首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of molecular markers that are closely linked to gene(s) in Gossypium barbadense L. accession GB713 that confer a high level of resistance to reniform nematode (RN), Rotylenchulus reniformis Linford & Oliveira, would be very useful in cotton breeding programs. Our objectives were to determine the inheritance of RN resistance in the accession GB713, to identify SSR markers linked with RN resistance QTLs, and to map these linked markers to specific chromosomes. We grew and scored plants for RN reproduction in the P1, P2, F1, F2, BC1P1, and BC1P2 generations from the cross of GB713 × Acala Nem-X. The generation means analysis using the six generations indicated that one or more genes were involved in the RN resistance of GB713. The interspecific F2 population of 300 plants was genotyped with SSR molecular markers that covered most of the chromosomes of Upland cotton (G. hirsutum L.). Results showed two QTLs on chromosome 21 and one QTL on chromosome 18. One QTL on chromosome 21 was at map position 168.6 (LOD 28.0) flanked by SSR markers, BNL 1551_162 and GH 132_199 at positions 154.2 and 177.3, respectively. A second QTL on chromosome 21 was at map position 182.7 (LOD 24.6) flanked by SSR markers BNL 4011_155 and BNL 3279_106 at positions 180.6 and 184.5, respectively. Our chromosome 21 map had 61 SSR markers covering 219 cM. One QTL with smaller genetic effects was localized to chromosome 18 at map position 39.6 (LOD 4.0) and flanked by SSR markers BNL 1721_178 and BNL 569_131 at positions 27.6 and 42.9, respectively. The two QTLs on chromosome 21 had significant additive and dominance effects, which were about equal for each QTL. The QTL on chromosome 18 showed larger additive than dominance effects. Following the precedent set by the naming of the G. longicalyx Hutchinson & Lee and G. aridum [(Rose & Standley) Skovsted] sources of resistance, we suggest the usage of Ren barb1 and Ren barb2 to designate these QTLs on chromosome 21 and Ren barb3 on chromosome 18.  相似文献   

2.
Host-plant resistance is the most economic and effective strategy for root-knot nematode (RKN) Meloidogyne incognita control in cotton (Gossypium hirsutum L.). Molecular markers linked to resistance are important for incorporating resistance genes into elite cultivars. To screen for microsatellite markers (SSR) closely linked to RKN resistance in G. hirsutum cv. Acala NemX, F1, F2, BC1F1, and F2:7 recombinant inbred lines (RILs) from intraspecific crosses and an F2 from an interspecific cross with G. barbadense cv. Pima S-7 were used. Screening of 284 SSR markers, which cover all the known identified chromosomes and most linkage groups of cotton, was performed by bulked segregant analysis, revealing informative SSRs. The informative SSRs were then mapped on the above populations. One co-dominant SSR marker CIR316 was identified tightly linked to a major resistance gene (designated as rkn1), producing amplified DNA fragments of approximately 221 bp (CIR316a) and 210 bp (CIR316c) in Acala NemX and susceptible Acala SJ-2, respectively. The linkage between CIR316a marker and resistance gene rkn1 in Acala NemX had an estimated distance of 2.1–3.3 cM depending on the population used. Additional markers, including BNL1231 with loose linkage to rkn1 (map distance 25.1–27.4 cM), BNL1066, and CIR003 allowed the rkn1 gene to be mapped to cotton linkage group A03. This is the first report in cotton with a closely linked major gene locus determining nematode resistance, and informative SSRs may be used for marker-assisted selection.  相似文献   

3.
Molecular markers closely linked to genes that confer a high level of resistance to root-knot nematode (RKN) [Meloidogyne incognita (Kofoid & White) Chitwood] in cotton (Gossypium hirsutum L.) germplasm derived from Auburn 623 RNR would greatly facilitate cotton breeding programs. Our objectives were to identify simple sequence repeat (SSR) markers linked to RKN resistance quantitative trait loci (QTL) and map these markers to specific chromosomes. We developed three recombinant inbred line (RIL) populations by single seed descent from the crosses of RKN-resistant parents M-240 RNR (M240), developed from the Auburn 623 RNR source, moderately resistant Clevewilt 6 (CLW6), one of the parents of Auburn 623 RNR, and susceptible parent Stoneville 213 (ST213). These crosses were CLW6 × ST213, M240 × CLW6, and M240 × ST213. RILs from these populations were grown under greenhouse conditions, inoculated with RKN eggs, scored for root gall index, eggs plant−1, and eggs g−1 root. Plants were also genotyped with SSR markers. Results indicated that a minimum of two major genes were involved in the RKN resistance of M240. One gene was localized to chromosome 11 and linked to the marker CIR 316-201. This CIR 316-201 allele was also present in CLW6 but not in Mexico Wild (MW) (PI593649), both of which are parents of Auburn 623 RNR. A second RKN resistance gene was localized to the short arm of chromosome 14 and was linked to the SSR markers BNL3545-118 and BNL3661-185. These two marker alleles were not present in CLW6 but were present in MW. Our data also suggest that the chromosome 11 resistance QTL primarily affects root galling while the QTL on chromosome 14 mediates reduced RKN egg production. The SSRs identified in this study should be useful to select plants with high levels of RKN resistance in segregating populations derived from Auburn 623 RNR.  相似文献   

4.
In order to select genotypes of Gossypium hirsutum genetically balanced and expressing the low-gossypol seed & high-gossypol plant trait introgressed from the Australian wild diploid species G. sturtianum, the [(G. hirsutum × G. raimondii)2 × G. sturtianum] triple hybrid was backcrossed to G. hirsutum and autopollinated to produce backcross and selfed progenies. Two hundred and six mapped SSR markers of G. hirsutum were used to monitor the introgression of SSR alleles specific to G. sturtianum and G. raimondii in the selected progenies. A high level of heterozygosity, varying from 25 to 100%, was observed for all G. sturtianum-specific SSR markers conserved in the most advanced progenies. These results indicate the existence of segregation distortion factors that are associated with the genes controlling the researched trait. This study represents a starting point to map the genes involved in the expression of the trait and better understand its genetic determinism.  相似文献   

5.
Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is the most destructive pest of soybean worldwide. Host plant resistance is an effective approach to control this pest. Plant introduction PI 567516C has been reported to be highly resistant to multiple-HG types of SCN. The objectives of this study were to identify and map novel quantitative trait loci (QTL) for SCN resistance to six HG types (also known as races 1, 2, 3, 5, 14, and LY1). Mapping was conducted using 250 F2:3 progeny derived from a Magellan (susceptible) × PI 567516C (resistant) cross. F6:7 recombinant inbred lines (RILs) developed from the F2:3 progeny were employed to confirm the putative QTL identified. A total of 927 polymorphic simple sequence repeats (SSR) and single nucleotide polymorphism (SNP) markers were genotyped. Following the genetic linkage analysis, permutation tests and composite interval mapping were performed to identify and map QTL. Four QTL were associated with resistance to either multiple- or single-SCN HG types. Two QTL for resistance to multiple-SCN HG types were mapped to Chromosomes 10 and 18 and have not been reported in other SCN resistance sources. New QTL were confirmed by analysis of 250 F6:7 RILs from the same population. SSR and SNP markers closely associated with these QTL can be useful for the development of near-isogenic lines for fine-mapping and positional cloning of candidate genes for SCN resistance.  相似文献   

6.
Kantartzi SK  Ulloa M  Sacks E  Stewart JM 《Genetica》2009,136(1):141-147
The cultivated diploid, Gossypium arboreum L., (A genome) is an invaluable genetic resource for improving modern tetraploid cotton (G. hirsutum L. and G. barbadense L.) cultivars. The objective of this research is to select a set of informative and robust microsatellites for studying genetic relationships among accessions of geographically diverse G. arboreum cultivars. From more than 1,500 previously developed simple sequence repeat (SSR) markers, 115 genomic (BNL) and EST-derived (MUCS and MUSS) markers were used to evaluate the allelic diversity of a core panel of G. arboreum accessions. These SSR data enabled advanced genome analyses. A set of 25 SSRs were selected based both upon their high level of informativeness (PIC ≥ 0.50) and the production of clear PCR bands on agarose gels. Subsequently, 96 accessions representing a wide spectrum of diversity of G. arboreum cultivars were analyzed with these markers. The 25 SSR loci revealed 75 allelic variants (polymorphisms) ranging from 2 to 4 alleles per locus. The Neighborjoining (NJ) method, based on genetic dissimilarities, revealed that cultivars from geographically adjacent countries tend to cluster together. Outcomes of this research should be useful in decreasing redundancy of effort and in constructing a core collection of G. arboreum, important for efficient use of this genetic resource in cotton breeding.  相似文献   

7.
Genetic analysis of Soil-Borne Cereal Mosaic Virus (SBCMV) resistance in durum wheat was carried out using a population of 180 recombinant inbred lines (RILs) obtained from Simeto (susceptible) × Levante (resistant). The RILs were characterized for SBCMV response in the field under severe and uniform SBCMV infection in two growing seasons and genotyped with simple sequence repeat (SSR) and Diversity Arrays Technology? markers. Transgressive segregation was observed for disease reaction as estimated by symptom severity scores and virus concentration in leaves. Heritability of the disease response was high, with h 2 values consistently above 80%. A major quantitative trait locus (QTL) (QSbm.ubo-2BS) in the distal telomeric region of chromosome 2BS accounted for 60–70% of the phenotypic variation for symptom severity, 40–55% for virus concentration and 15–30% for grain yield. The favorable allele was contributed by Levante. Seven additional QTL influenced SBCMV resistance, with the low-susceptibility allele contributed by Levante at five QTL and by Simeto at the remaining two. The meta-QTL analysis carried out using the data from two mapping populations (Simeto × Levante and Meridiano × Claudio) suggests that in both populations SBCMV resistance is likely controlled by QSbm.ubo-2BS. Our results confine QSbm.ubo-2BS to a c. 2-cM-wide interval flanked by SSR markers that are already being used for marker-assisted selection.  相似文献   

8.
The reniform nematode (Rotylenchulus reniformis) causes significant cotton (Gossypium hirsutum) losses in the southeastern United States. The research objective was to describe the effects of two resistant G. barbadense lines (cultivar TX 110 and accession GB 713) on development and fecundity of reniform nematode. Nematode development and fecundity were evaluated on the resistant lines and susceptible G. hirsutum cultivar Deltapine 16 in three repeated growth chamber experiments. Nematode development on roots early and late in the infection cycle was measured at set intervals from 1 to 25 d after inoculation (DAI) and genotypes were compared based on the number of nematodes in four developmental stages (vermiform, swelling, reniform, and gravid). At 15, 20, and 25 DAI, egg production by individual females parasitizing each genotype was measured. Unique reniform nematode developmental patterns were noted on each of the cotton genotypes. During the early stages of infection, infection and development occurred 1 d faster on susceptible cotton than on the resistant genotypes. Later, progression to the reniform and gravid stages of development occurred first on the susceptible genotype, followed by G. barbadense cultivar TX 110, and finally G. barbadense accession GB 713. Egg production by individual nematodes infecting the three genotypes was similar. This study corroborates delayed development previously reported on G. barbadense cultivar TX 110 and is the first report of delayed infection and development associated with G. barbadense accession GB 713. The different developmental patterns in the resistant genotypes suggest that unique or additional loci may confer resistance in these two lines.  相似文献   

9.
Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known for its high virulence variability and ability to evolve new virulence to resistance genes. Thus, pyramiding of several resistance genes in a single line is the best strategy for a sustainable control of wheat stem rust. Sr13 is one of the few resistance genes that are effective against wide ranging P. graminis f. sp. tritici races, including the pestilent race Ug99. Its effectiveness to Ug99 makes it a valuable source for resistance to stem rust. Molecular markers play a pivotal role in the genetic characterization of the new sources of resistance as well as in stacking two or more resistance genes in a single line. Therefore, the aim of this study was to develop molecular markers for Sr13 facilitating efficient pyramiding of Sr genes. Based on the 158 F2 individuals derived from a cross of Khapstein/9*LMPG × Morocco and SSR analyses, the Sr13 locus was mapped on chromosome 6A of wheat, and a genetic map comprising about 90 cM was constructed with the closest marker barc37 being located 4.0 cM distally of Sr13. Of the nine mapped markers, barc37 amplified an allele specific for the presence of Sr13 as shown by testing different cultivars and breeding lines. These newly developed markers will increase the efficiency of incorporating Sr13 into cultivars that are widely adopted, but susceptible to hazardous Ug99 and/or assist for the development of new elite lines that are resistant to Ug99.  相似文献   

10.
The beet cyst nematode (Heterodera schachtii Schmidt) can be controlled biologically in highly infected soils of sugar beet rotations using resistant varieties of oil radish (Raphanus sativus L. ssp. oleiferus DC.) as a green crop. Resistant plants stimulate infective juveniles to invade roots, but prevent them after their penetration to complete the life cycle. The resistance trait has been transferred successfully to susceptible rapeseed by the addition of a complete radish chromosome. The aim of the study was to construct a genetic map for radish and to develop resistance-associated markers. The map with 545 RAPD, dpRAPD, AFLP and SSR markers had a length of 1,517 cM, a mean distance of 2.8 cM and consisted of nine linkage groups having sizes between 120 and 232 cM. Chromosome-specific markers for the resistance-bearing chromosome d and the other eight radish chromosomes, developed previously from a series of rapeseed-radish addition lines, were enclosed as anchor markers. Each of the extra chromosomes in the addition lines could be unambiguously assigned to one of the radish linkage groups. The QTL analysis of nematode resistance was realized in the intraspecific F2 mapping population derived from a cross between varieties ‘Pegletta’ (nematode resistant) x ‘Siletta Nova’ (susceptible). A dominant major QTL Hs1 Rph explaining 46.4% of the phenotypic variability was detected in a proximal position of chromosome d. Radish chromosome-specific anchor markers with known map positions were made available for future recombination experiments to incorporate segments carrying desired genes as Hs1 Rph from radish into rapeseed by means of chromosome addition lines.  相似文献   

11.
Host plant resistance is an important strategy for managing root-knot nematode (Meloidogyne incognita) in cotton (Gossypium L.). Here we report evidence for enhanced resistance in interspecific crosses resulting from transgressive segregation of clustered gene loci. Recently, a major gene, rkn1, on chromosome 11 for resistance to M. incognita in cv. Acala NemX was identified using an intraspecific G. hirsutum cross with susceptible cv. Acala SJ-2. Using interspecific crosses of Acala NemX × susceptible G. barbadense cv. Pima S-7, F1, F2, F2:3, backcross, and testcross Acala NemX × F1 (Pima S-7 × SJ-2), parental entries and populations were inoculated in greenhouse tests with M. incognita. Genetic analyses based on nematode-induced root galling and nematode egg production on roots, and molecular marker analysis of the segregating interspecific populations revealed that gene rkn1 interacted with a gene (designated as RKN2) in susceptible Pima S-7 to produce a highly resistant phenotype. RKN2 did not confer resistance in Pima S-7, but when combined with rkn1 (genotype Aa or aa), high levels of resistance were produced in the F1 and segregating F2, F3, and BC1F1 populations. One SSR marker MUCS088 was identified tightly linked to RKN2 within 4.4 cM in a NemX × F1 (Pima S-7 × SJ-2) testcross population. Using mapped SSR markers and interspecific segregating populations, MUCS088 linked to the transgressive gene from the susceptible parent and was located in the vicinity of rkn1 on chromosome 11. Diverse genome analyses among A and D genome diploid and tetraploid cottons revealed that marker MUCS088 (165 and 167 bp) is derived from G. arboreum, A2 diploid genome. These results demonstrated that a highly susceptible parent contributed to nematode resistance via transgressive segregation. Derived highly resistant lines can be used as improved resistance sources in cotton breeding, and MUCS088 can be used to monitor RKN2 introgression in diverse populations. The close genomic location of the transgressive resistance determinants provides an important model system for studying transgressive segregation and epistasis in plants.  相似文献   

12.
Soybean bacterial leaf pustule (BLP) is a prevalent disease caused by Xanthomonas axonopodis pv. glycines. Fine mapping of the BLP resistant gene, rxp, is needed to select BLP resistant soybean cultivars by marker-assisted selection (MAS). We used a total of 227 recombinant inbred lines (RILs) derived from a cross between ‘Taekwangkong’ (BLP susceptible) and ‘Danbaekkong’ (BLP resistant) for rxp fine mapping and two different sets of near isogenic lines (NILs) from Hwangkeumkong × SS2-2 and Taekwangkong × SS2-2 were used for confirmation. Using sequences between Satt372 and Satt486 flanking rxp from soybean genome sequences, eight simple sequence repeats (SSR) and two single nucleotide polymorphism (SNP) markers were newly developed in a 6.2-cM interval. Linkage mapping with the RILs and NILs allowed us to map the rxp region with high resolution. The genetic order of all markers was completely consistent with their physical order. QTL analysis by comparison of the BLP phenotyping data with all markers showed rxp was located between SNUSSR17_9 and SNUSNP17_12. Gene annotation analysis of the 33 kb region between SNUSSR17_9 and SNUSNP17_12 suggested three predicted genes, two of which could be candidate genes of BLP resistance: membrane protein and zinc finger protein. Candidate genes showed high similarity with their paralogous genes, which were located on the duplicated regions obtaining BLP resistance QTLs. High-resolution map in rxp region with eight SSR and two SNP markers will be useful for not only MAS of BLP resistance but also characterization of rxp.  相似文献   

13.
The reniform nematode (Rotylenchulus reniformis) is an important pathogen of pigeonpea (Cajanus cajan). Forty‐six medium maturity (mature in 151–200 days at Patancheru, India) pigeonpea genotypes were evaluated for resistance and tolerance to the reniform nematode in greenhouse and field tests, over the period 1990–97. Each genotype was screened for number of nematode egg masses on a 1 (no egg mass = highly resistant) to 9 (> 50 egg masses = highly susceptible) scale. Plant biomass production in carbofurantreated plots was compared with that in non‐treated plots in a field naturally infested with R. reniformis. Pigeonpea genotypes C 11, ICPL 87119 and ICPL 270 were used as nematode susceptible checks. Genotypes with good plant growth, both in nematode‐free and nematode‐infested plots, were identified as tolerant and evaluated for plant growth and yield for at least three years. All the tested genotypes were susceptible (7 and 9 egg mass score). Single‐plant‐selections, based on plant vigour and yield, were made from genotypes showing tolerance to nematode infection. The level of tolerance was enhanced by plant‐to‐progeny row selection for plant vigour and seed yield in a nematode‐sick field for at least three years. The most promising nematode tolerant genotypes produced significantly greater yield and biomass than the locally grown pigeonpea cultivars in fields naturally infested with R. reniformis at two locations. Pigeonpea landraces are considered to be the most likely sources of tolerance to the nematode. These reniform nematode tolerant lines represent new germplasm and they are available in the genebank of pigeonpea at ICRISAT bearing accession numbers ICP 16329, ICP 16330, ICP 16331, ICP 16332, and ICP 16333.  相似文献   

14.
Development and mapping of SNP assays in allotetraploid cotton   总被引:1,自引:0,他引:1  
A narrow germplasm base and a complex allotetraploid genome have made the discovery of single nucleotide polymorphism (SNP) markers difficult in cotton (Gossypium hirsutum). To generate sequence for SNP discovery, we conducted a genome reduction experiment (EcoRI, BafI double digest, followed by adapter ligation, biotin–streptavidin purification, and agarose gel separation) on two accessions of G. hirsutum and two accessions of G. barbadense. From the genome reduction experiment, a total of 2.04 million genomic sequence reads were assembled into contigs with an N50 of 508 bp and analyzed for SNPs. A previously generated assembly of expressed sequence tags (ESTs) provided an additional source for SNP discovery. Using highly conservative parameters (minimum coverage of 8× at each SNP and 20% minor allele frequency), a total of 11,834 and 1,679 non-genic SNPs were identified between accessions of G. hirsutum and G. barbadense in genome reduction assemblies, respectively. An additional 4,327 genic SNPs were also identified between accessions of G. hirsutum in the EST assembly. KBioscience KASPar assays were designed for a portion of the intra-specific G. hirsutum SNPs. From 704 non-genic and 348 genic markers developed, a total of 367 (267 non-genic, 100 genic) mapped in a segregating F2 population (Acala Maxxa × TX2094) using the Fluidigm EP1 system. A G. hirsutum genetic linkage map of 1,688 cM was constructed based entirely on these new SNP markers. Of the genic-based SNPs, we were able to identify within which genome (‘A’ or ‘D’) each SNP resided using diploid species sequence data. Genetic maps generated by these newly identified markers are being used to locate quantitative, economically important regions within the cotton genome.  相似文献   

15.
Adult plant resistance (APR) to leaf rust and stripe rust derived from the wheat (Triticum aestivum L.) line PI250413 was previously identified in RL6077 (=Thatcher*6/PI250413). The leaf rust resistance gene in RL6077 is phenotypically similar to Lr34 which is located on chromosome 7D. It was previously hypothesized that the gene in RL6077 could be Lr34 translocated to another chromosome. Hybrids between RL6077 and Thatcher and between RL6077 and 7DS and 7DL ditelocentric stocks were examined for first meiotic metaphase pairing. RL6077 formed chain quadrivalents and trivalents relative to Thatcher and Chinese Spring; however both 7D telocentrics paired only as heteromorphic bivalents and never with the multivalents. Thus, chromosome 7D is not involved in any translocation carried by RL6077. A genome-wide scan of SSR markers detected an introgression from chromosome 4D of PI250413 transferred to RL6077 through five cycles of backcrossing to Thatcher. Haplotype analysis of lines from crosses of Thatcher × RL6077 and RL6058 (Thatcher*6/PI58548) × RL6077 showed highly significant associations between introgressed markers (including SSR marker cfd71) and leaf rust resistance. In a separate RL6077-derived population, APR to stripe rust was also tightly linked with cfd71 on chromosome 4DL. An allele survey of linked SSR markers cfd71 and cfd23 on a set of 247 wheat lines from diverse origins indicated that these markers can be used to select for the donor segment in most wheat backgrounds. Comparison of RL6077 with Thatcher in field trials showed no effect of the APR gene on important agronomic or quality traits. Since no other known Lr genes exist on chromosome 4DL, the APR gene in RL6077 has been assigned the name Lr67.  相似文献   

16.

Background  

Raspberry breeding programmes worldwide aim to produce improved cultivars to satisfy market demands and within these programmes there are many targets, including increased fruit quality, yield and season, and improved pest and disease resistance and plant habit. The large raspberry aphid, Amphorophora idaei, transmits four viruses and vector resistance is an objective in raspberry breeding. The development of molecular tools that discriminate between aphid resistance genes from different sources will allow the pyramiding of such genes and the development of raspberry varieties with superior pest resistance. We have raised a red raspberry (Rubus idaeus) F1 progeny from the cross 'Malling Jewel' × 'Malling Orion' (MJ × MO), which segregates for resistance to biotype 1 of the aphid Amphorophora idaei and for a second phenotypic trait, dwarf habit. These traits are controlled by single genes, denoted (A 1) and (dw) respectively.  相似文献   

17.
An advanced backcross population consisting of 80 BC3F3 lines derived from rice vars. Vandana/Moroberekan was analysed for blast resistance and genotyped with 50 candidate genes and 23 simple sequence repeat (SSR) markers. Six candidate defence response genes [thaumatin, three nucleotide-binding site-leucine-rich repeat sequences from maize and two resistance gene analogue (RGA) markers] and one SSR marker (RM21) were significantly associated with partial blast resistance in rice (P=0.01). These markers accounted for phenotypic variation ranging from 9.6% to 29.4% and contributed to 76% of the total variation of percentage diseased leaf area (DLA) observed under natural infection. Four candidate genes (oxalate oxidase, 14-3-3 protein and two RGA markers) and four SSR markers (RM21, RM168, RM215 and RM250) were significantly associated with resistance to a single pathogen isolate, PO6-6. Among these, two markers were for DLA, five for lesion number and one for lesion size. These markers accounted for 9.1–28.7% of the phenotypic variation. A moderate correlation (r=0.48, P<0.01) was found between the level of partial resistance measured in the greenhouse and that measured under natural conditions. Analysis of BC3F4 progeny using genotypes of BC3F3 confirmed the phenotypic contribution of these markers. Cluster analysis of DNA profiles showed that the BC3 population was genetically similar (>85%) to the recurrent parent Vandana. Although no obvious relationship between DNA profiles and resistant phenotypes was observed, three lines (VM19, VM46 and VM76) in a cluster with high similarity to Vandana (89–96%) expressed a high level of partial blast resistance in the field. Analysis of disease progress in the field confirmed the performance of selected lines based on greenhouse and nursery analyses. The advanced backcross progeny with resistance phenotypes tagged by markers will be useful for accumulating blast resistance in upland rice.Communicated by G. Wenzel  相似文献   

18.
Despite the paramount importance of pineapple (Ananas comosus L.) in world production and trade of tropical fruits, the genomics of this crop is still lagging behind that of other tropical fruit crops such as banana or papaya. A genetic map of pineapple was constructed using an F2 segregating population obtained from a single selfed F1 plant of a cross A. comosus var. comosus (cv. Rondon, clone BR 50) × A. comosus var. bracteatus (Branco do mato, clone BR 20). Multiple randomly amplified markers (RAPD, ISSR and AFLP) were brought together with SSR and EST-SSR markers identified among sequences uploaded to public databases and with sequence-specific markers (SCAR, SSR and CAPS) derived from random amplified markers. Sixty-three randomly amplified markers (RAPD, ISSR and AFLP) were selected and cloned, resulting in 71 sequences which were used to generate sequence-specific SCAR and CAPS markers. The present map includes 492 DNA markers: 57 RAPD, 22 ISSR, 348 AFLP, 20 SSR, 12 EST-SSR, 25 SCARs, 8 CAPS, and the morphological trait locus “piping”, gathered into 33 linkage groups that integrate markers inherited from both botanical varieties, four linkage groups with markers only from var. comosus and three linkage groups with markers exclusively from var. bracteatus. The relatively higher mapping efficiency of sequence-specific markers derived from randomly amplified markers (50.7%) versus SSR (31.4%) and EST-SSR (28.9%) markers is discussed. Spanning over 80% of the 2,470 cM estimated average length of the genome, the present map constitutes a useful research tool for molecular breeding and genomics projects in pineapple and other Bromeliaceae species.  相似文献   

19.
A rice mutant,G069, characteristic of few tiller numbers, was found in anther culture progeny from theF 1 hybrid between anindica-japonica cross, Gui630×02428. The mutant has another two major features: delayed tillering development and yellowing apex and margin on the mature leaves. As a donor parent,G069 was further backcrossed with the recurrent parent,02428, for two turns to develop aBC 2F2 population. Genetic analysis in theBC 2F2 population showed that the traits of few-tillering and yellowing apex and margin on the mature leaves were controlled by one recessive gene. A pool of equally mixed genomic DNA, from few-tillering individual plants inBC 2F2, was constructed to screen polymorphism with simple sequence repeat (SSR) markers in comparison with the02428 genome. One SSR marker and three restriction fragment length polymorphism (RFLP) markers were found possibly linked with the recessive gene. By using these markers, the gene of few-tillering was mapped on chromosome 2 between RFLP marker C424 and S13984 with a genetic distance of 2.4 cM and 0.6 cM, respectively. The gene is designatedft1.  相似文献   

20.
The orange inner leaf of the Chinese cabbage is controlled by a single recessive gene (or), which causes abnormal accumulation of carotene. In the present study, an F2 population consisting of 600 individuals was used for mapping or and developing new markers closely linked to this gene. Bulked segregant analysis was performed by screening 435 simple sequence repeat (SSR) markers well-distributed on 10 linkage groups and 16 SSR primers derived from nine bacterial artificial chromosome (BAC) clones. On the basis of linkage analysis, the or gene was mapped in a region covering a total interval of 4.6 centimorgans (cM) between two SSR markers derived from BAC clones AC172873 and AC189246 at the end of linkage group 9, which matches with chromosome 1 of A genome in Chinese cabbage. A genetic map of the or locus was constructed by using five SSR markers and two morphological markers. Three SSR markers were tightly linked to or and two of them, sau (C) 586 and syau19, were located on the same side at distances of 1.6 and 1.3 cM, respectively. The other marker, syau15, was located on the other side at a distance of 3.3 cM. The two morphological markers, orange flower and orange cotyledon (before cotyledon turns green during the germination period), were obtained by visual determination and screening of the differences in the morphological traits between parents and the two segregated F2 populations; the two markers were designated as or-f (orange flower) and or-c (orange cotyledon). It was suggested that these two markers co-segregate with orange inner leaf trait or that the three characters, namely orange inner leaf, orange flower, and orange cotyledon, are determined by the same gene. These markers could be very helpful for marker-assisted selection in Chinese cabbage hybrid breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号