首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New lobe development and lobe division was studied in the foliose lichen Xanthoparmelia conspersa (Ehrh. ex. Ach.) Hale. In thalli with either the centre or margin removed, the inside edge of the perimeter, the outer edge of the reproductive centre, and fragments derived from the thallus perimeter all regenerated growing points (‘lobe primordia’) within a year. Thalli possessing isidia had the greatest ability to regenerate growing points. In reproductive thalli, there was a positive correlation between the density of new growing points and thallus size. When fragments were cut from the perimeters of mature X. conspersa thalli and glued to pieces of slate, the ratio of growing points to mature lobes increased over 54 months. Lobes within a thallus exhibited different degrees of bifurcation. In some bifurcating lobes, the point of origin of the bifurcation advanced at the same rate as the lobe tips over 4 months but in most lobes, the bifurcation point either advanced less rapidly than the lobe tips or retreated from its original location. Removing adjacent lobes had no significant effect on the radial growth of a lobe over 4 months or on the location of the bifurcation point but it increased the number of growing points. These results suggest that for X. conspersa: 1) all portions of of thalli can regenerate growing points, 2) few growing points actually develop into mature lobes, 3) individual lobes within a thallus grow and divide differently, and 4) adjacent lobes inhibit the development of growing points on their neighbours.  相似文献   

2.
The radial growth (RG) of 120 lobes from 35 thalli of the foliose lichenParmelia conspersa (Ehrh. ex Ach.) Ach. was studied monthly over 22 months in south Gwynedd, Wales, UK. Autocorrelation analysis of each lobe identified three patterns of fluctuation: I) random fluctuations (58% of lobes), 2) a cyclic pattern of growth (23% of lobes), and 3) fluctuating growth interrupted by longer periods of very low or zero growth (19% of lobes). In 80% of thalli, two or three patterns of fluctuation were present within the same thallus. Growth fluctuations were correlated with climatic variables in 31% of lobes, most commonly with either total rainfall or number of rain days per month. Lobes correlated with climate were not associated with a particular type of growth fluctuation. RG of a lobe was positively correlated with the degree of bifurcation of the lobe tip. It is hypothesised that lobes ofP. conspersa exhibit a cyclic pattern of growth due in part to lobe division. The effects of climate, periods of zero growth, and microvariationsin the environment of a lobe are superimposed on this cyclic pattern resulting in the random growth of many lobes. Random growth fluctuations may contribute to the maintenance of thallus symmetry inP. conspersa.  相似文献   

3.
Patricia M. Harris 《Oecologia》1996,108(4):663-668
Lichens and mosses cover 70–100% of the rock surface in a forested Appalachian boulderfield, and competition for space is intense. This paper examines overgrowth ability and its morphological correlates in four common species of foliose lichen on rocks. Overgrowth requires one lichen thallus to overtop another at the point where they meet. Therefore, I quantified margin height for a number of thalli of each of four lichen species. Two umbilicate species attached to the rock only at the thallus center showed a positive relationship between thallus size and margin height: large thalli often reached considerable heights above the rock surface, yet most also had points along their margin that were quite low and flat. Two other nonumbilicate species were characteristically flatter and showed no dependence of margin height on thallus diameter. Differences among species, among thalli of the same species, and among different points on a single thallus accounted for approximately equal amounts of variance in margin height. To determine the success of species in overtopping each other, I then recorded 639 instances of apparent overgrowth (overtopping of one thallus by another) on several rocks in the boulderfield. Of the nine pairs of species that met often enough to permit statistical analysis, only four pairs showed a consistent winner. Species in the remaining five pairs were competitively equivalent, neither winning significantly more than half the encounters although each individual encounter had a clear winner. Overgrowth rates measured from sequential photographs were highly variable, but many species pairs showed no substantial differences between growth rates over another thallus and growth rates over bare rock; only one species appeared to be affected by overgrowing other thalli. Overgrown thalli, as well as thalli experimentally shaded by gluing an overhanging rock chip above their margin for a year grew very slowly or not at all in the region of overgrowth, and the overgrown region of the thallus was often markedly discolored or disintegrating. Thus, foliose lichens compete strongly for space at the study site, yet because competitive success is at least partly based on a morphological character (margin height) that is inherently quite variable even in a single thallus, many pairs of species appear to be competitively equivalent.  相似文献   

4.
The crustose lichen Rhizocarpon geographicum (L.) DC. comprises yellow-green lichenized areolae which develop and grow on the surface of a non-lichenized fungal hypothallus, the latter extending beyond the edge of the areolae to form a marginal ring. The hypothallus advances very slowly and the considerable longevity of R. geographicum, especially in Arctic and Alpine environments, has been exploited by geologists in dating the exposure age of rock surfaces (lichenometry). This review explores various aspects of the biology of R. geographicum including: (1) structure and symbionts, (2) lichenization, (3) development of areolae, (4) radial growth rates (RaGR), (5) growth physiology, (6) changes in RaGR with thallus size (growth rate-size curve), (7) maturity and senescence, and (8) aspects of ecology. Lichenization occurs when fungal hyphae become associated with a compatible species of the alga Trebouxia, commonly found free-living on the substratum. Similarly, ‘primary’ areolae develop from free-living algal cells trapped by the advancing hypothallus. The shape of the growth rate-size curve of R. geographicum is controversial but may exhibit a phase of decreasing growth in larger thalli. Low rates of translocation of carbohydrate to the hypothallus together with allocation for stress resistance results in very slow RaGR, a low demand for nutrients, hence, the ability of R. geographicum to colonize more extreme environments. Several aspects of the biology of R. geographicum have implications for lichenometry including early development, mortality rates, the shape of the growth-rate size curve, and competition.  相似文献   

5.
Peltigera caninathalli have been successfully transplanted onto soil in a garden and in flowerpots. Garden samples showed marked seasonality and achieved growth rates of 6·4 cm per year. Pot-grown samples showed variation in the growth of individual thallus lobes and established that, under different soil hydration regimes, permanently hydrated thalli could sustain considerable linear growth rates for at least 140 days.  相似文献   

6.
The identification of damaged lichens is often difficult due to changes in the morphology of regenerating specimens. We examined the Ultrastructure of grazing damages to four species of calcicolous lichens ( Aspicilia calcarea, Physcia adscendens, Tephromela atra and Xanthoria parietina ) and free-living cyanobacteria (family Chroococcaceae) caused by individuals of four species of land snails ( Chondrina clienta, Balea perversa, Clausilia bidentata and Helicigona lapicida ). We also investigated the radular structure of the four lichen-feeding snails to examine whether differences in radular morphology result in species-specific grazing damages. Individuals of all four snail species removed the cyanobacteria layer covering the limestone or lichen surfaces. The four lichen species were grazed to a different extent by the different snail species. SEM-images showed that B. perversa left distinct depressions on the thalli of A. calcarea , whereas H. lapicida grazed off the thalli of this lichen rather evenly. Both snail species left visible radular traces on the lichen surface. In contrast, Ch. clienta left shallow depressions without radular traces on the thalli of A. calcarea. In Tephromela atra , grazing damages were observed on both thallus and ascocarp. Ascocarps of T. atra were partly grazed by B. perversa. Helicigona lapicida grazing on T. atra removed more or less evenly the entire lichen tissue including the ascocarps. In foliose lichens, grazing by Ch. clienta, B. perversa and Cl. bidentata resulted in depressions of different depths, while H. lapicida removed entire pieces of the thalli. In general, radular traces were less distinct in foliose lichens than in crustose lichens.  相似文献   

7.
Barták  M.  Hájek  J.  Gloser  J. 《Photosynthetica》2000,38(4):531-537
Spatial heterogeneity of chlorophyll (Chl) fluorescence over thalli of three foliose lichen species was studied using Chl fluorescence imaging (CFI) and slow Chl fluorescence kinetics supplemented with quenching analysis. CFI values indicated species-specific differences in location of the most physiologically active zones within fully hydrated thalli: marginal thallus parts (Hypogymnia physodes), central part and close-to-umbilicus spots (Lasallia pustulata), and irregulary-distributed zones within thallus (Umbilicaria hirsuta). During gradual desiccation of lichen thalli, decrease in Chl fluorescence parameters (FO - minimum Chl fluorescence at point O, FP - maximum Chl fluorescence at P point, 2 - effective quantum yield of photochemical energy conversion in photosystem 2) was observed. Under severe desiccation (>85 % of water saturation deficit), substantial thalli parts lost their apparent physiological activity and the resting parts exhibited only a small Chl fluorescence. Distribution of these active patches was identical with the most active areas found under full hydration. Thus spatial heterogeneity of Chl fluorescence in foliose lichens may reflect location of growth zones (pseudomeristems) within thalli and adjacent newly produced biomass. When exposed to high irradiance, fully-hydrated thalli of L. pustulata and U. hirsuta showed either an increase or no change in FO, and a decrease in FP. Distribution of Chl fluorescence after the high irradiance treatment, however, remained the same as before the treatment. After 60 min of recovery in the dark, FO and FP did not recover to initial values, which may indicate that the lichen used underwent a photoinhibition. The CFI method is an effective tool in assessing spatial heterogeneity of physiological activity over lichen thalli exposed to a variety of environmental factors. It may be also used to select a representative area at a lichen thallus before application of single-spot fluorometric techniques in lichens.  相似文献   

8.
Many lichens show seriously depressed net photosynthesis (NP) at high thallus water contents due to increased carbon dioxide diffusion resistance through blockage of diffusion pathways by water. The soil lichen Diploschistes muscorum, however, shows no depression and NP is close to maximal even at the highest thallus water content. We investigated whether lichen substances (lecanoric and diploschistesic acids) in the cortex and medulla contributed to this ability to maintain high NP. Dry thalli were extracted with water-free acetone and, after this treatment, were found to be fully viable to the extent of continued growth after replanting in the field. No differences were found in the response of NP to thallus water content between the normal and extracted thalli, in fact the response curves were often nearly identical. Thus, in this species it seems that lichen substances did not maintain the water-free diffusion pathways and some other explanation, possibly structural, needs to be sought. Received: 5 April 1997 / Accepted: 26 April 1997  相似文献   

9.
Thalli of the foliose lichen species Parmelina tiliacea were studied to determine responses of the photosynthetic apparatus to high temperatures in the dry and wet state. The speed with which dry thalli were activated by water following a 24 h exposure at different temperatures decreased as the temperature was increased. But even following a 24 h exposure to 50°C the fluorescence induction kinetics OJIP reflecting the reduction kinetics of the photosynthetic electron transport chain had completely recovered within 128 min. Exposure of dry thalli to 50°C for 24 h did not induce a K-peak in the fluorescence rise suggesting that the oxygen evolving complex had remained intact. This contrasted strongly with wet thalli were submergence for 40 s in water of 45°C inactivated most of the photosystem II reaction centres. In wet thalli, following the destruction of the Mn-cluster, the donation rate to photosystem II by alternative donors (e.g. ascorbate) was lower than in higher plants. This is associated with the near absence of a secondary rise peak (~1 s) normally observed in higher plants. Analysing the 820 nm and prompt fluorescence transients suggested that the M-peak (occurs around 2–5 s) in heat-treated wet lichen thalli is related to cyclic electron transport around photosystem I. Normally, heat stress in lichen thalli leads to desiccation and as consequence lichens may lack the heat-stress-tolerance-increasing mechanisms observed in higher plants. Wet lichen thalli may, therefore, represent an attractive reference system for the evaluation of processes related with heat stress in higher plants.  相似文献   

10.
Dispersal patterns from seven terricolous lichen species, with a high capacity for asexual reproduction by fragmentation (Cetraria muricata, Cladonia species), were studied in differing vegetation types in north-eastern Germany. Marked lichen thalli were fragmented by trampling. After 15 days the spread of thallus fragments was monitored. Whereas most of the fragments that were dispersed by wind remained within a 20-cm radius from the source, the maximal dispersal distance was 57 cm in a dry sand grassland and 68 cm in an open pioneer pine forest. Dispersal was negligible in a closed old-growth pine forest. Several fragmented lichen cushions were disturbed and removed by animals, and led to a maximal dispersal distance of 9·70 m. These results suggest that: (a) thallus fragments provide good short-distance dispersal in open vegetation, but are inefficient for long-distance dispersal, and (b) wind and animals are important factors for the dispersal of thallus fragments. For restoration management of man-made substrata, artificial introduction of lichen thalli is proposed.  相似文献   

11.
The profound knowledge of the structural and chemical characteristics of the interface between lichen thallus and rock, seems to be indispensable for the process of understanding the lichen symbiosis as well as the significance of the weathering action of lichens. One of the most promising techniques to be used in this investigation is the Scanning Electron Microscopy (SEM) in the back-scattered electron (BSE) emission mode. In the present work thalli of Parmelia conspersa, Aspicilia intermutans and Lecidea auriculata growing in granitic rock were examined by SEM in BSE mode with (Energy Dispersive Spectroscopy) EDS. In the case of the foliose thalli the observation of the interface permits detection of the rhizine/hyphae adherence and determination of the origin of the minerals which adhere to the rhizine/hyphae. In the case of the crustose thalli BSE permits investigation within the ultrastructure of the crustose thallus and crustose lichen-rock contact zone and also allows observations of the penetration and filling of the fissures and cracks of the underlying rock by components of the thallus and other living organisms. The BSE images could contribute to a better knowledge of the cytological state of the rock-inhabiting organisms and also to the understanding of the action of the chemical treatments used in the removal of lichen from building materials.  相似文献   

12.
 We tested the hypothesis that changed microclimate at induced forest edges causes reduced growth of epiphytic lichens. Two foliose, green algal lichens were transplanted to the lower canopy of a mature Picea abies forest at six distances (2, 6.25, 12.5, 25, 50 and 100 m) from a clearcut. The biomass growth in Platismatia glauca (6.2% in 16 months) was 41% higher than in Lobaria pulmonaria (4.4%). We found no growth reduction near the forest edge. In contrast, the highest growth in both species occurred within 12 m from the edge. Further, fluorescence and chlorophyll measurements showed that lichen vitality was unaffected by distance from edge. The light intensity was 4.3 times higher at the edge than in the interior during the growing season, but there were only minor differences in air temperature and relative humidity. Monitoring of thallus water content revealed clear differences in both number and length of wetting and drying cycles. However, the total time with water content sufficient for photosynthetic activity was only slightly higher at the edge. The data thus indicate that our gradient in microclimate was too small to significantly affect lichen growth, and that lichens are largely metabolically inactive when large edge-interior contrasts in microclimate occur. Lichen response to forest edge microclimate results from intricate interactions among several biotic and abiotic factors. Linking data on lichen growth, microclimate and thallus water content with physiological measurements provides a framework for future studies of the mechanisms behind abiotic edge effects. Received: 15 April 1996 / Accepted: 21 June 1996  相似文献   

13.
Estimates of lichen growth rates based on the measurements of several thalli at any site do not exist for continental Antarctica. However, the very limited existing data suggest that lichen growth rate may be a good indicator of climate change in Antarctica. We present measurements made on thalli of the lichen Buellia frigida Darb. growing in the Dry Valleys, Southern Victoria Land, continental Antarctica, which appear to have some of the slowest radial growth rates yet measured. Photographs of thalli at three different sites were analysed for growth over a 25-year period using nano-GIS techniques. At one site, Mt. Falconer Summit, the lichens had a mean growth rate of 0.0052 mm year−1 with one individual as low as 0.0036 mm year−1. Thalli at the other two sites had significantly higher mean growth rates, 0.0136 mm year−1 at Mt. Falconer Ridge and 0.0118 mm year−1 at Rhone Bench. Assuming a constant growth rate, thalli at Mt. Falconer Summit had a mean age of 5,367 years, whilst the thalli at the other two sites were much younger, 840–1,026 years. We suggest that the different ages represent the appearance of new substrate for colonisation following climate changes in the Dry Valleys that altered the amount and duration of snow. The results confirm that lichen growth rate differs by almost two orders of magnitude over a latitudinal range of 15 degrees from south to north across Antarctica.  相似文献   

14.
《Fungal biology》2022,126(9):587-608
Lichens are well-known examples of complex symbiotic associations between organisms from different Kingdoms. Microfungi in particular, establish diverse associations with the hosting lichen thallus, as species-specific parasites or transient co-inhabitants. The whole community of lichen-associated fungi constitute the ‘lichen mycobiome’ comprising both ascomycetes and basidiomycetes, including filamentous and yeast taxa. Metabarcoding results and microscopy analyses show that in some thalli, basidiomycetes are frequent lichen-associated fungi but still only a few species could be axenically isolated and morphologically characterized. Within a broad project aiming at characterizing the mycobiome diversity by culture-dependent and independent approaches in two lichen species selected as reference models – Rhizoplaca melanophthalma and Tephromela atra, we succeed in isolating and culturing 76 new strains of basidiomycetous yeasts. The lichen thalli were collected in different mountain regions worldwide and at relatively high elevation. The yeast strains were isolated on different growth media and were studied for their morphological and genetic diversity. Nuclear internal transcribed spacer (ITS) and ribosomal large subunit (LSU) sequence analyses identified them to belong to ten families within the orders Agaricostilbomycetes, Cystobasidiomycetes, Microbotryomycetes, Tremellomycetes and Ustilaginomycetes. The yeasts here detected showed patterns of host-preference in a few cases and they are potentially related to the ecological conditions.  相似文献   

15.
BACKGROUND AND AIMS: The superhydrophobicity of the thallus surface in one of the most SO(2)-tolerant lichen species, Lecanora conizaeoides, suggests that surface hydrophobicity could be a general feature of lichen symbioses controlling their tolerance to SO(2). The study described here tests this hypothesis. METHODS: Water droplets of the size of a raindrop were placed on the surface of air-dry thalli in 50 lichen species of known SO(2) tolerance and contact angles were measured to quantify hydrophobicity. KEY RESULTS: The wettability of lichen thalli ranges from strongly hydrophobic to strongly hydrophilic. SO(2) tolerance of the studied lichen species increased with increasing hydrophobicity of the thallus surface. Extraction of extracellular lichen secondary metabolites with acetone reduced, but did not abolish the hydrophobicity of lichen thalli. CONCLUSIONS: Surface hydrophobicity is the main factor controlling SO(2) tolerance in lichens. It presumably originally evolved as an adaptation to wet habitats preventing the depression of net photosynthesis due to supersaturation of the thallus with water. Hydrophilicity of lichen thalli is an adaptation to dry or humid, but not directly rain-exposed habitats. The crucial role of surface hydrophobicity in SO(2) also explains why many markedly SO(2)-tolerant species are additionally tolerant to other (chemically unrelated) toxic substances including heavy metals.  相似文献   

16.
Areolae of the crustose lichen Rhizocarpon geographicum (L.) DC., are present on the peripheral prothallus (marginal areolae) and also aggregate to form confluent masses in the centre of the thallus (central areolae). To determine the relationships between these areolae and whether growth of the peripheral prothallus is dependent on the marginal areolae, the density, morphology, and size frequency distributions of marginal areolae were measured in 23 thalli of R. geographicum in north Wales, UK using image analysis (Image J). Size and morphology of central areolae were also studied across the thallus. Marginal areolae were small, punctate, and occurred in clusters scattered over the peripheral prothallus while central areolae were larger and had a lobed structure. The size-class frequency distributions of the marginal and central areolae were fitted by power-law and log-normal models respectively. In 16 out of 23 thalli, central areolae close to the outer edge were larger and had a more complex lobed morphology than those towards the thallus centre. Neither mean width nor radial growth rate (RaGR) of the peripheral prothallus were correlated with density, diameter, or area fraction of marginal areolae. The data suggest central areolae may develop from marginal areolae as follows: (1) marginal areolae develop in clusters at the periphery and fuse to form central areolae, (2) central areolae grow exponentially, and (3) crowding of central areolae results in constriction and fragmentation. In addition, growth of the peripheral prothallus may be unrelated to the marginal areolae.  相似文献   

17.
The growth pattern of the thallus of Lobaria pulmonaria, a foliose lichen, has been described as differentiated into upwards and downwards growing lobes. The former show meristematic properties, whereas the latter, owing to the formation of soralia inactivating apical meristems, become senile lobes. A simple and sensitive histochemical procedure, the TBO test performed in this study, shows co-distribution of zones of active growth and polyphosphates accumulation in L. pulmonaria and gives evidence of the central role of phosphate in lichen metabolism. Upwards and downwards growing lobes mainly differentiate in pattern of accumulation of histochemically detectable polyphosphates. In the former, actively growing zones correspond to the algae, cortical and medullary hyphal cells adjacent to the algal layer of the pseudomeristematic marginal rim and of the adjacent elongation zone. In the downwards sorediate lobes, lacking apical growth, the actively growing zones correspond to medullary hyphae and algae occurring in areas where soredia are formed.  相似文献   

18.
O. L. Lange  H. Pfanz  E. Kilian  A. Meyer 《Planta》1990,182(3):467-472
Earlier experiments (T.D. Brock 1975, Planta124, 13–23) addressed the question whether the fungus of the lichen thallus might enable the algal component to function when moisture stress is such that the algal component would be unable to function under free-living conditions. It was concluded that the liberated phycobiont in ground lichen thalli could not photosynthesize at water potentials as low as those at which the same alga could when it was present within the thallus. However, our experience with lichen photosynthesis has not substantiated this finding. Using instrumentation developed since the mid-1970's to measure photosynthesis and control humidity, we repeated Brock's experiments. When applying “matric” water stress (equilibrium with air of constant relative humidity) we were unable to confirm the earlier results for three lichen species including one of the species,Letharia vulpina, had also been used by Brock. We found no difference between the effects of low water potential on intact lichens and their liberated algal components (ground thallus material and isolated algae) and no indication that the fungal component of the lichen symbiosis protects the phycobiont from the adverse effects of desiccation once equilibrium conditions are reached. The photosynthetic apparatus of the phycobiont alone proved to be highly adapted to water stress as it possesses not only the capability of functioning under extremely low degrees of hydration but also of becoming reactivated solely by water vapor uptake.  相似文献   

19.
The vegetative cycle of the foliicolous lichen Phyllophiale, from propagule germination to propagule production, was studied by light microscope observation of thalli colonizing plastic cover slips placed within a lowland tropical forest. Discoid propagules germinated by growth of radially arranged fungal cells and developed directly into lichen thalli. The young lichen comprised a single disc of closely branched, radiating filaments of the algal symbiont Phycopeltis, covered by a network of fungal hyphae extending onto the substrate as a prothallus. The prothallic hyphae incorporated additional Phycopeltis thalli encountered on the substrate. The phycobiont formed a single layer, with individual algal thalli clearly distinguishable within the lichen. Radial growth ceased at points of contact between adjacent phycobiont thalli. The visible shape of the crustose lichen thallus corresponded to the perimeter of the phycobiont thalli within. Propagules were initiated at points corresponding to the margins of the phycobiont thalli, by vertical reorientation of horizontal algal filaments surrounded by fungal hyphae. The lichenized alga produced intercalary gametangia. Degeneration of propagules unsuccessful in lichen establishment sometimes resulted in free growth of the phycobiont. The alga generally maintained its shape, growth pattern, and reproductive independence within the lichen, while also participating in the formation of unique symbiotic propagules.  相似文献   

20.
1. In dense populations of the saxicolous lichen Lasallia pustulata the margins of adjacent thalli overlap each other in intraspecific competition for space and light.
2. In situ non-destructive monitoring of hydration-dependent potential photosynthetic activity by modulated fluorescence systems in different parts of the thallus shows that the activity is structured by a centre-to-margin gradient, with the centre of the thallus remaining active for substantially longer periods than the margins when the thalli dry up after being activated by wetting. The pattern reflects the water status of different parts of the thallus; the margins which are thin and exposed dry up first.
3. The activity pattern within individual lichen thalli suggests that marginal overlapping between neighbours may have a less detrimental effect on the shadowed individuals than expected from a pure consideration of the amount of area shadowed. Because the centre of the lichen thallus is active for longer periods, shadowing of this region may possibly be more harmful per area unit than an overlap at the less active margins.
4. Larger thalli are active for substantially longer periods than small ones. Even the margins of larger thalli tend to be active for a longer period than the centre of small thalli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号