首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polypeptides associated with human parainfluenza virus type 3 were identified. Five proteins were present in detergent- and salt-resistant viral cores. Of these, three proteins designated NP0, NP1, and NP2 of 68,000, 58,000, and 52,000 daltons, respectively, were stably associated with 50S RNA in CsCl gradient-purified nucleocapsids. The amounts of NP1 and NP2 were variable, and these proteins were shown to be structurally related to the major nucleocapsid protein (NP0) by partial Staphylococcus aureus V8 protease mapping. The other core proteins included a 240K protein designated L (candidate for the viral polymerase) and an 84K protein designated as the phosphoprotein (P) on the basis of a predominant incorporation of Pi. The viral envelope had four prominent proteins (72, 53, 40, and 12K) under reducing conditions of electrophoresis. The 72 and 53K proteins were specifically labeled with [3H]glucosamine and [3H]mannose. When sulfhydryl reagents were removed, a new 62K protein was visualized in place of the 72, 53, and 12K proteins. The 53 and 12K proteins were interpreted to be the two subunits (F1 and F2) of the fusion protein, and the 72K protein was designated as the HN (hemagglutinin-neuraminidase) glycoprotein. The unglycosylated 40K protein represented the viral matrix protein (M). Immunoprecipitation of infected cell lysates with rabbit hyperimmune antiserum against purified virus confirmed the viral origin of these polypeptides.  相似文献   

2.
The hemagglutinin-neuraminidase (HN) glycoprotein is utilized by human parainfluenza viruses for binding to the host cell. By the use of glycan array assays, we demonstrate that, in addition to the first catalytic-binding site, the HN of human parainfluenza virus type 1 has a second site for binding covered by N-linked glycan. Our data suggest that attachment of the first site to sialic acid (SA)-linked receptors triggers exposure of the second site. We found that both sites bind to α2-3-linked SAs with a preference for a sialyl-Lewis(x) motif. Binding to α2-3-linked SAs with a sulfated sialyl-Lewis motif as well as to α2-8-linked SAs was unique for the second binding site. Neither site recognizes α2-6-linked oligosaccharides.  相似文献   

3.
An infectious clone of human parainfluenza virus type 3.   总被引:9,自引:3,他引:6       下载免费PDF全文
  相似文献   

4.
Human immunodeficiency virus (HIV) entry is triggered by interactions between a pair of heptad repeats in the gp41 ectodomain, which convert a prehairpin gp41 trimer into a fusogenic three-hairpin bundle. Here we examined the disposition and antigenic nature of these structures during the HIV-mediated fusion of HeLa cells expressing either HIV(HXB2) envelope (Env cells) or CXCR4 and CD4 (target cells). Cell-cell fusion, indicated by cytoplasmic dye transfer, was allowed to progress for various lengths of time and then arrested. Fusion intermediates were then examined for reactivity with various monoclonal antibodies (MAbs) against immunogenic cluster I and cluster II epitopes in the gp41 ectodomain. All of these MAbs produced similar staining patterns indicative of reactivity with prehairpin gp41 intermediates or related structures. MAb staining was seen on Env cells only upon exposure to soluble CD4, CD4-positive, coreceptor-negative cells, or stromal cell-derived factor-treated target cells. In the fusion system, the MAbs reacted with the interfaces of attached Env and target cells within 10 min of coculture. MAb reactivity colocalized with the formation of gp120-CD4-coreceptor tricomplexes after longer periods of coculture, although reactivity was absent on cells exhibiting cytoplasmic dye transfer. Notably, the MAbs were unable to inhibit fusion even when allowed to react with soluble-CD4-triggered or temperature-arrested antigens prior to initiation of the fusion process. In comparison, a broadly neutralizing antibody, 2F5, which recognizes gp41 antigens in the HIV envelope spike, was immunoreactive with free Env cells and Env-target cell clusters but not with fused cells. Notably, exposure of the 2F5 epitope required temperature-dependent elements of the HIV envelope structure, as MAb binding occurred only above 19 degrees C. Overall, these results demonstrate that immunogenic epitopes, both neutralizing and nonneutralizing, are accessible on gp41 antigens prior to membrane fusion. The 2F5 epitope appears to depend on temperature-dependent elements on prefusion antigens, whereas cluster I and cluster II epitopes are displayed by transient gp41 structures. Such findings have important implications for HIV vaccine approaches based on gp41 intermediates.  相似文献   

5.
闫微  井申荣 《生命科学》2012,(2):181-184
人3型副流感病毒是一种主要感染人类肺部上皮细胞的副黏病毒,可引起肺炎和支气管炎,在婴幼儿和免疫力低下的成人中有较高的发病率。经过多年的研究,对人3型副流感病毒疫苗的研究取得了重要的进展,但还没有有效的抗病毒药物和批准的疫苗上市。目前研究主要集中在减毒活疫苗及亚单位疫苗等,对人3型副流感病毒当前疫苗的研究情况做简要的综述。  相似文献   

6.
人3型副流感病毒(Human Parainfluenza Virus type 3,HPIV-3)是引起婴幼儿严重细支气管炎及肺炎等下呼吸道疾病的主要病原体,其在发达国家和发展中国家都造成了沉重的疾病负担。迄今,对HPIV-3感染的预防和治疗都还没有有效的疫苗和药物,因此WHO将HPIV-3疫苗列为未来重点研发的疫苗。近年来,随着重组技术和反向遗传学的发展,HPIV-3疫苗的研制取得了重要进展,部分疫苗已进入临床评价阶段。就HPIV-3的生物学特性如病毒结构特征、复制过程、流行病学特征,以及近年来传统冷适应减毒活疫苗、亚单位疫苗、以反向遗传学为基础的新型减毒活疫苗的研制成果及临床试验进展作简要综述。  相似文献   

7.
8.
Characterization of bovine parainfluenza virus type 3.   总被引:2,自引:0,他引:2  
Bovine parainfluenza virus type 3 (PIV-3) has a buoyant density of 1.197. The RNA of PIV-3, like that of Sendai virus, is a single continuous chain which lacks polyadenylic acid sequences and tends to self-anneal to a marked extent. It has a sedimentation coefficient of 42S and a molecular weight of 4.5 X 10(6), being slightly smaller than Sendai virus RNA (47S, 5.3 X 10(6)). PIV-3 has 5 main structural proteins, of which 2 are glycoproteins. The molecular weights of protein 1, protein 2, protein 3, glycoprotein 1, and glycoprotein 2 were estimated to be 79,000, 68,000, 35,000, 69,000, and 55,000, respectively. Protein 2 was suggested to be nucleocapsid protein.  相似文献   

9.
We isolated, purified, and characterized the hemagglutinin-neuraminidase (HN) of human parainfluenza virus type 1, with the ultimate goal of producing crystals suitable for three-dimensional X-ray structure analysis. Pronase was used to cleave the globular head of the HN molecule directly from virus particles, forming HN monomers and dimers. The purified dimers retained neuraminidase and hemadsorption activity and were recognized by 14 anti-HN monoclonal antibodies, demonstrating intact HN antigenic structure and function. N-terminal sequence analysis of the dimers showed that cleavage had occurred at amino acid 136 or 137, freeing the C-terminal 438 or 439 amino acids. On electron micrography, the dimer appeared as two box-shaped structures, each approximately 5 by 5 nm. When the purified HN dimers were crystallized in hanging drops by vapor diffusion against 20% polyethylene glycol 3350, they formed both rectangular plates and needlelike crystals. The rectangular crystals diffracted X-rays, indicating an ordered atomic structure. However, the resolution was approximately 10 A (1 nm), insufficient for three-dimensional structural analysis. Experiments to improve the resolution by increasing the size and quality of the crystals are in progress.  相似文献   

10.
The ability of enveloped viruses to cause disease depends on their ability to enter the host cell via membrane fusion events. An understanding of these early events in infection, crucial for the design of methods of blocking infection, is needed for viruses that mediate membrane fusion at neutral pH, such as paramyxoviruses and human immunodeficiency virus. Sialic acid is the receptor for the human parainfluenza virus type 3 (HPF3) hemagglutinin-neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. In order for the fusion protein (F) of HPF3 to promote membrane fusion, the HN must interact with its receptor. In the present report, two variants of HPF3 with increased fusion-promoting phenotypes were selected and used to study the function of the HN glycoprotein in membrane fusion. Increased fusogenicity correlated with single amino acid changes in the HN protein that resulted in increased binding of the variant viruses to the sialic acid receptor. These results suggest that the avidity of binding of the HN protein to its receptor regulates the level of F protein-mediated fusion and begin to define one role of the receptor-binding protein of a paramyxovirus in the membrane fusion process.  相似文献   

11.
Bovine parainfluenza virus type 3 (bPIV3) is being evaluated as an intranasal vaccine for protection against human PIV3 (hPIV3). In young infants, the bPIV3 vaccine appears to be infectious, attenuated, immunogenic, and genetically stable, which are desirable characteristics for an RNA virus vector. To test the potential of the bPIV3 vaccine strain as a vector, an infectious DNA clone of bPIV3 was assembled and recombinant bPIV3 (r-bPIV3) was rescued. r-bPIV3 displayed a temperature-sensitive phenotype for growth in tissue culture at 39 degrees C and was attenuated in the lungs of Syrian golden hamsters. In order to test whether r-bPIV3 could serve as a vector, the fusion and hemagglutinin-neuraminidase genes of bPIV3 were replaced with those of hPIV3. The resulting bovine/human PIV3 was temperature sensitive for growth in Vero cells at 37 degrees C. The replication of bovine/human PIV3 was also restricted in the lungs of hamsters, albeit not as severely as was observed for r-bPIV3. Despite the attenuation phenotypes observed for r-bPIV3 and bovine/human PIV3, both of these viruses protected hamsters completely upon challenge with hPIV3. In summary, bPIV3 was shown to function as a virus vector that may be especially suitable for vaccination of infants and children against PIV3 and other viruses.  相似文献   

12.
人副流感病毒(human parainfluenza viruses,HPIVs)是引起婴幼儿支气管炎和肺炎的主要病原体,人3型副流感病毒(human parainfluenza viruses type 3,HPIV-3)是HPIVs中最主要的型别。目前尚无针对HPIVs的上市疫苗和有效的抗病毒药物,研发减毒活疫苗是目前开发HPIVs疫苗的方向。本文主要对HPIV-3减毒活疫苗的研究进展作一综述。  相似文献   

13.
14.
Cells persistently infected with human parainfluenza virus type 3 (HPF3) exhibit a novel phenotype. They are completely resistant to fusion with each other but readily fuse with uninfected cells. We demonstrate that the inability of these cells to fuse with each other is due to a lack of cell surface neuraminic acid. Neuraminic acid is the receptor for the HPF3 hemagglutinin-neuraminidase (HN) glycoprotein, the molecule responsible for binding of the virus to cell surfaces. Uninfected CV-1 cells were treated with neuraminidase and then tested for their ability to fuse with the persistently infected (pi) cells. Neuraminidase treatment totally abolished cell fusion. To extend this result, we used a cell line deficient in sialic acid and demonstrated that these cells, like the neuraminidase-treated CV-1 cells, were unable to fuse with pi cells. We then tested whether mimicking the agglutinating function of the HN molecule with lectins would result in cell fusion. We added a panel of five lectins to the neuraminic acid-deficient cells and showed that binding of these cells to the pi cells did not result in fusion; the lectins could not substitute for interaction of neuraminic acid with the HN molecule in promoting membrane fusion. These results provide compelling evidence that the HN molecule of HPF3 and its interaction with neuraminic acid participate in membrane fusion and that cell fusion is mediated by an interaction more complex than mere juxtaposition of the cell membranes.  相似文献   

15.
An escape mutant of human parainfluenza virus type 1 (hPIV1), which was selected by serial passage in the presence of a sialidase inhibitor, 4-O-thiocarbamoylmethyl-2-deoxy-2,3-didehydro-N-acetylneur-aminic acid (TCM-Neu5Ac2en), exhibited remarkable syncytium formation and virus-induced cell death in LLC-MK2 cells but no difference in susceptibility for the sialidase inhibitor TCM-Neu5Ac2en from that of wild-type hPIV1 strain C35 (WT). The mutant virus also had higher replication and plaque formation abilities. The mutant virus acquired two amino acid mutations, Glu to Gly at position 170 and Ala to Glu 442 in fusion (F) glycoprotein, but no mutations in haemaggulutinin-neuraminidase (HN) glycoprotein. Using cells co-expressing F and HN genes with site-specific mutagenesis, we demonstrated that a point mutation of Glu to Gly at position 170, which was estimated to be located in hPIV1 F glycoprotein heptad repeat 1, was required for obvious syncytium formation and caspase-3-dependent cell death. In contrast, wild-type F glycoprotein induced no synctium formation or cell death. The findings suggest that a single amino acid mutation of hPIV1 F glycoprotein promotes syncytium formation that is followed by caspase-3-dependent cell death.  相似文献   

16.
Neutralizing monoclonal antibodies specific for the fusion (F) glycoprotein of human parainfluenza type 3 virus (PIV3) were used to select neutralization-resistant antigenic variants. Sequence analysis of the F genes of the variants indicated that their resistance to antibody binding, antibody-mediated neutralization or to both was a result of specific amino acid substitutions within the neutralization epitopes of the F1 and F2 subunits. Comparison of the locations of PIV3 neutralization epitopes with those of Newcastle disease and Sendai viruses indicated that the antigenic organization of the fusion proteins of paramyxoviruses is similar. Furthermore, some of the PIV3 epitopes recognized by syncytium-inhibiting monoclonal antibodies are located in an F1 cysteine cluster region which corresponds to an area of the measles virus F protein involved in fusion activity.  相似文献   

17.
18.
Viral interference is characterized by the resistance of infected cells to infection by a challenge virus. Mechanisms of viral interference have not been characterized for human parainfluenza virus type 3 (HPF3), and the possible role of the neuraminidase (receptor-destroying) enzyme of the hemagglutinin-neuraminidase (HN) glycoprotein has not been assessed. To determine whether continual HN expression results in depletion of the viral receptors and thus prevents entry and cell fusion, we tested whether cells expressing wild-type HPF3 HN are resistant to viral infection. Stable expression of wild-type HN-green fluorescent protein (GFP) on cell membranes in different amounts allowed us to establish a correlation between the level of HN expression, the level of neuraminidase activity, and the level of protection from HPF3 infection. Cells with the highest levels of HN expression and neuraminidase activity on the cell surface were most resistant to infection by HPF3. To determine whether this resistance is attributable to the viral neuraminidase, we used a cloned variant HPF3 HN that has two amino acid alterations in HN leading to the loss of detectable neuraminidase activity. Cells expressing the neuraminidase-deficient variant HN-GFP were not protected from infection, despite expressing HN on their surface at levels even higher than the wild-type cell clones. Our results demonstrate that the HPF3 HN-mediated interference effect can be attributed to the presence of an active neuraminidase enzyme activity and provide the first definitive evidence that the mechanism for attachment interference by a paramyxovirus is attributable to the viral neuraminidase.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号