首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sun L  Han X  He S 《PloS one》2011,6(5):e19477
The ON-OFF direction selective ganglion cells (DSGCs) in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience.  相似文献   

2.
Acetylcholine-synthesizing cells in the rabbit retina are symmetrically distributed about the inner plexiform layer: one population of cholinergic amacrines has cell bodies in the inner nuclear layer and an equivalent population of displaced amacrines has cell bodies in the ganglion cell layer. It has been suggested that the morphological correlates of the acetylcholine-synthesizing cells are either coronate amacrine cells or starburst amacrine cells. Coronate cells have a characteristic nuclear morphology and can be selectively labelled by neurofibrillar methods or with the fluorescent dye4',6-diamidino-2-phenyl-indole (DAPI). Starburst cells have a characteristic dendritic morphology but have only been described from Golgi-stained retinae. This paper bridges the gap between the previous studies. DAPI-labelled coronate cells were impaled with a micropipette under microscopic control and filled with Lucifer yellow by iontophoresis. The results show that the coronate amacrines in the ganglion cell layer are type b starburst cells, and that those DAPI-labelled neurones in the inner nuclear layer with a coronate-like nuclear morphology are type a starburst cells. At a given eccentricity the dendritic field diameter of type a starburst cells is about 1.13 times larger than that of type b starburst cells. The dendritic field coverage of coronate (type b starburst) cells increases linearly with decreasing coronate cell density and ranges from 25 on the peak visual streak to 70+ in the superior periphery.  相似文献   

3.
4.
5.
6.
7.
Summary Voltage fluctuations identified as receptor potentials can be detected with electrodes applied to the mucilage surrounding the head of a tentacle of Drosera intermedia if the head is stimulated by contact with a live insect, by the touch of a clean, inert object, or by application of salt solutions. Associated with a low receptor potential are action potentials, which occur at a frequency dependent on the magnitude of the receptor potential. These action potentials can be detected with electrodes applied to any region of the stalk of the tentacle. Inflection of the lower stalk follows the occurrence of action potentials. Inflection is minute for isolated action potentials but large and rapid when several occur within a brief interval.The apparent amplitude of action potentials recorded from the stalk is independent of receptor potential amplitude, but that of action potentials recorded from the mucilage commonly decreases as the receptor potential deviates from the baseline and increases as it returns. It is suggested that variation of apparent amplitude of the action potentials may result from postulated variation in the resistance of receptor membranes.  相似文献   

8.
Mathematical models of the action potential in the periphery and center of the rabbit sinoatrial (SA) node have been developed on the basis of published experimental data. Simulated action potentials are consistent with those recorded experimentally: the model-generated peripheral action potential has a more negative takeoff potential, faster upstroke, more positive peak value, prominent phase 1 repolarization, greater amplitude, shorter duration, and more negative maximum diastolic potential than the model-generated central action potential. In addition, the model peripheral cell shows faster pacemaking. The models behave qualitatively the same as tissue from the periphery and center of the SA node in response to block of tetrodotoxin-sensitive Na(+) current, L- and T-type Ca(2+) currents, 4-aminopyridine-sensitive transient outward current, rapid and slow delayed rectifying K(+) currents, and hyperpolarization-activated current. A one-dimensional model of a string of SA node tissue, incorporating regional heterogeneity, coupled to a string of atrial tissue has been constructed to simulate the behavior of the intact SA node. In the one-dimensional model, the spontaneous action potential initiated in the center propagates to the periphery at approximately 0.06 m/s and then into the atrial muscle at 0.62 m/s.  相似文献   

9.
Plant excitability, as measured by the appearance and circulation of action potentials (APs) after biotic and abiotic stress treatments, is a far lesser and more versatile phenomenon than in animals. To examine the genetic basis of plant excitability we used different Arabidopsis thaliana accessions. APs were induced by wounding (W) with a subsequent deposition (D) of 5 μL of 1 M KCl onto adult leaves. This treatment elicited transient voltage responses (APs) that were detected by 2 extracellular electrodes placed at a distance from the wounding location over an experimental time of 150 min. The first electrode (e1) was placed at the end of the petiole and the beginning of the leaf, and the second (e2) electrode was placed on the petiole near the center of the rosette. All accessions (Columbia (Col), Wassilewskija (Ws) and Landsberg erecta (Ler)) responded to the W & D treatment. After W & D treatment was performed on 100 plants for each accession, the number of APs ranged from 0 to 37 (median 8, total 940), 0 to 16 (median 5, total 528) and 0 to 18 (median 2, total 296) in Col, Ws and Ler, respectively. Responding plants (>0 APs) showed significantly different behaviors depending on their accessions of origin (i.e., Col 91, Ws 83 and Ler 76%). Some AP characteristics, such as amplitude and speed of propagation from e1 to e2 (1.28 mm s−1), were the same for all accessions, whereas the average duration of APs was similar in Col and Ws, but different in Ler. Self-sustained oscillations were observed more frequently in Col than Ws and least often in Ler, and the mean oscillation frequency was more rapid in Col, followed by Ws, and was slowest in Ler. In general, Col was the most excitable accession, followed by Ws, and Ler was the least excitable; this corresponded well with voltage elicited action potentials. In conclusion, part of Arabidopsis excitability in AP responses is genetically pre-determined.  相似文献   

10.
11.
The effect of stretching from L0 to Lmax on the electrical activity was studied on human myocardial preparations from patients with heart disease and on strips of rabbit ventricular myocardium. Muscular deformation was shown to decrease the amplitude and velocity of depolarization in slow action potentials. The action potentials (AP) possessing a fast depolarization phase were not sensitive to physiological stretching. Antiarrhythmic drugs--ethmozin (2 X 10(-5) M) and ethacizin (2 X 10(-6) M)--caused a decrease in the rate of AP depolarization, thus increasing AP sensitivity to deformation. It is suggested that stretching under the action of ethmozin and ethacizin reduced cardiomyocyte excitability due to suppression of slow Ca-current.  相似文献   

12.
After a period of rest action potentials in constantly driven preparations of left rabbit atria show a marked change in configuration. After the upstroke an early repolarization takes place which is followed by a prolonged phase of secondary depolarization. This depolarization is strongly suppressed by vagal stimulation. Frequency-response characteristics of this electrotropic effect were obtained by stimulating the vagal supply of the preparation with frequencies in the range from 1.0 to 40.0 s-1 and compared with those of the constantly driven preparation. In most cases studied the frequency-response curves for the post rest action potential are steeper in rise and shifted to the left. By placing a series of vagal stimulations at different moments into the resting interval vagal effects could be composed to reflect the time course of transmitter action in a non beating preparation. It was shown that such time course is not essentially altered compared with that of a driven preparation. From a mathematical treatment of the frequency-response relations it is concluded that post rest action potentials show a higher sensitivity towards the transmitter action and that the amount of transmitter liberated after a period of rest may be increased. Possible explanations for this behaviour are proposed.  相似文献   

13.
A detailed morphometric analysis of a Lucifer yellow-filled Cb amacrine cell was undertaken to provide raw data for the construction of a neuronal cable model. The cable model was employed to determine whether distal input-output regions of dendrites were electrically isolated from the soma and each other. Calculations of steady state electrotonic current spread suggested reasonable electrical communication between cell body and dendrites. In particular, the centripetal voltage attenuation revealed that a synaptic signal introduced at the distal end of the equivalent dendrite could spread passively along the dendrite and reach the soma with little loss in amplitude. A functional interpretation of this results could favour a postsynaptic rather than a presynaptic scheme for the operation of directional selectivity in the rabbit retina. On the other hand, dendrites of starburst amacrine cells process information electrotonically with a bias towards the centrifugal direction and for a restricted range of membrane resistance values the voltage attenuation in the centripetal direction suggests that the action of these dendrites can be confined locally. A functional interpretation of this result favours a presynaptic version of Vaney's cotransmission model which attempts to explain how the neural network of starburst amacrine cells might account for directionally selective responses observed in the rabbit retina.  相似文献   

14.
15.
Qiao JT  Han ZS  Qi JS 《生理学报》2008,60(2):293-299
本文回顾了张香桐院士在上世纪50年代完成的有关神经元树突电活动和功能特性的先驱性研究工作,简要介绍了此后成为神经科学研究热点之一的树突在中枢突触传递和突触可塑性形成中所起作用的研究概况,籍以说明张香桐院士不愧为神经科学研究历史上做出过突出贡献的人物之一。  相似文献   

16.
Ca-calmodulin-dependent protein kinase II (CaMKII) was recently shown to alter Na+ channel gating and recapitulate a human Na+ channel genetic mutation that causes an unusual combined arrhythmogenic phenotype in patients: simultaneous long QT syndrome and Brugada syndrome. CaMKII is upregulated in heart failure where arrhythmias are common, and CaMKII inhibition can reduce arrhythmias. Thus, CaMKII-dependent channel modulation may contribute to acquired arrhythmic disease. We developed a Markovian Na+ channel model including CaMKII-dependent changes, and incorporated it into a comprehensive myocyte action potential (AP) model with Na+ and Ca2+ transport. CaMKII shifts Na+ current (INa) availability to more negative voltage, enhances intermediate inactivation, and slows recovery from inactivation (all loss-of-function effects), but also enhances late noninactivating INa (gain of function). At slow heart rates, with long diastolic time for INa recovery, late INa is the predominant effect, leading to AP prolongation (long QT syndrome). At fast heart rates, where recovery time is limited and APs are shorter, there is little effect on AP duration, but reduced availability decreases INa, AP upstroke velocity, and conduction (Brugada syndrome). CaMKII also increases cardiac Ca2+ and K+ currents (ICa and Ito), complicating CaMKII-dependent AP changes. Incorporating ICa and Ito effects individually prolongs and shortens AP duration. Combining INa, ICa, and Ito effects results in shortening of AP duration with CaMKII. With transmural heterogeneity of Ito and Ito downregulation in heart failure, CaMKII may accentuate dispersion of repolarization. This provides a useful initial framework to consider pathways by which CaMKII may contribute to arrhythmogenesis.  相似文献   

17.
18.
The retina of the goldfish grows throughout its life, in part, by the addition of new neurons at the margin. New ganglion cells added at the margin tend not to grow their dendritic arbors into the older, central retina. Hitchcock and Easter (J. Neurosci. 6, 1037-1050 (1986)) proposed that the dendrites of the new cells were prevented from extending centrally within the inner plexiform layer by the dendrites of the previous generations of cells. This proposal was tested by first killing existing ganglion cells with a retrogradely transported neurotoxin (propidium iodide; PI), and then observing the orientation and branching pattern of the dendrites of ganglion cells added subsequently at the margin. Dendrites were stained in retinal wholemounts by intracellular injections of Lucifer yellow. The data showed that cells added subsequent to the PI treatment grew their dendritic arbors preferentially toward central retina consistent with the hypothesis. It is concluded that interactions among adjacent ganglion cells regulates dendritic growth.  相似文献   

19.
Organotypic culture systems of functional neural tissues are important tools in neurobiological research. Ideally, such a system should be compatible with imaging techniques, genetic manipulation, and electrophysiological recording. Here we present a simple interphase tissue culture system for adult rabbit retina that requires no specialized equipment and very little maintenance. We demonstrate the dissection and incubation of rabbit retina and particle-mediated gene transfer of plasmids encoding GFP or a variety of subcellular markers into retinal ganglion cells. Rabbit retinas cultured this way can be kept alive for up to 6 days with very little changes of the overall anatomical structure or the morphology of individual ganglion- and amacrine cells.  相似文献   

20.
Voltage-elicited action potentials (APs) have been reproducibly obtained in Arabidopsis thaliana ecotype col. Excitations pulses (voltage–duration: V–t) were given in the 0- to 18-V and 0- to 35-s ranges, respectively, by two galvanically isolated Pt/Ir small wires inserted trough the main vein in the distal part of the leaf. Conventional liquid junction Ag/AgCl electrodes were placed at the zone between leaf/petiole (e1) and a second one on the petiole, near the central axis of the rosette (e2). A typical hyperbolic V–t relationship was obtained. The most excitable plants did have a chronaxy of 0.1 s and a rheobase of 2 V. Although the amplitude of the APs was highly variable (range 10–80 mV), it was related neither to the intensity nor to the duration of the stimulation pulse: the phenomenon is a typical all-or-none response. The APs were moving away from the excitation zone and could successively be detected at e1 and then at e2: their propagation speed was 1.15 ± 0.26 mm s−1. The absolute refractory period was approximately 20 min and the relative one approximately 80 min. The reproducibility of the voltage elicitation was in A.   thaliana col ecotype 91%, with 83% of the APs propagating from the leaf to the petiole. In the Wassilewskija ecotype, 45% of the plants were responsive, with 78% of APs transmitted (propagation speed was 0.76 ± 0.17 mm s−1), whereas in the Lansberg erecta ecotype none of the plant tested elicited a voltage-dependent AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号