首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
The central nervous system (CNS) and the peripheral nervous system (PNS) are targets for steroid hormones where they regulate important neuronal functions. Some steroid hormones are synthesized within the nervous system, either de novo from cholesterol, or by the metabolism of precursors originating from the circulation, and they were termed ‘neurosteroids'. The sex steroid progesterone can also be considered as a neurosteroid since its synthesis was demonstrated in rat glial cell cultures of the CNS (oligodendrocytes and astrocytes) and of the PNS (Schwann cells). Both types of glial cells express steroid hormone receptors, ER, GR and PR. As in target tissue, e.g. the uterus, PR is estrogen-inducible in brain glial cell cultures. In the PNS, similar PR-induction could not be seen in pure Schwann cells derived from sciatic nerves. However, a significant PR-induction by estradiol was demonstrated in Schwann cells cocultured with dorsal root ganglia (DRG), and we will present evidence that neuronal signal(s) are required for this estrogen-mediated PR-induction. Progesterone has multiple effects on glial cells, it influences growth, differentiation and increases the expression of myelin-specific proteins in oligodendrocytes, and potentiates the formation of new myelin sheaths by Schwann cells in vivo. Progesterone and progesterone analogues also promotes myelination of DRG-Neurites in tissue culture, strongly suggesting a role for this neurosteroid in myelinating processes in the CNS and in the PNS.  相似文献   

2.
Peripheral nervous system (PNS) possess both classical (e.g. progesterone receptor, PR, androgen receptor, AR) and non-classical (e.g. GABAA receptor) steroid receptors and consequently may represent a target for the action of neuroactive steroids. Our data have indicated that neuroactive steroids, like for instance, progesterone, dihydroprogesterone, tetrahydroprogesterone, dihydrotestosterone and 3-diol, stimulate both in vivo and in vitro (Schwann cell cultures), the expression of two important proteins of the myelin of peripheral nerves, the glycoprotein Po (Po) and the peripheral myelin protein 22 (PMP22). It is important to highlight that the mechanisms by which neuroactive steroids exert their effects on the expression of Po and PMP22 involve different kind of receptors depending on the steroid and on the myelin protein considered. In particular, at least in culture of Schwann cells, the expression of Po seems to be under the control of PR, while that of PMP22 needs the GABAA receptor.

Because Po and PMP22 play an important physiological role for the maintenance of the multilamellar structure of the myelin of the PNS, the present observations might suggest the utilization of neuroactive steroids as new therapeutically approaches for the rebuilding of the peripheral myelin.  相似文献   


3.
Primary cultures of rat glial cells were established from newborn rat forebrains. A mixed population of oligodendrocytes and astrocytes was obtained, as confirmed by indirect immunofluorescence staining with specific markers for each cell type. Receptors were measured 3 weeks after primary culture in glial cells cultured in the presence or not of 50 nM estradiol and we have identified progesterone, glucocorticoid, estrogen, and androgen receptors (PR, GR, ER and AR), but only PR was inducible by the estrogen treatment. This estrogen-induction of PR was more dramatic in glial cells derived from female offsprings than from males, as measured by binding studies and by immunohistochemical techniques with the KC 146 anti-PR monoclonal antibody. The antiestrogen tamoxifen inhibited the estrogen induction, but had no effect by itself on PR concentration. Specific binding sites for PR, GR, ER and AR were measured by whole cell assays after labeling cells with, respectively, [3H]R5020, [3H]dexamethasone, [3H]OH-tamoxifen or [3H]R1881. PR and GR were also analyzed by ultracentrifugation and after exposure of cells to agonists, both receptors were recovered from cytosol as a 9S form, and from the nuclear high-salt, tungstate ions-containing fraction as a 4–6S form. In contrast, when the antiprogestin- and antiglucocorticosteroid RU486 was used as a ligand, a non-activated 8.5S receptor complex was found for both receptors in this nuclear fraction. The 8.5S complex of the GR was further analyzed in the presense of specific antibodies and, in addition to GR, the presence of the heat shock protein hsp90 and of a 59 kDa protein was found.

During primary culture, the effects of progesterone (P) and estradiol (E2) were tested on glial cell multiplication, morphology and differentiation. Cell growth was inhibited by P and stimulated by E2. Both hormones induced dramatic morphologic changes in oligodendrocytes and astrocytes and increased synthesis of the myelin basic protein in oligodendrocytes and of the glial fibrillary acidic protein in astrocytes.  相似文献   


4.
Baulieu E  Schumacher M 《Steroids》2000,65(10-11):605-612
Some steroids are synthesized within the central and peripheral nervous system, mostly by glial cells. These are known as neurosteroids. In the brain, certain neurosteroids have been shown to act directly on membrane receptors for neurotransmitters. For example, progesterone inhibits the neuronal nicotinic acetylcholine receptor, whereas its 3alpha,5alpha-reduced metabolite 3alpha, 5alpha-tetrahydroprogesterone (allopregnanolone) activates the type A gamma-aminobutyric acid receptor complex. Besides these effects, neurosteroids also regulate important glial functions, such as the synthesis of myelin proteins. Thus, in cultures of glial cells prepared from neonatal rat brain, progesterone increases the number of oligodendrocytes expressing the myelin basic protein (MBP) and the 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase). An important role for neurosteroids in myelin repair has been demonstrated in the rodent sciatic nerve, where progesterone and its direct precursor pregnenolone are synthesized by Schwann cells. After cryolesion of the male mouse sciatic nerve, blocking the local synthesis or action of progesterone impairs remyelination of the regenerating axons, whereas administration of progesterone to the lesion site promotes the formation of new myelin sheaths.  相似文献   

5.
Hormonal steroids participate in the control of a large number of functions of the central nervous system (CNS); recent data show that they may also intervene at the level of the peripheral nervous system (PNS). Both the CNS and the PNS metabolize endogenous as well as exogenous steroids; one of the major enzymatic system is represented by the 5alpha-reductase-3alpha-hydroxysteroid complex. This is a versatile system, since every steroid possessing the delta 4-3keto configuration (e.g., testosterone, progesterone, deoxycorticosterone) may be a substrate. High levels of 5alpha-reductase are found in the white matter of the CNS and in purified myelin. The observation that, in addition to neurons, glia may be a target for steroid action is an important recent finding. The effects of progesterone, testosterone, corticoids, and their respective 5alpha and 3alpha-5alpha derivatives on the expression of glial genes are presented and discussed. It has also been found that progesterone and/or its 5alpha-reduced metabolites increase the mRNA for the two major proteins of peripheral myelin, the glycoprotein Po and the peripheral myelin protein 22, in the sciatic nerve of normal and aged animals and in Schwann cells. The hypothesis has been put forward that glycoprotein Po might be under the control of progestagens acting mainly via the progesterone receptor, and that peripheral myelin protein 22 might be controlled via an interaction of steroids with the gamma-aminobutyric acid (GABA)ergic system. It is known that tetrahydroprogesterone, the 3alpha-5alpha-reduced metabolite of progesterone, interacts with the GABA(A) receptor. Our recent data show that several subunits of this receptor are present in sciatic nerve as well as in Schwann cells that reside in this nerve. These data open multiple possibilities for new therapeutic approaches to demyelinating diseases.  相似文献   

6.
Myelin basic protein (MBP) is a major structural component of myelin. It is expressed exclusively in myelinating glia (oligodendrocytes in the CNS and Schwann cells in the PNS) and is localized to the cytoplasmic surface of the plasma membrane and myelin membrane produced by these cells. The work described here concerns the mechanism of plasma membrane localization of MBP in myelinating glial cells and whether it involves differentiated functions specific to these cells or general functions of plasma membrane assembly common to all cells. To this end, the subcellular localization of endogenous MBP in mouse oligodendrocytes was compared with that of transiently expressed MBP in monkey fibroblasts (Cos-1 cells) transfected with an MBP expression vector containing cDNA for rat 14K MBP. The steady-state levels of MBP-specific RNA and of MBP polypeptide expressed in the transfected fibroblasts were comparable to the levels expressed in oligodendrocytes in primary culture. MBP localization was analyzed in whole cells by immunofluorescence and in specific intracellular compartments by subcellular fractionation. The results show that MBP expressed in wild-type oligodendrocytes is localized to the plasma membrane. In contrast, MBP expressed in transfected fibroblasts appears dispersed in the cytoplasm and is distributed uniformly among the various subcellular fractions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The expression of estrogen (ER) and progesterone receptors (PR) in the endometrium is regulated by steroid hormones. An increase in plasma estrogen leads to upregulation of the number of both steroid receptors, whereas a decrease in both receptors population is due to high concentration of plasma progesterone. To study the exact effect of different concentrations of beta-estradiol and progesterone on canine epithelial and stromal endometrial cells an in vitro model from dog uterus was developed and kept for 20 days. Material was obtained from healthy dogs, undergoing ovariohysterectomy. Endometrial epithelial and stromal cells were gained after collagenase treatment, followed by filtration steps. Electron microscopy and immunolabeling were used to study cell morphology and differentiation. Immunocytochemistry was used to determine proliferation rate (Ki-67), ER and PR status on Days 3, 8, 10, 13, and 20. Mitotic activity of both cells was stimulated with different concentrations of steroids and revealed high values until cells reached confluency. ER and PR expression in confluent layer from epithelial and stromal cells was upregulated with beta-estradiol. In addition progesterone significant downregulated both receptors population in stromal cells, whereas the reduction was less pronounced in epithelial cells. Results showed that our in vitro system is a useful tool to study the influence of beta-estradiol and progesterone on cell proliferation rate, ER and PR expression. The primary cell culture model helps to avoid experiments on living animals.  相似文献   

8.
We have previously shown that progesterone (PROG) is synthesized by Schwann cells and promotes myelin formation in the peripheral nervous system (PNS). We now report that this neurosteroid also stimulates myelination in organotypic slice cultures of 7-day-old (P7) rat and mouse cerebellum. Myelination was evaluated by immunofluorescence analysis of the myelin basic protein (MBP). After 7 days in culture (7DIV), we found that adding PROG (2(-5) x 10(-5) M) to the culture medium caused a fourfold increase in MBP expression when compared to control slices. The effect of PROG on MBP expression involves the classical intracellular PROG receptor (PR): the selective PR agonist R5020 significantly increased MBP expression and the PR antagonist mifepristone (RU486) completely abolished the effect of PROG on this MBP expression. Moreover, treatment of P7-cerebellar slice cultures from PR knockout (PRKO) mice with PROG had no significant effect on MBP expression. PROG was metabolized in the cerebellar slices to 5alpha-dihydroprogesterone (5alpha-DHP) and to the GABAA receptor-active metabolite 3alpha,5alpha-tetrahydroprogesterone (3alpha,5alpha-THP, allopregnanolone). The 5alpha-reductase inhibitor L685-273 partially inhibited the effect of PROG, and 3alpha,5alpha-THP (2(-5) x 10(-5) M) significantly stimulated the MBP expression, although to a lesser extent than PROG. The increase in MBP expression by 3alpha,5alpha-THP involved GABAA receptors, as it could be inhibited by the selective GABAA receptor antagonist bicuculline. These findings suggest that progestins stimulate MBP expression and consequently suggest an increase in CNS myelination via two signalling systems, the intracellular PR and membrane GABAA receptors, and they confirm a new role of GABAA receptors in myelination.  相似文献   

9.
Myelin basic proteins (MBP) are major constituents of the myelin sheath in the central nervous system (CNS) and the peripheral nervous system (PNS). In the CNS Mbp translation occurs locally at the axon-glial contact site in a neuronal activity-dependent manner. Recently we identified the small non-coding RNA 715 (sncRNA715) as a key inhibitor of Mbp translation during transport in oligodendrocytes. Mbp mRNA localization in Schwann cells has been observed, but has not been investigated in much detail. Here we could confirm translational repression of Mbp mRNA in Schwann cells. We show that sncRNA715 is expressed and its levels correlate inversely with MBP in cultured Schwann cells and in the sciatic nerve in vivo. Furthermore we could reduce MBP protein levels in cultured Schwann cells by increasing the levels of the inhibitory sncRNA715. Our findings suggest similarities in sncRNA715-mediated translational repression of Mbp mRNA in oligodendrocytes and Schwann cells.  相似文献   

10.
The central nervous system (CNS) is considered a target structure for the action of all the classes of hormonal steroids produced by the organism. Well-characterized genomic and less well-understood membrane mechanisms of action are probably involved in the steroid modulation of brain activities. Moreover, some classes of steroids need to be converted into “active” metabolites before interacting with their effector systems. In particular, testosterone (T) exerts many of its effects after conversion to 5-dihydrotestosterone (DHT) and estrogens. The CNS possesses both the 5-reductase, the enzyme which produces DHT and the aromatase which transforms T into estrogens; however, the relative role and distribution of these enzymes in the various structural components of the CNS has not been clarified so far. The 5-reductase has been found to be present in high concentrations in brain white matter structures because these are particularly rich in myelin membranes, to which the enzymatic activity appears to be associated. This membrane localization might suggest a possible involvement of steroidal 5-reduced metabolites in membrane-mediated events in the CNS. Moreover, the distribution of 5-reductase was studied in neurons, astrocytes and oligodendrocytes isolated from the brain of male rats by density gradient ultracentrifugation, as well as in neurons and glial cells grown in culture. The aromatase activity was also evaluated in neurons and glial cells grown in culture and in isolated oligodendrocytes. Among the three cell types isolated, neurons appear to be more active than oligodendrocytes and astrocytes, respectively, in converting T into DHT. Also, in cell culture experiments, neurons are more active in forming DHT than glial cells. Only neurons possess aromatase activity, while glial cells are apparently unable to aromatize T.  相似文献   

11.
The relative levels of the central nervous system myelin marker enzyme 2:3-cyclic nucleotide 3-phosphodiesterase (EC 3.1.4.37, CNPase) were determined in neuroblastoma, astrocyte, oligodendrocyte and Schwann cell cultures and in freshly isolated human lymphocytes and platelets. The highest specific activities were associated with the cells that elaborate myelin membrane in the central and peripheral nervous system, oligodendrocytes and Schwann cells, respectively. Antiserum to bovine CNPase recognized both CNP1 and CNP2 in CNS myelin and human oligodendroglioma. In addition, a 53,000 dalton protein was evident on autoradiographs of immunoblotted PNS myelin and human oligodendroglioma proteins. Cultured rat oligodendrocyte, C6 and mouse NA neuroblastoma CNPase appear to share common determinants with the corresponding normal rat CNS enzyme.  相似文献   

12.
13.
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disorder of the central nervous system (CNS) of unknown etiology. Several studies have shown that demyelination in MS is caused by proinflammatory mediators which are released by perivascular infiltrates and/or activated glial cells. To understand if proinflammatory mediators such as IL (interleukin)-1beta and TNF (tumor necrosis factor)-alpha are capable of modulating the expression of myelin-specific genes, we investigated the effect of these cytokines on the expression of myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin oligodendrocyte glycoprotein (MOG), and proteolipid protein (PLP) in human primary oligodendrocytes. Interestingly, both IL-1beta and TNF-alpha markedly inhibited the expression of MOG, CNPase, and PLP but not MBP, the effect that was blocked by antioxidants such as N-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC). Consistently, oxidants and prooxidants like H(2)O(2) and diamide also markedly inhibited the expression of MOG, CNPase, and PLP. Furthermore, both IL-1beta and TNF-alpha induced the production of H(2)O(2). Taken together, these studies suggest that proinflammatory cytokines inhibit the expression of myelin genes in human primary oligodendrocytes through the alteration of cellular redox.  相似文献   

14.
A histochemical method for the detection of estrogen (ER) and progesterone (PR) receptors in human endometrium, using estrogen and progesterone derivatives linked to fluorochrome-labeled bovine serum albumin (E2-BSA-fluorescein isothiocyanate (FITC) and progesterone-BSA-tetramethylrhodamine isothiocyanate (TMRITC], has been evaluated. The fluorochrome-labeled steroids were bound to the cytoplasm--preferably in glandular epithelial cells but to a lesser extent also to stromal cells. The steroid specificity of the observed binding was studied by preincubating the sections with a series of unlabled steroids and nonsteroidal, hormonally active compounds (estradiol-17 beta, diethylstilbestrol, tamoxifen, 5 alpha-dihydrotestosterone and R 1881 for ER and ORG 2058, R 5020, dexamethasone, cortisol and 5 alpha-dihydrotestosterone for PR). The inhibition studies indicated that E2-BSA-FITC and progesterone-BSA-TMRITC bind to ER and PR in human endometrium with a reasonable degree of specificity. The method was reproducible and various procedural steps were tested, showing satisfactory technical stability. The method is applicable to small tissue samples, and is a valuable complement to quantitative biochemical receptor assays, as it localizes the receptors in tissue slices.  相似文献   

15.
Steroid synthesis in rat brain cell cultures   总被引:1,自引:0,他引:1  
Primary cultures derived from neonatal rat forebrains were established and cultured for several weeks. They grow entirely as glial cultures composed of oligodendrocytes and astrocytes. Glial cells undergo maturation and differentiation in culture. This was shown by measuring the oligodendroglial enzyme 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), a specific marker for expression of oligodendrocyte differentiation. CNPase activity increased from days 10-21 of culture. Both cell types were characterized by indirect immunofluorescence staining using monoclonal antibodies to galactocerebroside (Gal C) and myelin basic protein (MBP) for oligodendrocytes, and glial fibrillary acidic protein (GFAP) for astrocytes. Using the above criteria, we measured about 60% oligodendrocytes and 40% astrocytes after 3 weeks of culture. Oligodendrocytes, expressing Gal C and MBP, were highly immunoreactive to monospecific polyclonal antibodies to the cytochrome P-450scc, enzyme involved in the synthesis of pregnenolone from cholesterol. After incubation of glial cultures with [3H]mevalonolactone in the presence of mevinoline and trilostane, biosynthesis of [3H]cholesterol, [3H]pregnenolone (P) and [3H]pregn-5-ene-3 beta, 20 alpha-diol (20-OHP) was demonstrated. Steroid biosynthesis was related to oligodendroglial differentiation, as the initial and rapid rate of increase in CNPase activity was found to occur at the same time as the onset of steroid synthesis. Both reached a maximum at 3 weeks of culture and remained stable for several weeks. Steroid synthesis was increased by dibutyryl cAMP (0.2 mM), as well as by dexamethasone (10 nM). When aminoglutethimide, a potent inhibitor of cytochrome P-450scc, was added during the incubation of cells with [3H]mevalonolactone, [3H]cholesterol accumulated in the cells. After the release of aminoglutethimide blockade, [3H]20-OHP was the major steroid produced and released in the culture medium. The demonstration of de novo steroid biosynthesis and of the cholesterol side-chain cleavage cytochrome P-450 in normal rat glial cells brings additional support to the concept of "neurosteroids".  相似文献   

16.
The importance of neural impulse activity in regulating neuronal plasticity is widely appreciated; increasingly, it is becoming apparent that activity-dependent communication between neurons and glia is critical in regulating many aspects of nervous system development and plasticity. This communication takes place not only at the synapse, but also between premyelinating axons and glia, which form myelin in the PNS and CNS. Recent work indicates that neural impulse activity releases ATP and adenosine from non-synaptic regions of neurons, which activates purinergic receptors on myelinating glia. Acting through this receptor system, neural impulse activity can regulate gene expression, mitosis, differentiation, and myelination of Schwann cells (SCs) and oligodendrocytes, helping coordinate nervous system development with functional activity in the perinatal period. ATP and adenosine have opposite effects on differentiation of Schwann cells and oligodendrocytes, providing a possible explanation for the opposite effects of impulse activity reported on myelination in the CNS and PNS.  相似文献   

17.

Background

The quaking viable (qkv) mice have uncompacted myelin in their central and peripheral nervous system (CNS, PNS). The qk gene encodes 3 major alternatively spliced isoforms that contain unique sequence at their C-terminus dictating their cellular localization. QKI-5 is a nuclear isoform, whereas QKI-6 and QKI-7 are cytoplasmic isoforms. The qkv mice harbor an enhancer/promoter deletion that prevents the expression of isoforms QKI-6 and QKI-7 in myelinating cells resulting in a dysmyelination phenotype. It was shown that QKI regulates the differentiation of oligodendrocytes, the myelinating cells of the CNS, however, little is known about the role of the QKI proteins, or RNA binding proteins in PNS myelination.

Methodology/Principal Findings

To define the role of the QKI proteins in PNS myelination, we ectopically expressed QKI-6 and QKI-7 in primary rat Schwann cell/neuron from dorsal root ganglia cocultures. We show that the QKI isoforms blocked proliferation and promoted Schwann cell differentiation and myelination. In addition, these events were coordinated with elevated proteins levels of p27KIP1 and myelin basic protein (MBP), markers of Schwann cell differentiation. QKI-6 and QKI-7 expressing co-cultures contained myelinated fibers that had directionality and contained significantly thicker myelin, as assessed by electron microscopy. Moreover, QKI-deficient Schwann cells had reduced levels of MBP, p27KIP1 and Krox-20 mRNAs, as assessed by quantitative RT-PCR.

Conclusions/Significance

Our findings suggest that the QKI-6 and QKI-7 RNA binding proteins are positive regulators of PNS myelination and show that the QKI RNA binding proteins play a key role in Schwann cell differentiation and myelination.  相似文献   

18.
The regulation of estrogen and progesterone receptor (ER, PR) expression by estradiol (E2) and progesterone (P4) in the oviduct, uterus and cervix of female lambs was studied. The animals received three intramuscular injections of E2, P4 or vehicle with an interval of 24 h and they were slaugthered 24 h after the third injection. Determinations of ER and PR were performed by binding assays and mRNAs of ERα and PR by solution hybridization. High levels of ER and PR in both cervix and oviduct were found in the female lamb, differing from other mammalian species. No significant effects by either E2 or P4 treatment on ER and PR levels in the cervix and oviduct could be observed. E2 treatment increased the mRNA levels of ERa and PR more than 3-fold in the cervix, while P4 treatment increased the mRNA levels of ERa and PR in the uterus. The results show differential effects of gonadal steroids on sex steroid receptor expression along the reproductive tract in female lambs, suggesting that steroid target tissues can modulate responses to the same circulating levels of steroid hormones.  相似文献   

19.
20.
The health and function of the nervous system relies on glial cells that ensheath neuronal axons with a specialized plasma membrane termed myelin. The molecular mechanisms by which glial cells target and enwrap axons with myelin are only beginning to be elucidated, yet several studies have implicated extracellular matrix proteins and their receptors as being important extrinsic regulators. This review provides an overview of the extracellular matrix proteins and their receptors that regulate multiple steps in the cellular development of Schwann cells and oligodendrocytes, the myelinating glia of the PNS and CNS, respectively, as well as in the construction and maintenance of the myelin sheath itself. The first part describes the relevant cellular events that are influenced by particular extracellular matrix proteins and receptors, including laminins, collagens, integrins, and dystroglycan. The second part describes the signaling pathways and effector molecules that have been demonstrated to be downstream of Schwann cell and oligodendroglial extracellular matrix receptors, including FAK, small Rho GTPases, ILK, and the PI3K/Akt pathway, and the roles that have been ascribed to these signaling mediators. Throughout, we emphasize the concept of extracellular matrix proteins as environmental sensors that act to integrate, or match, cellular responses, in particular to those downstream of growth factors, to appropriate matrix attachment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号