首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
T cell epitopes have been found to be shared by circulating, seasonal influenza virus strains and the novel pandemic H1N1 influenza infection, but the ability of these common epitopes to provide cross-protection is unknown. We have now directly tested this by examining the ability of live seasonal influenza vaccine (FluMist) to mediate protection against swine-origin H1N1 influenza virus infection. Naive mice demonstrated considerable susceptibility to H1N1 Cal/04/09 infection, whereas FluMist-vaccinated mice had markedly decreased morbidity and mortality. In vivo depletion of CD4(+) or CD8(+) immune cells after vaccination indicated that protective immunity was primarily dependent upon FluMist-induced CD4(+) cells but not CD8(+) T cells. Passive protection studies revealed little role for serum or mucosal Abs in cross-protection. Although H1N1 influenza infection of naive mice induced intensive phagocyte recruitment, pulmonary innate defense against secondary pneumococcal infection was severely suppressed. This increased susceptibility to bacterial infection was correlated with augmented IFN-γ production produced during the recovery stage of H1N1 influenza infection, which was completely suppressed in mice previously immunized with FluMist. Furthermore, susceptibility to secondary bacterial infection was decreased in the absence of type II, but not type I, IFN signaling. Thus, seasonal FluMist treatment not only promoted resistance to pandemic H1N1 influenza infection but also restored innate immunity against complicating secondary bacterial infections.  相似文献   

2.
The clinico-experimental studies of mixed influenza-staphylococcal infection constantly point to the development of the aggravation of the infectious process due to the synergic action of the bacterial and viral infective agents. But, as shown by the authors of the present work, in those cases when the experimental infection with the virus was preceded by staphylococcal infection by 72 hours no synergism was observed. In cases of infection with adaptogenic virus the mortality rate of mice resulting from meningococcal infection was twice as low. The possible explanation of this fact is discussed.  相似文献   

3.
Infectious exacerbations of chronic obstructive pulmonary disease (COPD) have been reported to occur with both viral and bacterial pathogens. In this study, 35 exacerbations associated with the isolation of non-typeable Haemophilus influenzae from sputum were identified as part of a prospective longitudinal study. Samples from these patients were subjected to immunoassays to identify a new immune response to the homologous isolate of non-typeable H. influenzae to more accurately assess a bacterial etiology. These patients also were studied carefully for evidence of viral infection using viral culture, serology and polymerase chain reaction-based assays. Sixteen of 35 exacerbations (45.7%) were associated with evidence of acute viral infection and 11 of the 35 exacerbations (31.4%) were associated with the development of new serum IgG to homologous non-typeable H. influenzae. Overall, evidence of infection with a respiratory virus or non-typeable H. influenzae was seen in 24 of 35 exacerbations (68.6%). No association between viral infection and immune response to non-typeable H. influenzae was observed, although a trend toward an immune response to non-typeable H. influenzae and absence of viral infection was seen. The results show that exacerbations in adults with COPD were associated with infection caused by virus alone, non-typeable H. influenzae alone, or virus and non-typeable H. influenzae simultaneously.  相似文献   

4.
Secondary bacterial infections often complicate respiratory viral infections, but the mechanisms whereby viruses predispose to bacterial disease are not completely understood. We determined the effects of infection with respiratory syncytial virus (RSV), human parainfluenza virus 3 (HPIV-3), and influenza virus on the abilities of nontypeable Haemophilus influenzae and Streptococcus pneumoniae to adhere to respiratory epithelial cells and how these viruses alter the expression of known receptors for these bacteria. All viruses enhanced bacterial adhesion to primary and immortalized cell lines. RSV and HPIV-3 infection increased the expression of several known receptors for pathogenic bacteria by primary bronchial epithelial cells and A549 cells but not by primary small airway epithelial cells. Influenza virus infection did not alter receptor expression. Paramyxoviruses augmented bacterial adherence to primary bronchial epithelial cells and immortalized cell lines by up-regulating eukaryotic cell receptors for these pathogens, whereas this mechanism was less significant in primary small airway epithelial cells and in influenza virus infections. Respiratory viruses promote bacterial adhesion to respiratory epithelial cells, a process that may increase bacterial colonization and contribute to disease. These studies highlight the distinct responses of different cell types to viral infection and the need to consider this variation when interpreting studies of the interactions between respiratory cells and viral pathogens.  相似文献   

5.
The influenza A virus is one of the main causes of respiratory infection. Although influenza virus infection alone can result in pneumonia, secondary bacterial infection combined with the virus is the major cause of morbidity and mortality. Interestingly, while influenza infection increases susceptibility to some bacteria, including Streptococcus pneumoniae, Staphylococcus aureus (S. aureus), and Haemophilus influenzae, other bacteria such as Escherichia coli (E. coli) and Klebsiella pneumoniae are not associated with influenza infection. The reason for this discrepancy is not known. In this study, it was found that prior influenza virus infection inhibits murine alveolar macrophage phagocytosis of S. aureus but not of E. coli. Here, the mechanism for this inhibition is elucidated: prior influenza virus infection strongly increases interferon gamma (IFN-γ) production. Furthermore, it was shown that IFN-γ differentially affects alveolar macrophage phagocytosis of S. aureus and E. coli. The findings of the present study explain how influenza virus infection increases susceptibility to some bacteria, such as S. aureus, but not others, and provides evidence that IFN-γ might be a promising target for protecting the human population from secondary bacterial infection by influenza.  相似文献   

6.
Epidemiological studies indicate that infectious agents are important in the pathogenesis of multiple sclerosis (MS). Our previous reports showed that the infection of SJL mice with a nonpathogenic variant of Theiler's murine encephalomyelitis virus (TMEV) engineered to express a naturally occurring Haemophilus influenzae-encoded molecular mimic (HI574-586) of an immunodominant self-myelin proteolipid protein epitope (PLP139-151) induced a rapid-onset demyelinating disease associated with the activation of PLP139-151-specific Th1 responses. The current results extend our previous findings in four critical respects. We show that disease initiation by the H. influenzae mimic is prevented by tolerance to the self PLP139-151 epitope, definitively proving the occurrence of infection-induced molecular mimicry. We demonstrate that the H. influenzae mimic epitope can be processed from the flanking sequences within the native mimic protein. We show that the H. influenzae mimic epitope only induces an immunopathologic self-reactive Th1 response and subsequent clinical disease in the context of the TMEV infection and not when administered in complete Freund's adjuvant, indicating that molecular mimicry-induced disease initiation requires virus-activated innate immune signals. Lastly, we show that the infection of SJL mice with TMEV expressing the H. influenzae mimic can exacerbate a previously established nonprogressive autoimmune disease of the central nervous system. Collectively, these findings illustrate the evolving mechanisms by which virus infections may contribute to both the initiation and exacerbation of autoimmune diseases, and they have important implications for MS pathogenesis.  相似文献   

7.
The influenza A virus protein PB1-F2 has been linked to the pathogenesis of both primary viral and secondary bacterial infections. H3N2 viruses have historically expressed full-length PB1-F2 proteins with either proinflammatory (e.g., from influenza A/Hong Kong/1/1968 virus) or noninflammatory (e.g., from influenza A/Wuhan/359/1995 virus) properties. Using synthetic peptides derived from the active C-terminal portion of the PB1-F2 protein from those two viruses, we mapped the proinflammatory domain to amino acid residues L62, R75, R79, and L82 and then determined the role of that domain in H3N2 influenza virus pathogenicity. PB1-F2-derived peptides containing that proinflammatory motif caused significant morbidity, mortality, and pulmonary inflammation in mice, manifesting as increased acute lung injury and the presence of proinflammatory cytokines and inflammatory cells in the lungs compared to peptides lacking this motif, and better supported bacterial infection with Streptococcus pneumoniae. Infections of mice with an otherwise isogenic virus engineered to contain this proinflammatory sequence in PB1-F2 demonstrated increased morbidity resulting from primary viral infections and enhanced development of secondary bacterial pneumonia. The presence of the PB1-F2 noninflammatory (P62, H75, Q79, and S82) sequence in the wild-type virus mediated an antibacterial effect. These data suggest that loss of the inflammatory PB1-F2 phenotype that supports bacterial superinfection during adaptation of H3N2 viruses to humans, coupled with acquisition of antibacterial activity, contributes to the relatively diminished frequency of severe infections seen with seasonal H3N2 influenza viruses in recent decades compared to their first 2 decades of circulation.  相似文献   

8.
目的 评价季节性流感裂解疫苗对流感病毒H7N9的免疫保护效力.方法 用我国2012~2013年度季节性流感裂解疫苗,以腹腔注射方式免疫BALB/c小鼠,并设PBS免疫模型组,末次免疫14 d后以5 LD50 A/Anhui/1(H7N9)进行攻试验.感染后观察记录小鼠临床表现,体重变化,并分别于第2天和第4天每组处死3只小鼠,取肺组织和鼻甲骨测病毒滴度和载量.结果 感染后疫苗与模型组小鼠体重下降明显,疫苗组存活率为10%,模型组全部死亡.感染后第4天疫苗组鼻甲骨滴度显著低于模型组.血凝抑制试验及中和实验表明免疫小鼠血清无中和H7N9病毒抗体.结论 季节性流感疫苗在小鼠中对于H7N9流感病毒感染无明显保护作用.  相似文献   

9.
目的进一步了解新型H7N9流感病毒的致病性、传播能力以及通过何种途径进行传播。方法 H7N9病毒感染小鼠后与同居小鼠合笼,研究同居小鼠的临床变化指征、病毒复制情况、病毒在组织中的分布以及病理变化。以同居小鼠分泌物接种其他小鼠,观察同居小鼠通过何种途径传播病毒。结果 H7N9病毒可以在肺组织、肠组织和脑组织中复制,并可以在同居小鼠中传播。H7N9病毒感染小鼠其咽、眼分泌物以及粪便均具有感染性,其中尤以咽拭子的传播风险最高。结论 H7N9病毒可以不通过适应就感染小鼠,并引起小鼠间传播。被感染小鼠分泌物具有感染性。  相似文献   

10.
Secondary pneumococcal pneumonia is a serious complication during and shortly after influenza infection. We established a mouse model to study postinfluenza pneumococcal pneumonia and evaluated the role of IL-10 in host defense against Streptococcus pneumoniae after recovery from influenza infection. C57BL/6 mice were intranasally inoculated with 10 median tissue culture infective doses of influenza A (A/PR/8/34) or PBS (control) on day 0. By day 14 mice had regained their normal body weight and had cleared influenza virus from the lungs, as determined by real-time quantitative PCR. On day 14 after viral infection, mice received 10(4) CFU of S. pneumoniae (serotype 3) intranasally. Mice recovered from influenza infection were highly susceptible to subsequent pneumococcal pneumonia, as reflected by a 100% lethality on day 3 after bacterial infection, whereas control mice showed 17% lethality on day 3 and 83% lethality on day 6 after pneumococcal infection. Furthermore, 1000-fold higher bacterial counts at 48 h after infection with S. pneumoniae and, particularly, 50-fold higher pulmonary levels of IL-10 were observed in influenza-recovered mice than in control mice. Treatment with an anti-IL-10 mAb 1 h before bacterial inoculation resulted in reduced bacterial outgrowth and markedly reduced lethality during secondary bacterial pneumonia compared with those in IgG1 control mice. In conclusion, mild self-limiting influenza A infection renders normal immunocompetent mice highly susceptible to pneumococcal pneumonia. This increased susceptibility to secondary bacterial pneumonia is at least in part caused by excessive IL-10 production and reduced neutrophil function in the lungs.  相似文献   

11.
Increased morbidity and mortality occur regularly during influenza epidemics. The exact mechanisms involved are not well defined but bacterial superinfection of influenza virus infected patients is considered to play an important role. In the present study, the effect of influenza virus infection on in vivo production of turnout necrosis factor (TNF) in response to bacterial stimuli was investigated. Release of TNF in mice infected by an aerosol of influenza virus was significant after administration of bacterial lipopolysaccharide (LPS) at 72 h, whereas administration of homologous influenza virus produced only modest amounts of TNF at 96 h. Significant production of TNF was observed 48 h after intravenous administration of infectious influenza in response to LPS but not with the homologous virus. TNF induced after influenza virus infection could be blocked by a specific murine anti-TNF monoclonal antibody. Higher TNF production following aerosol influenza infection correlated with peak titres of influenza virus in the lungs of infected mice and with enhanced generation of luminoldependent chemiluminscence.  相似文献   

12.
The innate immune response is essential for host defense against microbial pathogen infections and is mediated by pattern recognition molecules recognizing pathogen-associated molecular patterns. Our previous work has demonstrated that the extracellular matrix protein mindin functions as a pattern recognition molecule for bacterial pathogens. In this study, we examined the role of mindin in influenza virus infection. We found that intranasal infection of mindin-deficient mice by influenza virus resulted in dramatically increased virus titers in the lung and intranasal cavity of mutant mice. In contrast, lungs from intratracheally infected mindin-deficient mice contained similar influenza virus titers. We showed that mindin interacted with influenza virus particles directly and that mindin-deficient macrophages exhibited impaired activation after influenza virus infection in vitro. Furthermore, intranasal administration of recombinant mindin significantly enhanced the clearance of influenza virus in wild-type mice. Together, these results demonstrate that mindin plays an essential role in the host innate immune response to influenza virus infection and suggest that mindin may be used as an immune-enhancing agent in influenza infection.  相似文献   

13.
We investigated the synergism between influenza virus and Streptococcus pneumoniae, particularly the role of deletions in the stalk region of the neuraminidase (NA) of H2N2 and H9N2 avian influenza viruses. Deletions in the NA stalk (ΔNA) had no effect on NA activity or on the adherence of S. pneumoniae to virus-infected human alveolar epithelial (A549) and mouse lung adenoma (LA-4) cells, although it delayed virus elution from turkey red blood cells. Sequential S. pneumoniae infection of mice previously inoculated with isogenic recombinant H2N2 and H9N2 influenza viruses displayed severe pneumonia, elevated levels of intrapulmonary proinflammatory responses, and death. No differences between the WT and ΔNA mutant viruses were detected with respect to effects on postinfluenza pneumococcal pneumonia as measured by bacterial growth, lung inflammation, morbidity, mortality, and cytokine/chemokine concentrations. Differences were observed, however, in influenza virus-infected mice that were treated with oseltamivir prior to a challenge with S. pneumoniae. Under these circumstances, mice infected with ΔNA viruses were associated with a better prognosis following a secondary bacterial challenge. These data suggest that the H2N2 and H9N2 subtypes of avian influenza A viruses can contribute to secondary bacterial pneumonia and deletions in the NA stalk may modulate its outcome in the context of antiviral therapy.  相似文献   

14.
Currently, two neuraminidase (NA) inhibitors, oseltamivir and zanamivir, which must be administrated twice daily for 5 days for maximum therapeutic effect, are licensed for the treatment of influenza. However, oseltamivir-resistant mutants of seasonal H1N1 and highly pathogenic H5N1 avian influenza A viruses have emerged. Therefore, alternative antiviral agents are needed. Recently, a new neuraminidase inhibitor, R-125489, and its prodrug, CS-8958, have been developed. CS-8958 functions as a long-acting NA inhibitor in vivo (mice) and is efficacious against seasonal influenza strains following a single intranasal dose. Here, we tested the efficacy of this compound against H5N1 influenza viruses, which have spread across several continents and caused epidemics with high morbidity and mortality. We demonstrated that R-125489 interferes with the NA activity of H5N1 viruses, including oseltamivir-resistant and different clade strains. A single dose of CS-8958 (1,500 µg/kg) given to mice 2 h post-infection with H5N1 influenza viruses produced a higher survival rate than did continuous five-day administration of oseltamivir (50 mg/kg twice daily). Virus titers in lungs and brain were substantially lower in infected mice treated with a single dose of CS-8958 than in those treated with the five-day course of oseltamivir. CS-8958 was also highly efficacious against highly pathogenic H5N1 influenza virus and oseltamivir-resistant variants. A single dose of CS-8958 given seven days prior to virus infection also protected mice against H5N1 virus lethal infection. To evaluate the improved efficacy of CS-8958 over oseltamivir, the binding stability of R-125489 to various subtypes of influenza virus was assessed and compared with that of other NA inhibitors. We found that R-125489 bound to NA more tightly than did any other NA inhibitor tested. Our results indicate that CS-8958 is highly effective for the treatment and prophylaxis of infection with H5N1 influenza viruses, including oseltamivir-resistant mutants.  相似文献   

15.
Transforming growth factor-beta (TGF-β), a multifunctional cytokine regulating several immunologic processes, is expressed by virtually all cells as a biologically inactive molecule termed latent TGF-β (LTGF-β). We have previously shown that TGF-β activity increases during influenza virus infection in mice and suggested that the neuraminidase (NA) protein mediates this activation. In the current study, we determined the mechanism of activation of LTGF-β by NA from the influenza virus A/Gray Teal/Australia/2/1979 by mobility shift and enzyme inhibition assays. We also investigated whether exogenous TGF-β administered via a replication-deficient adenovirus vector provides protection from H5N1 influenza pathogenesis and whether depletion of TGF-β during virus infection increases morbidity in mice. We found that both the influenza and bacterial NA activate LTGF-β by removing sialic acid motifs from LTGF-β, each NA being specific for the sialic acid linkages cleaved. Further, NA likely activates LTGF-β primarily via its enzymatic activity, but proteases might also play a role in this process. Several influenza A virus subtypes (H1N1, H1N2, H3N2, H5N9, H6N1, and H7N3) except the highly pathogenic H5N1 strains activated LTGF-β in vitro and in vivo. Addition of exogenous TGF-β to H5N1 influenza virus-infected mice delayed mortality and reduced viral titers whereas neutralization of TGF-β during H5N1 and pandemic 2009 H1N1 infection increased morbidity. Together, these data show that microbe-associated NAs can directly activate LTGF-β and that TGF-β plays a pivotal role protecting the host from influenza pathogenesis.  相似文献   

16.
Staphylococcus aureus is a significant cause of hospital and community acquired pneumonia and causes secondary infection after influenza A. Recently, patients with hyper-IgE syndrome, who often present with S. aureus infections of the lung and skin, were found to have mutations in STAT3, required for Th17 immunity, suggesting a potential critical role for Th17 cells in S. aureus pneumonia. Indeed, IL-17R(-/-) and IL-22(-/-) mice displayed impaired bacterial clearance of S. aureus compared with that of wild-type mice. Mice challenged with influenza A PR/8/34 H1N1 and subsequently with S. aureus had increased inflammation and decreased clearance of both virus and bacteria. Coinfection resulted in greater type I and II IFN production in the lung compared with that with virus infection alone. Importantly, influenza A coinfection resulted in substantially decreased IL-17, IL-22, and IL-23 production after S. aureus infection. The decrease in S. aureus-induced IL-17, IL-22, and IL-23 was independent of type II IFN but required type I IFN production in influenza A-infected mice. Furthermore, overexpression of IL-23 in influenza A, S. aureus-coinfected mice rescued the induction of IL-17 and IL-22 and markedly improved bacterial clearance. These data indicate a novel mechanism by which influenza A-induced type I IFNs inhibit Th17 immunity and increase susceptibility to secondary bacterial pneumonia.  相似文献   

17.
BALB/c mice, immunosuppressed from birth with goat anti-mouse IgM, were able to recover from influenza virus infection in the absence of detectable serum and nasal antibody. Recovery was delayed a few days when compared with control animals. Antibody-deficient mice, that had recovered from an initial influenza virus infection, i.e., convalescent mice, were subsequently rechallenged with homologous influenza virus in order to study the importance of nasal and serum antibody in prevention of infection. Convalescent mice were susceptible to reinfection when nasal and serum antibody were not detectable. The mice were resistant to reinfection when serum and/or nasal antibody was detectable by radioimmunoassay. Normal mice that were passively immunized with high titer mouse anti-influenza virus serum were susceptible to challenge with homologous influenza virus. The serum antibody levels in these mice were higher than most of those found in the immune convalescent mice suppressed with anti-IgM, thereby suggesting that the serum antibody, found in convalescent suppressed mice, is not protective. We conclude that 1) mice can recover from influenza virus infection in the absence of detectable levels of nasal and serum antibody, thus indirectly confirming the role of cell-mediated immunity in recovery; 2) serum IgM, IgG2A, IgG2B, IgG3, and probably IgG1 antibody levels are not responsible for protection against influenza virus infection of the upper respiratory tract; and 3) nasal IgA antibody correlates best with protection against reinfection of the upper respiratory tract, but some other locally protective agent cannot be excluded.  相似文献   

18.
Zhu L  Li Y  Li S  Li H  Qiu Z  Lee C  Lu H  Lin X  Zhao R  Chen L  Wu JZ  Tang G  Yang W 《PloS one》2011,6(12):e29120
Hemagglutinin (HA) of the influenza virus plays a crucial role in the early stage of the viral life cycle by binding to sialic acid on the surface of host epithelial cells and mediating fusion between virus envelope and endosome membrane for the release of viral genomes into the cytoplasm. To initiate virus fusion, endosome pH is lowered by acidification causing an irreversible conformational change of HA, which in turn results in a fusogenic HA. In this study, we describe characterization of an HA inhibitor of influenza H1N1 viruses, RO5464466. One-cycle time course study in MDCK cells showed that this compound acted at an early step of influenza virus replication. Results from HA-mediated hemolysis of chicken red blood cells and trypsin sensitivity assay of isolated HA clearly showed that RO5464466 targeted HA. In cell-based assays involving multiple rounds of virus infection and replication, RO5464466 inhibited an established influenza infection. The overall production of progeny viruses, as a result of the compound's inhibitory effect on fusion, was dramatically reduced by 8 log units when compared with a negative control. Furthermore, RO5487624, a close analogue of RO5464466, with pharmacokinetic properties suitable for in vivo efficacy studies displayed a protective effect on mice that were lethally challenged with influenza H1N1 virus. These results might benefit further characterization and development of novel anti-influenza agents by targeting viral hemagglutinin.  相似文献   

19.
Annual vaccination against seasonal influenza viruses is recommended for certain individuals that have a high risk for complications resulting from infection with these viruses. Recently it was recommended in a number of countries including the USA to vaccinate all healthy children between 6 and 59 months of age as well. However, vaccination of immunologically naïve subjects against seasonal influenza may prevent the induction of heterosubtypic immunity against potentially pandemic strains of an alternative subtype, otherwise induced by infection with the seasonal strains.Here we show in a mouse model that the induction of protective heterosubtypic immunity by infection with a human A/H3N2 influenza virus is prevented by effective vaccination against the A/H3N2 strain. Consequently, vaccinated mice were no longer protected against a lethal infection with an avian A/H5N1 influenza virus. As a result H3N2-vaccinated mice continued to loose body weight after A/H5N1 infection, had 100-fold higher lung virus titers on day 7 post infection and more severe histopathological changes than mice that were not protected by vaccination against A/H3N2 influenza.The lack of protection correlated with reduced virus-specific CD8+ T cell responses after A/H5N1 virus challenge infection. These findings may have implications for the general recommendation to vaccinate all healthy children against seasonal influenza in the light of the current pandemic threat caused by highly pathogenic avian A/H5N1 influenza viruses.  相似文献   

20.
F Krammer  N Pica  R Hai  GS Tan  P Palese 《Journal of virology》2012,86(19):10302-10307
Previously, it has been shown that infection in humans with the pandemic swine influenza virus induces antibodies with specificity to the stalk domain of the viral hemagglutinin. Following the generation of these data, we sought to recapitulate these findings in the mouse model by sequential influenza virus infection. Mice that were inoculated with a seasonal influenza H1N1 virus followed by infection with a pandemic H1N1 strain produced higher antihemagglutinin stalk antibody titers than mice sequentially infected with drifted seasonal strains. In order to achieve antibody titers of comparable magnitude using sequential infection, mice had to be infected with 100- to 1,000-fold more of the drifted seasonal virus. The antistalk antibodies produced by these infections were influenza virus neutralizing, which illustrates the utility of the mouse model in which to study this interaction between virus and host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号