal epithelial A6 cells, aldosterone applied for 24 h increased the transepithelial Cl- secretion over 30-fold due to activation of the Na+/K+/2Cl- cotransporter and stimulated the transepithelial Na+ absorption, activity of epithelial Na+ channel (ENaC), and alpha-ENaC mRNA expression. The stimulatory action of aldosterone on the transepithelial Na+ absorption, ENaC activity, and alpha-ENaC mRNA expression was diminished by 24h-pretreatment with quercetin (an activator of Na+/K+/2Cl- cotransporter participating in Cl- entry into the cytosolic space) or 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB) (a blocker of Cl- channel participating in Cl- release from the cytosolic space), while 24h-pretreatment with bumetanide (a blocker of Na+/K+/2Cl- cotransporter) enhanced the stimulatory action of aldosterone on transepithelial Na+ absorption. On the other hand, under the basal (aldosterone-unstimulated) condition, quercetin, NPPB or bumetanide had no effect on transepithelial Na+ absorption, activity of ENaC or alpha-ENaC mRNA expression. These observations suggest that although aldosterone shows overall its stimulatory action on ENaC (transepithelial Na+ transport), aldosterone has an inhibitory action on ENaC (transepithelial Na+ transport) via activation of the Na+/K+/2Cl- cotransporter, and that modification of activity of Cl- transporter/channel participating in the transepithelial Cl- secretion influences the aldosterone-stimulated ENaC (transepithelial Na+ transport).  相似文献   

14.
Vacuoles of yeast grown in peptone medium possessed high ATPase activity (up to 1 mumol X mg protein-1 X min-1). Membrane-bound and solubilized ATPase activities were insensitive to vanadate and azide, but were inhibited by NO-3 . K+ and cyclic AMP stimulated both membrane-bound and solubilized ATPase activities. Dio-9 activated the membrane form of vacuolar ATPase 1.5-2-fold and did not affect the solubilized enzyme. Solubilized and partially purified vacuolar ATPase was reconstituted with soy-bean phospholipids by a freeze-thaw procedure. ATPase activities in native vacuoles and proteoliposomes were stimulated effectively by Dio-9, the protonophore FCCP and ionophores valinomycin and nigericin. ATP-dependent H+ transport into proteoliposomes was also shown by quenching of ACMA fluorescence. Vacuolar and partially purified ATPase preparations possessed also GTPase activity. Unlike ATPase, however, GTPase was not incorporated as a proton pump into liposomes.  相似文献   

15.
1. Na+ absorption across Aplysia gut was mediated by a Na+/K+-ATPase located in the enterocyte basolateral membrane. 2. In the absence of Na+ in the bathing medium, net Cl- absorption across Aplysia gut wall was identical to the SCC. 3. Intracellular Cl- was at a lower electrochemical potential in Aplysia enterocytes than in either the mucosal or serosal medium. 4. Cl--stimulated ATPase activity was localized in the basolateral membrane of Aplysia enterocytes. 5. ATP-dependent Cl- transport was localized in the basolateral membrane of Aplysia enterocytes. 6. In Aplysia gut primary active transport systems for both Na+ and Cl- are postulated based on the evidence presented.  相似文献   

16.
ATP-dependent Cl- uptake by membrane vesicles from the rat brain plasma membrane fractions was not affected by the addition of 40 mM of K+, Na+ or HCO3- to the assay medium. Na+ and K+ did not alter the uptake even in the presence of a K+ ionophore, valinomycin (10 microM), or a H+/K+ exchanger, nigericin (10 microM), whereas in the presence of both of these ionophores, K+, but not Na+, reduced the Cl- uptake. Inhibitors of proton pump activity, N,N'-dicyclohexylcarbodiimide (1 mM) and 5-(N,N-hexamethylene)amiloride (40 microM), however, did not affect the Cl- uptake. These findings suggest the presence of a primary Cl- transport system probably associated with passive H+ flux in the brain plasma membranes.  相似文献   

17.
Addition of either vasoactive intestinal peptide (VIP) or the Ca2+ ionophore, A23187, to confluent monolayers of the T84 epithelial cell line derived from a human colon carcinoma increased the rate of 86Rb+ or 42K+ efflux from preloaded cells. Stimulation of the rate of efflux by VIP and A23187 still occurred in the presence of ouabain and bumetanide, inhibitors of the Na+,K+-ATPase and Na+,K+,Cl- cotransport, respectively. The effect of A23187 required extracellular Ca2+, while that of VIP correlated with its known effect on cyclic AMP production. Other agents which increased cyclic AMP production or mimicked its effect also increased 86Rb+ efflux. VIP- or A23187-stimulated efflux was inhibited by 5 mM Ba2+ or 1 mM quinidine, but not by 20 mM tetraethylammonium, 4 mM 4-aminopyridine, or 1 microM apamin. Under appropriate conditions, VIP and A23187 also increased the rate of 86Rb+ or 42K+ uptake. Stimulation of the initial rate of uptake by either agent required high intracellular K+ and was not markedly affected by the imposition of transcellular pH gradients. The effect of A23187, but not VIP or dibutyryl cyclic AMP, was refractory to depletion of cellular energy stores. A23187-stimulated uptake was not significantly affected by anion substitution, however, stimulation of uptake by VIP required the presence of a permeant anion. This result may be due to the simultaneous activation of a cyclic AMP-dependent Cl- transport system. The kinetics of both VIP- and A23187-stimulated uptake and efflux were consistent with a channel-rather than a carrier-mediated K+ transport mechanism. The results also suggest that cyclic AMP and Ca2+ may activate two different kinds of K+ transport systems. Finally, both transport systems have been localized to the basolateral membrane of T84 monolayers, a result compatible with their possible regulatory role in hormone-activated electrogenic Cl- secretion.  相似文献   

18.
The isolated, short-circuited opercular epithelium of Fundulus heteroclitus, secretes Cl- by a mechanism dependent on the presence of serosal Na+ and inhibited by bumetanide and furosemide. Under serosal Na+-free conditions the active Cl- secretion is abolished. However, subsequent elevations of intracellular cyclic AMP (cAMP) levels with isoproterenol or forskolin stimulated Cl- secretion markedly. This stimulation was unaffected by SITS, DIDS, methazolamide, and HCO-3-free solutions, but was blocked by furosemide and bumetanide. Determinations of relative intracellular 36Cl- levels showed a Na+ dependence of intracellular 36Cl- in epithelia not stimulated by isoproterenol and a Na+ independence of intracellular 36Cl- in isoproterenol stimulated epithelia. In both conditions, the intracellular 36Cl- was bumetanide sensitive. The results indicate that cAMP stimulation of Cl- secretion can occur by a Na+-independent, loop diuretic-inhibitable mechanism, which may be operative even in the presence of Na+. Whether this is a separate Cl- uptake mechanism or a cAMP-induced alteration in the normal Na+-dependent mechanism could not be determined. In either instance, an alternative to the Na+ gradient as a source of energy for Cl- uptake into the cell across the basolateral membrane is required.  相似文献   

19.
In order to evaluate the influence of membrane fluidization on three apical transport systems and on a basolateral enzyme, and to analyse the mechanisms involved, we studied, in cultured rabbit proximal tubular cells, the effect of increasing concentrations of the local anesthetic drug benzyl alcohol on Na(+)-dependent uptakes of phosphate (Pi), methyl alpha-D-glucopyranoside (MGP), and L-alanine, as well as on basal and stimulated cyclic AMP content. At 10 mM, benzyl alcohol increased the Vmax of Pi uptake by 31%, decreased that of MGP uptake by 24%, and did not affect alanine uptake. Km values were not affected. Benzyl alcohol, up to 40 mM, increased in a concentration-dependent manner basal, PTH-stimulated, and cholera toxin-stimulated, but not forskolin-stimulated cyclic AMP accumulation. In the presence of 40 mM benzyl alcohol, the magnitude of PTH-induced inhibition of Pi uptake was enhanced from 11% to 24%. It is concluded that: (i) fluidization of apical membranes affected differently Na+/Pi, Na+/MGP, and Na+/alanine cotransports, reflecting differences in the lipidic environments of these transport system; (ii) fluidization of basolateral membranes enhanced PTH-stimulated cyclic AMP generation through improved coupling between the receptor-GS complex and the catalytic subunit of adenylate cyclase; (iii) these variations may result in physiological and pathophysiological modulation of the renal handling of solutes and of the phosphaturic effect of PTH.  相似文献   

20.
When gastric microsomes were purified from resting and stimulated rabbit mucosae, they were found to be generally similar in (H+ + K+)-ATPase activity, peptide composition in single-dimension sodium dodecyl sulfate-gel electrophoresis, and in size. In the stimulated vesicles, optimal proton transport activity was found at pH 7.4, 20-50 mM KCl, and 1 mM ATP-Mg. However, in the case of resting vesicles, the presence of valinomycin and an inward Cl-gradient was also necessary for Mg-ATP-dependent proton transport. Measurement of K+ and Cl-diffusion potentials using 3,3-dipropylthiadicarboxocyanine iodide as a potential sensitive dye showed that both resting and stimulated vesicles developed K+ gradient-dependent potentials in the presence of an impermeant anion, but that Cl- gradient-dependent potentials were observed only in the stimulated preparation. 86Rb+ self-exchange was found in both types of vesicles, but Cl- self-exchange was confined to vesicles derived from stimulated mucosae. Putative inhibitors of anion conductance such as furosemide and anthracene 9-carboxylic acid blocked proton transport, Cl- conductance, 36Cl- uptake, and Cl- exchange. The inhibition of proton transport was overcome by valinomycin. ATPase activity in the presence of nigericin, an H+:K+ exchanger, was unaffected by these inhibitors. K+ conductance, Rb+ uptake, and Rb+ exchange were insensitive to these inhibitors. Thus, activation of acid secretion by the stimulated parietal cell appears to involve at least the appearance of a discrete Cl- conductance in the pump-associated membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号