首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bax is a pro-apoptotic Bcl-2 family protein that regulates programmed cell death through homodimerization and through heterodimerization with Bcl-2. Bax alpha is encoded by six exons and undergoes alternative splicing. Bax kappa, a splice variant of Bax with conserved BH1, BH2 and BH3 binding domains and a C-terminal transmembrane domain (TM), but with an extra 446-bp insert between exons 1 and 2 leading to loss of an N-terminal ART domain, was identified from an ischemic rat brain cDNA library. Expression of Bax kappa mRNA and protein was up-regulated in hippocampus after cerebral ischemic injury. The increased Bax kappa mRNA was distributed mainly in selectively vulnerable hippocampal CA1 neurons that are destined to die after global ischemia. Overexpression of Bax kappa protein in HN33 mouse hippocampal neuronal cells induced cell death, which was partially abrogated by co-overexpression of Bcl-2. Moreover, co-overexpression of Bax kappa and Bax alpha increased HN33 cell death. The results suggest that the Bax kappa may have a role in ischemic neuronal death.  相似文献   

3.
To evidence the notion that gangliosides involve neuronal cell interactions in the brain, we surveyed the presence of ganglioside-binding proteins in membrane lysates of adult rat cerebellum. Three proteins (p58, p90, and p160) were identified as GT1b-binding proteins by incubation of the blot of the membrane lysate with GT1b micelles. We generated a monoclonal antibody (mAb) specific to the polypeptide portion of the GT1b-binding proteins (YAK-2). The YAK-2 mAb specifically reacted with all three proteins on blots of proteins pretreated under nonreducing conditions for SDS-PAGE, but reacted mainly with p58 under reducing conditions, showing that p90 and p160 are oligomeric forms of p58. The binding activity of the YAK-2 mAb was completely inhibited by the presence of GT1b micelles, indicating the specificity of YAK-2 mAb for p58 and its oligomers. Immunohistochemical investigations revealed that both p58 and GT1b colocalize within the granular layer of adult rat cerebellum. Expression cloning of p58 cDNA was performed using YAK-2 mAb, and five putative clones were obtained. Among them, the nucleotide sequence of one cDNA completely matched that of rat brain-specific sodium-dependent inorganic phosphate cotransporter (rBNPI), a 61 kDa membrane protein. COS7 cells were transfected with a Flag-chimeric construct containing the rBNPI/p58 cDNA, and the membrane lysate was subjected to immunoprecipitation with anti-Flag antibody. One protein (64 kDa) was detected only with YAK-2 mAb, and the membrane lysate specifically bound to GT1b micelles. Taking together, we propose that rBNPI/p58 functions as a GT1b-binding protein in neuronal cells.  相似文献   

4.
《The Journal of cell biology》1988,107(6):2293-2305
A membrane-bound adhesive protein that promotes neurite outgrowth in brain neurons has been isolated from rat brain (Rauvala, H., and R. Pihlaskari. 1987. J. Biol. Chem. 262:16625-16635). The protein is an immunochemically distinct molecule with a subunit size of approximately 30 kD (p30). p30 is an abundant protein in perinatal rat brain, but its content decreases rapidly after birth. In the present study the amino- terminal sequence of p30 was determined by automated Edman degradations. A single amino-terminal sequence was found, which is not present in previously studied adhesive molecules. This unique sequence has a cluster of five positive charges within the first 11 amino acid residues: Gly-Lys-Gly-Asp-Pro-Lys-Lys-Pro-Arg-Gly-Lys. Antisynthetic peptide antibodies that recognize this sequence were produced in a rabbit, purified with a peptide affinity column, and shown to bind specifically to p30. The antipeptide antibodies were used, together with anti-p30 antibodies, to study the localization of p30 in brain cells and in neuroblastoma cells as follows. (a) Immunofluorescence and immunoelectron microscopy indicated that p30 is a component of neurons in mixed cultures of brain cells. The neurons and the neuroblastoma cells expressed p30 at their surface in the cell bodies and the neurites. In the neurites p30 was found especially in the adhesive distal tips of the processes. In addition the protein was detected in ribosomal particles and in intracellular membranes in a proportion of cells. (b) The antibodies immobilized on microtiter wells enhanced adhesion and neurite growth indicating that p30 is surface exposed in adhering neural cells. (c) Immunoblotting showed that p30 is extracted from suspended cells by heparin suggesting that a heparin-like structure is required for the binding of p30 to the neuronal cell surface. A model summarizing the suggested interactions of p30 in cell adhesion and neurite growth is presented.  相似文献   

5.
The translation eukaryotic elongation factor 1alpha (eEF1A) is a monomeric GTPase involved in protein synthesis. In addition, this protein is thought to participate in other cellular functions such as actin bundling, cell cycle regulation, and apoptosis. Here we show that eEF1A is associated with the alpha2 subunit of the inhibitory glycine receptor in pulldown experiments with rat brain extracts. Moreover, additional proteins involved in translation like ribosomal S6 protein and p70 ribosomal S6 protein kinase as well as ERK1/2 and calcineurin were identified in the same pulldown approaches. Glycine receptor activation in spinal cord neurons cultured for 1 week resulted in an increased phosphorylation of ribosomal S6 protein. Immunocytochemistry showed that eEF1A and ribosomal S6 protein are localized in the soma, dendrites, and at synapses of cultured hippocampal and spinal cord neurons. Consistent with our biochemical data, immunoreactivities of both proteins were partially overlapping with glycine receptor immunoreactivity in cultured spinal cord and hippocampal neurons. After 5 weeks in culture, eEF1A immunoreactivity was redistributed to the cytoskeleton in about 45% of neurons. Interestingly, the degree of redistribution could be increased at earlier stages of in vitro differentiation by inhibition of either the ERK1/2 pathway or glycine receptors and simultaneous N-methyl-D-aspartate receptor activation. Our findings suggest a functional coupling of eEF1A with both inhibitory and excitatory receptors, possibly involving the ERK-signaling pathway.  相似文献   

6.
A cDNA library constructed from mRNA of rat brain was used to clone the cDNA that encodes the 30-kDa heparin-binding protein (amphoterin) that is developmentally regulated in brain and enhances neurite outgrowth in cerebral neurons. cDNA and peptide sequencing identified a dipolar sequence that has been previously found in studies of high mobility group 1 protein: the 184-amino acid cationic region is followed by a cluster of 30 anionic residues. The mRNA encoding amphoterin is also developmentally regulated; it is strongly reduced in quantity after the rapid perinatal growth phase of the rat brain. Anti-synthetic peptide antibodies raised according to the sequence of amphoterin were shown to bind specifically to the protein isolated from brain, and were used to detect amphoterin in subcellular fractions and in immunostaining of cells. Amphoterin was found in the cytoplasm of the cell soma, in the cell processes, and the substrate-attached material. In cells that are at an active stage of spreading and extending their cytoplasmic processes amphoterin was especially associated with plasma membrane filopodia. The distinct localization to the filopodia of the advancing plasma membrane suggests that endogenous amphoterin has a role in the extension of neurite-type cytoplasmic processes in developing cells. This inference is further supported by the finding that both anti-amphoterin and the anti-synthetic peptide antibodies in the culture media strongly inhibit the outgrowth of cytoplasmic processes.  相似文献   

7.
8.
A mAb was isolated (mAb BD6) that recognized a surface glycoprotein on rat basophilic leukemia cells (RBL-2H3). The antibody bound to 2 x 10(6) molecules/cell and specifically blocked IgE binding (50% inhibition with 3.48 +/- 0.51 micrograms/ml; mean +/- SEM), although neither IgE nor anti-high affinity IgE receptor (anti-Fc epsilon RI) mAb blocked mAb BD6 binding to the cells. mAb BD6 did not affect the rate of dissociation of cell-bound IgE, nor did it induce or inhibit the internalization of IgE. mAb BD6 did not release histamine. However, it did cause rapid spreading of the cells. By 1 h the cells had retracted to a spherical shape with their surface covered with membranous spikes, and they could easily be detached from the tissue culture plate. These changes differed from those observed after Fc epsilon RI activation. mAb BD6 immunoprecipitated a complex of two proteins, 38 to 50 kDa and 135 kDa from 125I-surface labeled rat basophilic leukemia cells that are not subunits of Fc epsilon RI. Chemical cross-linking studies showed that these molecules are associated on the cell surface. By immunoblotting, mAb BD6 reacted with a 40-kDa protein. Therefore, mAb BD6 binds to a surface protein that is close to the Fc epsilon RI and sterically inhibits 125I-IgE binding.  相似文献   

9.
10.
The ITGB4BP gene encodes for a highly conserved protein, named p27BBP (also known as eIF6), originally identified in mammals as a cytoplasmic interactor of beta4 integrin. In vitro and in vivo studies demonstrated that p27BBP is essential for cell viability and has a primary function in the biogenesis of the 60S ribosomal subunit. Here we report the genomic organization of the human ITGB4BP gene and show that its gene product is expressed with features of a housekeeping element in vitro, but is regulated in a cell specific fashion in vivo. The human gene spans 10 kb and comprises seven exons and six introns. The 5' flanking region shows a TATA-less promoter, canonical CpG islands, and binding sites for serum responsive elements. In cultured cells, p27BBP mRNA and protein are constitutively expressed and stable. A gradual loss of p27BBP mRNA can be observed only after prolonged serum starvation, and heat shock treatment. In contrast, p27BBP mRNA and protein levels in vivo are variable among different organs. More strikingly, immunohistochemical analysis shows that the p27BBP protein is present in a cell specific fashion, even within the same tissue. Taken together, these data show that ITGB4BP gene expression is highly regulated in vivo, possibly by the combination of tissue specific factors and protein synthesis pathways.  相似文献   

11.
A novel component which specifically binds butyrate was found in rat and mouse liver. This component, termed butyrate binding protein (BBP), is localized in the cytosolic fraction and exhibits protein characteristics, such as heat- and protease-sensitivity. The size of BBP was found to be 7.6S, while it was converted to subunits of 45,000--48,000 dalton by treatment with sodium dodecyl sulfate. The dissociation constant of the binding of BBP with butyrate was 2.22 X 10(-6) M in the standard assay. 30-Fold purification of BBP was achieved by batch-wise adsorption and elution from CM-cellulose and hydroxylapatite column chromatography. BBP is clearly distinguishable from the fatty acid-binding protein found previously on the basis of its size and binding specificity.  相似文献   

12.
Degeneration of neurons in Alzheimer's disease is mediated by beta-amyloid peptide by diverse mechanisms, which include a putative apoptotic component stimulated by unidentified signaling events. This report describes a novel beta-amyloid peptide-binding protein (denoted BBP) containing a G protein-coupling module. BBP is one member of a family of three proteins containing this conserved structure. The BBP subtype bound human beta-amyloid peptide in vitro with high affinity and specificity. Expression of BBP in cell culture induced caspase-dependent vulnerability to beta-amyloid peptide toxicity. Expression of a signaling-deficient dominant negative BBP mutant suppressed sensitivity of human Ntera-2 neurons to beta-amyloid peptide mediated toxicity. These findings suggest that BBP is a target of neurotoxic beta-amyloid peptide and provide new insight into the molecular pathophysiology of Alzheimer's disease.  相似文献   

13.
Gene expression plays an important role in determining the fate of neurons after ischemia. To identify additional genes that promote survival or execute programmed cell death in ischemic neurons, a subtractive cDNA library was constructed from hippocampus of rats subjected to global ischemia. With use of a differential screening technique, a cDNA was identified that was up-regulated after ischemia. The cDNA was found to have high homology with human cyclin H at both the nucleotide level (89%) and the amino acid level (93%). Northern blotting detected cyclin H mRNA in nonischemic and ischemic brains. In situ hybridization studies revealed that cyclin H message was found in hippocampal neurons in nonischemic brain. After ischemia, expression was increased primarily in the dentate gyrus and CA3 regions of hippocampus. Expression of cyclin H protein, detected by western blotting of hippocampal tissue, was increased after global ischemia, but expression of cyclins B1 and D1 and other related cell cycle genes (Cdk7 and Cdc2) was not increased. Cyclin H immunoreactivity was found exclusively within neurons. After ischemia, there was increased immunoreactivity within neurons in dentate gyrus, CA3, and cortex. Thus, cyclin H is expressed in normal postmitotic neurons and expression is increased in neurons that are ischemic yet survive. These results suggest that cyclin H may have functions in neurons other than cell cycle regulation, including other known functions such as DNA repair.  相似文献   

14.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   

15.
16.
Cloning of rat parkin cDNA and distribution of parkin in rat brain   总被引:8,自引:0,他引:8  
The rat parkin cDNA sequence was characterized after screening a rat hypothalamus cDNA library with a 32P-labeled probe containing the entire open reading frame of the human parkin cDNA. This sequence encompasses 1,576 bp and contains a single open reading frame that encodes a 465-amino acid protein. The rat parkin amino acid sequence exhibits a very striking homology to the human and mouse parkin, with 85 and 95% identity, respectively. Both the N-terminal ubiquitin and the ring-IBR (in between ring)-ring finger domains appear to be highly conserved among rat, human, and mouse parkin. An affinity-purified polyclonal antibody (ASP5p) was generated with a synthetic peptide corresponding to amino acids 295-311 of the parkin sequence, which is identical in the three species. Western blotting revealed that ASP5p recognizes a single 52-kDa band, which corresponds to the molecular mass of the parkin protein. Immunostaining with ASP5p showed that parkin is principally located in the cytoplasm of neurons that are widely distributed in the rat brain. Parkin-immunoreactive neurons abound in structures that are specifically targeted in Parkinson's disease, e.g., subtantia nigra, but are also present in unaffected structures, e.g., cerebellum. Furthermore, parkin-enriched glial cells can be detected in various nuclei of the rat brain. Thus, the role of parkin may be much more global than previously thought on the basis of genetic findings gathered in cases of early-onset parkinsonism.  相似文献   

17.
22R-hydroxycholesterol, a steroid intermediate in the pathway of pregnenolone formation from cholesterol, was found at lower levels in Alzheimer's disease (AD) hippocampus and frontal cortex tissue specimens compared to age-matched controls. beta-Amyloid (Abeta) peptide has been shown to be neurotoxic and its presence in brain has been linked to AD pathology. 22R-hydroxycholesterol was found to protect, in a dose-dependent manner, against Abeta-induced rat sympathetic nerve pheochromocytoma (PC12) and differentiated human Ntera2/D1 teratocarcinoma (NT2N) neuron cell death. Other steroids tested were either inactive or acted on rodent neurons only. The effect of 22R-hydroxycholesterol was found to be stereospecific because its enantiomer 22S-hydroxycholesterol failed to protect the neurons from Abeta-induced cell death. Moreover, the effect of 22R-hydroxycholesterol was specific for Abeta-induced cell death because it did not protect against glutamate-induced neurotoxicity. The neuroprotective effect of 22R-hydroxycholesterol was seen when using Abeta1-42 but not the Abeta25-35 peptide. To investigate the mechanism of action of 22R-hydroxycholesterol we examined the direct binding of this steroid to Abeta using a novel cholesterol-protein binding blot assay. Using this method the direct specific binding, under native conditions, of 22R-hydroxycholesterol to Abeta1-42 and Abeta17-40, but not Abeta25-35, was observed. These data suggest that 22R-hydroxycholesterol binds to Abeta and the formed 22R-hydroxycholesterol/Abeta complex is not toxic to rodent and human neurons. We propose that 22R-hydroxycholesterol offers a new means of neuroprotection against Abeta toxicity by inactivating the peptide.  相似文献   

18.
A monoclonal antibody (mAb), KA8 that interacts with the kappa-opioid receptor binding site was generated. BALB/c female mice were immunized with a partially purified kappa-opioid receptor preparation from frog brain. Spleen cells were hybridized with SP2/0AG8 myeloma cells. The antibody-producing hybridomas were screened for competition with opioid ligands in a modified enzyme-linked immunosorbent assay. The cell line KA8 secretes an IgG1 (kappa-light chain) immunoglobulin. The mAb KA8 purified by affinity chromatography on protein A-Sepharose CL4B was able to precipitate the antigen from a solubilized and affinity-purified frog brain kappa-opioid receptor preparation. In competition studies, the mAb KA8 decreased specific [3H]ethylketocyclazocine ([3H]EKC) binding to the frog brain membrane fraction in a concentration-dependent manner to a maximum to 72%. The degree of the inhibition was increased to 86% when mu- and delta-opioid binding was suppressed by 100 nM [D-Ala2,NMe-Phe4,Gly-ol]-enkephalin (DAGO) and 100 nM [D-Ala2,L-Leu5]-enkephalin (DADLE), respectively, and to 100% when mu-, delta-, and kappa 2-sites were blocked by 5 microM DADLE. However, the mu-specific [3H]DAGO and the delta-preferring [3H]DADLE binding to frog brain membranes cannot be inhibited by mAb KA8. These data suggest that this mAb is recognizing the kappa- but not the mu- and delta-subtype of opioid receptors. The mAb KA8 also inhibits specific [3H]naloxone and [3H]EKC binding to chick brain cultured neurons and rat brain membranes, whereas it has only a slight effect on [3H]EKC binding to guinea pig cerebellar membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Neuronal apoptosis is involved in several pathological conditions of the brain. Using cDNA arrays, we observed upregulation of ubiquitin-binding protein p62 expression during serum withdrawal-induced apoptosis in Neuro-2a cells. We demonstrate here that the expression levels of p62 mRNA and protein were increased in Neuro-2a cells and cultured rat hippocampal neurons by different types of proapoptotic treatments, including serum deprivation, okadaic acid, etoposide, and trichostatin A. Ubiquitin-binding protein p62 is a widely expressed cytoplasmic protein of unclear function. The ability of p62 to bind noncovalently to ubiquitin and to several signalling proteins suggests that p62 may play a regulatory role connected to the ubiquitin system. Accordingly, we show that proteasomal inhibitors MG-132, lactacystin, and PSI caused a prominent upregulation of p62 mRNA and protein expression, with a concomitant increase in ubiquitinated proteins. To conclude, p62 upregulation appears to be a common event in neuronal apoptosis. Results also suggest that the induction of p62 expression by proteasomal inhibitors may be a response to elevated levels of ubiquitinated proteins, possibly constituting a protective mechanism.  相似文献   

20.
Ataxin-2 is a novel protein, where the unstable expansion of an internal polyglutamine domain can cause the neurodegenerative disease Spinocerebellar Ataxia type 2 (SCA2). To elucidate its cellular function, we have used full-length ataxin-2 as bait in a yeast two-hybrid screen of human adult brain cDNA. As binding partners we found endophilin A1 and A3, two brain-expressed members of the endophilin A family involved in synaptic vesicle endocytosis. Co-immunoprecipitation studies confirmed the binding of these proteins as an endogenous complex in mouse brain. In vitro binding experiments narrowed the binding interfaces down to two proline-rich domains on ataxin-2, which interacted with the SH3 domain of endophilin A1/A3. Ataxin-2 and endophilin associated at the endoplasmic reticulum as well as at the plasma membrane as determined by immunofluorescence microscopy of transfected cell lines, and by centrifugation fractionation studies of mouse brain. Importantly, the pattern observed in transfected cells was conserved in rat hippocampal neurons. In the mouse brain, an association of ataxin-2 with endocytic proteins such as the adaptor CIN85 and the ubiquitin ligase c-Cbl was also demonstrated. GST pull-down assays showed ataxin-2 to directly interact with the SH3 domains A and C of CIN85 and with the SH3 domain of Src, a kinase activated after receptor stimulation. Functional studies demonstrated that ataxin-2 affects endocytic trafficking of the epidermal growth factor receptor (EGFR). Taken together, these data implicate ataxin-2 to play a role in endocytic receptor cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号