首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultured neural crest cells which are freshly trypsinized require serum or purified fibronectin to attach to collagen substrates of types I–V. Furthermore, neural crest cells migrate in a Boyden chamber in response to fibronectin, and a “checkerboard” analysis demonstrates that fibronectin is both chemotactic and chemokinetic for these cells. It is proposed that collagen serves as a substrate for neural crest cells as they migrate in the early embryo. By mediating the cells' attachment to collagen, fibronectin may influence the movement of the cells. Local differences in fibronectin concentration or availability in the matrix could affect the degree of attachment of the cells to the collagen substrate and could also direct their migration by serving as a chemoattractant.  相似文献   

2.
Fibronectin mediates the adhesion of fibroblasts to collagen substrates, binding first to the collagen and then to the cells. We report here that the interaction of the cells with the fibronectin-collagen complex is blocked by specific gangliosides, GD1 a and GT1, and that the sugar moieties of these gangliosides contain the inhibitory activity. The gangliosides act by binding to fibronectin, suggesting that they may be the cell surface receptor for fibronectin. Evidence is presented that other adhesion proteins or mechanisms of attachment exist for chondrocytes, epidermal cells, and transformed tumorigenic cells, since adhesion of these cells is not stimulated by fibronectin. Chondrocytes adhere via a serum factor that is more temperature-sensitive and less basic than fibronectin. Unlike that of fibroblasts chondrocyte adhesion is stimulated by low levels of gangliosides. Epidermal cells adhere preferentially to type IV (basement membrane) collagen but at a much slower rate than fibroblasts or chondrocytes. This suggests that these epidermal cells synthesize their own specific adhesion factor. Metastatic cells cultured from the T241 fibrosarcoma adhere rapidly to type IV collagen in the absence of fibronectin and do not synthesize significant amounts of collagen or fibronectin. Their growth, in contrast to that of normal fibroblasts, is unaffected by a specific inhibitor of collagen synthesis. These data indicate the importance of specific collagens and adhesion proteins in the adhesion of certain cells and suggest that a reduction in the synthesis of collagen and of fibronectin is related to some of the abnormalities observed in transformed cells.  相似文献   

3.
Beta 1 integrin-mediated collagen gel contraction is stimulated by PDGF   总被引:12,自引:0,他引:12  
The attachment of primary rat hepatocytes and fibroblasts to collagen type I is mediated by non-RGD-dependent beta 1 integrin matrix receptors. In this report we describe a novel 96-well microtiter plate assay for the quantification of fibroblast-mediated contraction of floating collagen type I gels. Fetal calf serum and platelet-derived growth factor (PDGF), but not transforming growth factor-beta 1, stimulated primary rat heart fibroblasts and normal human diploid fibroblasts (AG 1518) to contract collagen gels to less than 10% of the initial gel volume within a 24-h incubation period. Rabbit polyclonal antibodies directed to the rat hepatocyte integrin beta 1-chain inhibited the PDGF-stimulated collagen gel contraction. The inhibitory activity on contraction of the anti-beta 1 integrin IgG could be overcome by adding higher doses of PDGF. The contraction process was not blocked by anti-fibronectin IgG nor by synthetic peptides containing the tripeptide Arg-Gly-Asp (RGD), in concentrations that readily blocked fibroblast attachment to fibronectin-coated planar substrates. Autologous fibronectin or control peptides containing the tripeptide Arg-Gly-Glu were without effect. Immunofluorescence microscopy on fibroblasts grown within collagen gels revealed a punctate distribution of the beta 1 integrin and a lack of detectable levels of endogenously produced fibronectin. Collectively these data suggest a role for integrin collagen receptors with affinity for collagen fibers, distinct from the previously described RGD-dependent fibronectin receptors, in the fibronectin-independent PDGF-stimulated collagen gel contraction process.  相似文献   

4.
A novel method of affinity chromatography on insolubilized collagen-binding fragments of fibronectin was utilized to isolate a random-coil collagenous protein from culture media of mouse teratocarcinoma-derived endodermal cells. These cells also produced another collagenous protein, which did not bind to fibronectin but could be isolated by differential salt precipitation. The affinity-purified collagen differs from its conventionally isolated counterpart in that it is not triple-helical in structure, its polypeptides are not disulfide-crosslinked and it has affinity for fibronectin in its native state. Both collagens resemble previously characterized type IV basement-membrane collagens with respect to their amino acid composition, cyanogen bromide peptides, chain size, immunological reactivity and tissue localization. The random-coil collagen is directly active in promoting the attachment of some lines of cells, but for attachment of the endodermal cells addition of fibronectin is required. This suggests that the presence of nonhelical, fibronectinbinding collagen may have biological significance in the interaction of cells with the extracellular matrix.  相似文献   

5.
Rabbit intestinal epithelial cells, obtained after a limited hyaluronidase digestion, were incubated in medium with or without calf serum, on bacteriological plastic dishes. The dishes, either plain or coated with an air-dried type I collagen film, were pretreated with medium alone or with medium containing purified laminin or purified fibronectin. Cells did not attach in significant numbers to untreated bacteriological plastic, even in the presence of serum. Cells did attach to collagen-coated dishes, and were judged viable on the basis of their incorporation of radiolabeled leucine into cell protein. Cell adhesion to the collagen substrate increased in proportion to the concentration of serum in the medium, with maximal attachment at 5% serum or greater. Pretreatment of plain or collagen-coated dishes with increasing amounts of fibronectin enhanced cell adhesion in a concentration-dependent manner. Either serum, or fibronectin-free serum in the medium enhanced cell attachment to substrates pretreated with cither fibronectin or laminin. Thus, intestinal epithelial cells appear to possess surface receptors for both laminin and fibronectin. The evidence further suggests that calf serum may contain factors, other than fibronectin, capable of enhancing intestinal epithelial cell attachment to collagen substrates.  相似文献   

6.
《The Journal of cell biology》1984,99(4):1416-1423
MDW4, a wheat germ agglutinin-resistant nonmetastatic mutant of the highly metastatic murine tumor cell line called MDAY-D2 has previously been shown to attach to fibronectin and type IV collagen, whereas MDAY- D2 and phenotypic revertants of MDW4 attached poorly to these substrates. The increased adhesiveness of the mutant cells appeared to be closely related to a lesion in cell surface carbohydrate structures. In an effort to identify the carbohydrates involved in cell attachment, glycopeptides isolated from mutant and wild-type cells as well as from purified glycoproteins were tested for their ability to inhibit the attachment of MDW4 cells to plastic surfaces coated with fibronectin, laminin, or type IV collagen. The addition of mannose-terminating glycopeptide to the adhesion assay inhibited MDW4 cell attachment to type IV collagen. In contrast, a sialylated poly N-acetyllactosamine- containing glycopeptide, isolated from wheat germ agglutinin-sensitive MDAY-D2 cells but absent in MDW4 cells, inhibited MDW4 attachment to laminin. None of the glycopeptides used in this study inhibited attachment of MDW4 cells to fibronectin-coated plastic. Peptide N- glycosidase treatment of the cells to remove surface asparagine-linked oligosaccharides inhibited MDW4 adhesion to type IV collagen, but not to laminin, and the same treatment of the wheat germ agglutinin- sensitive cells enhanced attachment to laminin. Tumor cell attachment to, and detachment from, the sublaminal matrix protein laminin and type IV collagen are thought to be important events in the metastatic process. Our results indicate that tumor cell attachment to these proteins may be partially modulated by the expression of specific oligosaccharide structures associated with the cell surface.  相似文献   

7.
The intracellular mechanisms controlling mechano-dependent production of the two extracellular matrix proteins collagen XII and fibronectin were analyzed. Fibroblasts were cultured on either tensed (attached) or released (floating) collagen type-I gels, respectively. Collagen XII and fibronectin production was three- to fivefold higher under tensed than under released conditions. The general inhibitor of tyrosine phosphorylation, genistein (50 microM), and the MAP kinase inhibitor PD98059 (20 microM) selectively reduced collagen XII accumulation by tensed cultures. Addition of PD98059, but not genistein, downregulated tensile stress-induced tyrosine phosphorylation levels of ERK1/2 and focal adhesion kinase. Staurosporine as well as pretreatment with phorbol ester, which constitute means to downregulate classical and novel PKC activity, specifically blocked collagen XII but not fibronectin accumulation in tensed fibroblasts. ERK1/2 phosphorylation levels were not affected by staurosporine treatment. Chronic exposure to the protein kinase C inhibitors bisindolylmaleimide and calphostin C blocked increased production of both fibronectin and collagen XII from cells under tension. The data manifest that the mechano-dependent production of collagen XII and fibronectin requires separate pathways. The FAK-ERK1/2 pathway, a genistein-sensitive tyrosine kinase, and a distinct classical/novel PKC appear selectively required for increased production of collagen XII in cells under tensile stress, whereas fibronectin induction is regulated by a different PKC-dependent pathway.  相似文献   

8.
Detergent extracts of primary rat hepatocytes and neonatal cardiac fibroblasts were applied to collagen type I-Sepharose in the presence of 1 mM MnCl2. Elution of bound proteins by 10 mM EDTA yielded one beta 1-integrin heterodimer from hepatocytes with an Mr of 180,000/115,000 under nonreducing conditions. Two beta 1-integrins with Mr's (nonreduced) of 180,000/115,000 and 145,000/115,000 could be isolated from surface-iodinated fibroblasts. A monoclonal antibody, 3A3, directed against the rat homolog of the human integrin VLA-1, precipitated the affinity-purified Mr 180,000/115,000 heterodimer, establishing the relatedness of the Mr 180,000 subunit to the alpha 1-chain of the beta 1-integrin subfamily. Both the alpha 1 beta 1-integrin and the 145,000/beta 1-integrin heterodimers bound specifically to Sepharose beads derivatized with the collagen fragment alpha 1(I) CB3, which lacks RGD sequences. Immunofluorescence staining using the 3A3 monoclonal antibody revealed that the rat alpha 1 beta 1-integrin was present at focal adhesion sites of fibroblasts grown on native collagen type I- but not on fibronectin-coated substrates, although both types of substrates supported the formation of beta 1-integrin containing focal adhesions. Similarly, hepatocytes cultured on substrata coated with collagen type I (but not fibronectin) were stained in a patchy pattern localized to the cell periphery by 3A3 IgG. Furthermore, 3A3 IgG completely inhibited the attachment of hepatocytes to collagen type I, whereas under identical conditions the attachment of fibroblasts to these substrates was inhibited only by approximately 40%. The attachment of both hepatocytes and cardiac fibroblasts to fibronectin was unaffected by the presence of the 3A3 antibody. Collectively these data show that a rat homolog of the human VLA-1 heterodimer both biochemically and functionally fulfills the criteria of a single collagen receptor on rat hepatocytes. In contrast, rat cardiac fibroblasts utilize two different collagen-binding integrins to adhere to collagen, one of which is the rat homolog of the human VLA-1 heterodimer. Furthermore alpha 1(I) CB3 contains cell binding sites for beta 1-integrins.  相似文献   

9.
We have examined the interaction of adult rat hepatocytes in primary culture, to type IV collagen, fibronectin, and laminin, the major basement membrane proteins of normal rat liver. Culture substrata consisted of glass coverslips, which were covalently derivatized with individual purified basement membrane constituents at varying densities of protein. The attachment of freshly prepared hepatocytes was examined after incubation at 37 degrees C for 30 min as a function of the amount of protein on the coverslips. For each of the three types of substratum under study, distinct modes of cell attachment were observed, with the apparent affinity of hepatocytes for type IV collagen being three-fold greater than for fibronectin and ten-fold greater than for laminin. Cell attachment exhibited saturation on all substrata. Hepatocyte spreading was measured by scanning electron microscopy of cells incubated at 37 degrees for 2 h on similarly prepared coverslips. A five-fold greater surface density of type IV collagen was required for maximal spreading compared with attachment. For cells on fibronectin or laminin the maximal cell spreading reached on type IV collagen did not occur even at coverslip protein densities 10 to 20 times those providing for maximal cell attachment. A very similar qualitative pattern of cell proteins was secreted within a few hours of plating on the various substrata and further studies failed to reveal any evidence that attachment and spreading was mediated by endogenously produced matrix molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Rat hepatocytes, freshly isolated with a collagenase perfusion technique, were found to attach within 1 h on collagen substrates and on culture dishes coated with cold insoluble globulin (CIG) or asialoceruloplasmin (AC). Spreading was observed on collagen and CIG but not on AC. Both attachment and spreading occurred in a simple balanced salt solution in the absence of serum. In the absence of serum no attachment was observed on plain plastic dishes or on dishes coated with serum albumin or other plasma proteins, unless divalent manganese ions were present. In the presence of manganese the hepatocytes attached to all surfaces tested, but no spreading occurred. Attachment to collagen occurred equally well to collagens type I or type III both in the native, fibrillar state and in the denatured state. Collagen attachment required magnesium ions but did not appear to involve the collagen-linked carbohydrates. Different mechanisms were found to operate in hepatocyte attachment to collagen and to AC; the latter is most likely mediated by the hepatocyte surface receptor involved in recognition and uptake of asialoglycoproteins. The role of CIG in hepatocyte attachment to collagen was investigated. Data are presented suggesting that this glycoprotein, which mediates the adhesion of fibroblasts to collagen, is not required for hepatocyte attachment to collagen.  相似文献   

11.
Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.  相似文献   

12.
Attachment of cells to basement membrane collagen type IV   总被引:17,自引:8,他引:9       下载免费PDF全文
Of ten different cell lines examined, three showed distinct attachment and spreading on collagen IV substrates, and neither attachment nor spreading was enhanced by adding soluble laminin or fibronectin. This reaction was not inhibited by cycloheximide or antibodies to laminin, indicating a direct attachment to collagen IV without the need of mediator proteins. Cell-binding sites were localized to the major triple-helical domain of collagen IV and required an intact triple helical conformation for activity. Fibronectin showed preferential binding to denatured collagen IV necessary to mediate cell binding to the substrate. Fibronectin binding sites of collagen IV were mapped to unfolded structures of the major triple-helical domain and show a similar specificity to fibronectin-binding sites of collagen I. The data extend previous observations on biologically potential binding sites located in the triple helix of basement membrane collagen IV.  相似文献   

13.
The attachment of primary rat hepatocytes and fibroblasts to collagen type I is mediated by non-RGD-dependent β1 integrin matrix receptors. In this report we describe a novel 96-well microtiter plate assay for the quantification of fibroblast-mediated contraction of floating collagen type I gels. Fetal calf serum and platelet-derived growth factor (PDGF), but not transforming growth factor-β1, stimulated primary rat heart fibroblasts and normal human diploid fibroblasts (AG 1518) to contract collagen gels to less than 10% of the initial gel volume within a 24-h incubation period. Rabbit polyclonal antibodies directed to the rat hepatocyte integrin β1-chain inhibited the PDGF-stimulated collagen gel contraction. The inhibitory activity on contraction of the anti-β1 integrin IgG could be overcome by adding higher doses of PDGF. The contraction process was not blocked by anti-fibronectin IgG nor by synthetic peptides containing the tripeptide Arg-Gly-Asp (RGD), in concentrations that readily blocked fibroblast attachment to fibronectin-coated planar substrates. Autologous fibronectin or control peptides containing the tripeptide Arg-Gly-Glu were without effect. Immunofluorescence microscopy on fibroblasts grown within collagen gels revealed a punctate distribution of the β1 integrin and a lack of detectable levels of endogenously produced fibronectin. Collectively these data suggest a role for integrin collagen receptors with affinity for collagen fibers, distinct from the previously described RGD-dependent fibronectin receptors, in the fibronectin-independent PDGF-stimulated collagen gel contraction process.  相似文献   

14.
Type V collagen selectively inhibits human endothelial cell proliferation   总被引:3,自引:0,他引:3  
Type V collagen from human placenta remarkably inhibited human umbilical vein endothelial cell (HUVEC) proliferation in a dose-dependent manner when coated on the culture dishes. Other types of collagen (I, III, IV) and fibronectin enhanced HUVEC proliferation under the same conditions. The inhibitory activity of type V collagen was seen not only when it was coated on the dishes, but also when it was directly added into cell culture. The attachment effect of type V collagen did not differ from that of type I collagen. The inhibitory activity is a phenomenon selective for endothelial cells, since type V collagen did not affect the proliferation of human umbilical vein smooth muscle cells, aortic smooth muscle cells, or nasal mucosa fibroblasts.  相似文献   

15.
Attachment of rat hepatocytes to collagen, which occurs without the aid of fibronectin, was found to be a time-dependent reaction characterized by an initial lag phase of 10–20 min before stable attachment bonds began to form. Increasing the density of molecules in the collagen substrates enhanced the rate of cell attachment. The hepatocytes attached essentially equally well to all the collagen types tested (types I, II, III, IV and V). The initial rate of cell attachment was more rapid to native collagen than to denatured collagen or α1(I) chains, apparently indicating different affinities of the cells for these substrates. However, if cells were incubated for 60 min or more, efficient attachment occurred to the α1(I) chain and to all cyanogen-bromide-treated peptides tested (α1-CB2, α1-CB3, α1-CB4, α1-CB5, α1-CB6A, α1-CB7, α1-CB8, α2-CB2, α2-CB3 and α2-CB4) but not to the aminopropeptide of type I procollagen. A low but significant degree of attachment also took place to substrates made of synthetic peptides with the collagen-like structures (Gly-Ala-Pro)n, (Gly-Pro-Pro)n and (Gly-Pro-Hyp)n, whereas no attachment was observed to polyproline. We suggest that the cell-binding sites in collagen have a simple structure and occur in multiple copies along the collagen molecule. Addition of collagen in solution inhibited intial cell attachment, an effect that persisted longer on substrates made of α1(I) chain than on denatured collagen. The collected data are interpreted in terms of a model for cell-to-collagen adhesion where the formation of stable attachment bonds requires the binding of several low-affinity receptors, clustered at the site of adhesion, to collagen molecules in the substrate.  相似文献   

16.
Neuronal responses to extracellular matrix (ECM) constituents are likely to play an important role in nervous system development and regeneration. We have studied the interactions of a neuron-like rat pheochromocytoma cell line, PC12, with ECM protein-coated substrates. Using a quantitative cell attachment assay, PC12 cells were shown to adhere readily to laminin (LN) or collagen IV (Col IV) but poorly to fibronectin (FN). The specificity of attachment to these ECM proteins was demonstrated using ligand-specific antibodies and synthetic peptides. To identify PC12 cell surface proteins that mediate interactions with LN, Col IV, and FN, two different antisera to putative ECM receptors purified from mammalian cells were tested for their effects on PC12 cell adhesion and neuritic process outgrowth. Antibodies to a 140-kD FN receptor heterodimer purified from Chinese hamster ovarian cells (anti-FNR; Brown, P. J., and R. L. Juliano, 1986, J. Cell Biol., 103:1595-1603) inhibited attachment to LN and FN but not to Col IV. Antibodies to an ECM receptor preparation purified from baby hamster kidney fibroblastic cells (anti-ECMR; Knudsen, K. A., P. E. Rao, C. H. Damsky, and C. A. Buck, 1981, Proc. Natl. Acad. Sci. USA., 78:6071-6075) inhibited attachment to LN, FN, and Col IV, but did not prevent attachment to other adhesive substrates. In addition to its effects on adhesion, the anti-ECMR serum inhibited both PC12 cell and sympathetic neuronal process outgrowth on LN substrates. Immunoprecipitation of surface-iodinated or [3H]glucosamine-labeled PC12 cells with either the anti-FNR or anti-ECMR serum identified three prominent cell surface glycoproteins of 120, 140, and 180 kD under nonreducing conditions. The 120-kD glycoprotein, which could be labeled with 32P-orthophosphate and appeared to be noncovalently associated with the 140- and 180-kD proteins, cross reacted with antibodies to the beta-subunit (band 3) of the avian integrin complex, itself a receptor or receptors for the ECM constituents LN, FN, and some collagens.  相似文献   

17.
Summary Very early embryonic mesoderm cells were taken from the primitive streak-stage chick embryo and cultured in a matrix of type I collagen in the presence of serum. Previous work has shown that under these conditions cells do not leave the explant and move in the collagen in the absence of supplemented avian transferrin. Cells explanted onto tissue culture plastic in the presence of serum do not require this transferrin supplement. These observations were investigated further by culturing cells in collagen in the presence of the lipophilic iron chelator, ferric pyridoxal isonicotinoyl hydrazone (FePIH), which can replace transferrin as an iron-delivery agent. Under conditions in which FePIH could effectively stimulate chick embryo myoblast growth, no such long-term stimulation was obtained with the early mesoderm cells in collagen. This suggested that for mesoderm cells, FePIH could not replace transferrin. Antibody to the transferrin receptor and to transferrin itself inhibited growth of myoblasts in collagen and on plastic, and of mesoderm cells in collagen. Mesoderm cells on plastic, however, were refractory to the presence of the antibody directed to the receptor and seemed to show a low dependency on transferrin-delivered iron under these conditions, inasmuch as antiserum to transferrin itself only caused a partial inhibition of outgrowth. The results suggest that mesoderm cells in collagen require transferrin for both iron uptake and for another unspecified function. It is consistent with the results to propose that transferrin binding might modulate the cells' attachment to collagen, thus influencing outgrowth. The distribution of the actin cytoskeleton in mesoderm cells actively migrating in collagen, such as in the presence of transferrin, suggests a stronger attachment to the collagen than nonmigrating cells. This work was supported by an operating grant from the Medical Research Council of Canada.  相似文献   

18.
Human diploid fibroblasts (TIG-3) were shown to attach and spread onto substrata coated with collagen, fibronectin, laminin and vitronectin. The cell attachment to these proteins required divalent cations. Mg2+ stimulated the cell attachment to all the proteins, while Ca2+ alone was not effective for the attachment to collagen and laminin. A mild trypsin treatment had prevented cells from attaching to the laminin, while it had no effect on the attachment to the other proteins. The fibronectin fragment, which retained cell binding activity, inhibited the cells from attaching and spreading onto fibronectin, but it did not cause any inhibition on the other proteins. The synthetic peptide GRGDSP inhibited the cells from attaching and spreading onto fibronectin and vitronectin, while it did not cause any inhibition on collagen and laminin. In attempts to isolate distinct receptors for these proteins, we were able to purify proteins very similar to the fibronectin and vitronectin receptors of human placenta. Based on the differential properties of the attachment of TIG-3 cells to these proteins and biochemical data, we indicate that human diploid fibroblasts have distinctive binding sites (receptors) for collagen, fibronectin, laminin and vitronectin.  相似文献   

19.
Cells of the rat neuronal line, PC12, adhere well to substrates coated with laminin and type IV collagen, but attach poorly to fibronectin. Adhesion and neurite extension in response to these extracellular matrix proteins are inhibited by Fab fragments of an antiserum (anti-ECMR) that recognizes PC12 cell surface integrin subunits of Mr 120,000, 140,000, and 180,000 (Tomaselli, K. J., C. H. Damsky, and L. F. Reichardt. 1987. J. Cell Biol. 105:2347-2358). Here we extend our study of integrin structure and function in PC12 cells using integrin subunit-specific antibodies prepared against synthetic peptides corresponding to the cytoplasmic domains of the human integrin beta 1 and the fibronectin receptor alpha (alpha FN) subunits. Anti-integrin beta 1 immunoprecipitated a 120-kD beta 1 subunit and two noncovalently associated integrin alpha subunits of 140 and 180 kD from detergent extracts of surface-labeled PC12 cells. Immunodepletion studies using anti-integrin beta 1 demonstrated that these two putative alpha/beta heterodimers are identical to those recognized by the adhesion-perturbing ECMR antiserum. Anti-alpha FN immunoprecipitated fibronectin receptor heterodimers in human and rat fibroblastic cells, but not in PC12 cells. Thus, low levels of expression of the integrin alpha FN subunit can explain the poor attachment of PC12 cells to FN. The PC12 cell integrins were purified using a combination of lectin and ECMR antibody affinity chromatography. The purified integrins: (a) completely neutralize the ability of the anti-ECMR serum to inhibit PC12 cell adhesion to laminin and collagen IV; (b) have hydrodynamic properties that are very similar to those of previously characterized integrin alpha/beta heterodimeric receptors for ECM proteins; and (c) can be incorporated into phosphatidylcholine vesicles that then bind specifically to substrates coated with laminin or collagen IV but not fibronectin. Thus, the ligand-binding specificity of the liposomes containing the purified PC12 integrins closely parallels the substrate-binding preference of intact PC12 cells. These results demonstrate that mammalian integrins purified from a neuronal cell line can, when incorporated into lipid vesicles, function as receptors for laminin and type IV collagen.  相似文献   

20.
We have used a quantitative cell attachment assay to compare the interactions of cranial and trunk neural crest cells with the extracellular matrix (ECM) molecules fibronectin, laminin and collagen types I and IV. Antibodies to the beta 1 subunit of integrin inhibited attachment under all conditions tested, suggesting that integrins mediate neural crest cell interactions with these ECM molecules. The HNK-1 antibody against a surface carbohydrate epitope under certain conditions inhibited both cranial and trunk neural crest cell attachment to laminin, but not to fibronectin. An antiserum to alpha 1 intergrin inhibited attachment of trunk, but not cranial, neural crest cells to laminin and collagen type I, though interactions with fibronectin or collagen type IV were unaffected. The surface properties of trunk and cranial neural crest cells differed in several ways. First, trunk neural crest cells attached to collagen types I and IV, but cranial neural crest cells did not. Second, their divalent cation requirements for attachment to ECM molecules differed. For fibronectin substrata, trunk neural crest cells required divalent cations for attachment, whereas cranial neural crest cells bound in the absence of divalent cations. However, cranial neural crest cells lost this cation-independent attachment after a few days of culture. For laminin substrata, trunk cells used two integrins, one divalent cation-dependent and the other divalent cation-independent (Lallier, T. E. and Bronner-Fraser, M. (1991) Development 113, 1069-1081). In contrast, cranial neural crest cells attached to laminin using a single, divalent cation-dependent receptor system. Immunoprecipitations and immunoblots of surface labelled neural crest cells with HNK-1, alpha 1 integrin and beta 1 integrin antibodies suggest that cranial and trunk neural crest cells possess biochemically distinct integrins. Our results demonstrate that cranial and trunk cells differ in their mechanisms of adhesion to selected ECM components, suggesting that they are non-overlapping populations of cells with regard to their adhesive properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号