首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The superiority of cladistic methods to both synthetic and phenetic methods is briefly advanced and reviewed. Cladistics creates testable hypotheses of phylogeny that also give a highly informative summary of available data. Thus it best fits the criteria for a method for determining the general reference classification in biology.For protistologists in particular, cladistics is especially useful. Inundated by an abundance of ultrastructural, biochemical, and cell biological information, protistologists could be greatly helped by the informative way in which cladistics orders and summarizes the data. In addition to classifying protist taxa, hypotheses about the evolution of cell organelles and cellular could be scientifically formulated and tested by cladistics. Because cladistic classifications best summarize the data, they would also be best for making predictions about taxa and characters. They would, for the same reason, be the most stable. Widespread adoption of cladistic methods would serve to stabilize the now fluid state of protist taxonomy. It is for all of these reasons that such methods best suit the needs of the evolutionary protistologist.  相似文献   

2.
Molecular and morphological data sets have yielded conflicting phylogenies for the Metazoa. So far, no general explanation for the existence of this conflict has been suggested. However, I believe that a neglected aspect of metazoan cladistics has introduced a systematic and substantial bias into morphological phylogenetic analyses. Most characters used for metazoan cladistics are coded as binary absence/presence characters. For most of these characters, the absence states are assumed to be uninformative default plesiomorphies, if they are defined at all. This character coding strategy could seriously underestimate the number of informative apomorphic absences or secondary character losses. Because nodes in morphological metazoan phylogenies are typically supported by relatively small numbers of characters each with a potentially strong impact on tree topology, failure to distinguish between primary absence and secondary loss of characters before a cladistic analysis may mislead morphological cladistics. This may falsely suggest conflict with molecular phylogenies, which are not sensitive to this bias. To test the existence of this bias, I compare the phylogenetic placement of a variety of metazoan taxa in molecular and morphological trees. In all instances investigated here, phylogenetic conflict can be resolved by allowing for secondary loss of morphological characters, which were assumed to be primitively absent in cladistic analyses. These findings suggest that we should be cautious in interpreting the results of morphological metazoan cladistic analyses and additionally illustrate the value of a more functional approach to comparative morphology in certain circumstances.  相似文献   

3.
Current strategies to compare or synthesize morphology-based cladistic hypotheses do not empower individual cladists to (i) understand the origin, authorship, or structure of character data, (ii) efficiently locate and collate previously published character data, or (iii) effectively compare character data from competing cladistic hypotheses. This paper outlines the requisite terminology, methods and indices to effectively compile and compare morphological character data between competing cladistic hypotheses and to isolate and measure the most important factors behind differing cladistic results—character selection and character-state scoring. When the procedures outlined here are facilitated by appropriate software, morphology-based cladistics may overcome long-recognized limitations in data comparison and synthesis.  相似文献   

4.
The theoretical bases and approaches of cladistics and some specific problems that, directly or indirectly, rely on cladistic analysis for their revolution, are outlined and discussed. Seven sections comprise this paper: a ) the philosophical foundation of cladistics; b) the theoretical tenets of cladistics; c) the operational procedure of cladisties; d) three schools of classification; e) cladistics and biogeography; f) cladistics and hybrid recognition; and g) is cladistic systematics a scientific theory ? Considerations of scientific methodology involve philosophical questions. From this point, Popper'falsificationism serves a good foundation. Popper emphasizes that all scientific knowledge is hypothetical-deductive, consisting of general statements (theories) that can never be confirmed or verified but only falsified. The theories, that can be tested most effectively, are preferable. Cladistics, aiming at generating accurately expressed and strictly testable systematic hypotheses, is well compatible with this requirement. The principles central to the cladistic theory and methodology are: the Principle of Synapomorphy; the Principle of Strict Monophyly; and the Principle of Strict Parsimony. The first requires forming nested groups by nesting statements about shared evolutionary novelties (synapomorphy) postulated from observed similarities and is the primary one. The second is mainly methodological, subject to modification and compromise. The principle of strict parsimony specifies the most preferable hypothesis (namely the one exhibiting the most congruence in the synapomorphy pattern). The operational procedure that might be followed in formulating and testing hypotheses of the synapomorphy pattern (the cladogram itself) consists of five steps. The erections of monophyletic groups, to a greater or lesser extent, rely on the hypothesis of the previous systematic studies and is the starting point for cladistic analysis. Character analysis, which focuses on character distribution and determination of the polarities, decides the reconstructed phylogeny. A detailed discussion on the methodological principles for identifying transformation sequence is presented. Many algorithms have been designated to infer the cladogram, and are basically of parsimony techniques and Compatibility techiques. The thus yielded cladograms, with their expected pattern of congruent synapomorphies, are tests of a particular hypothesis of synapomorphy and reciprocally synapomorphies are tests of cladistic hypothesis (cladogram). Such reciprocity is a strong stimulus to profound understanding on phylogenetic process and phyletic relationships. The cladogram and the Linnaean classification have the identical logic structure and the set-membership of the two can be made isomorphic. There are three principal approaches to biological classification : cladistics, phenetics and evolutionary classification. Cladistics is the determination of the branching pattern of evolution, and in the context of classification, the development of nested sets based on cladograms. Phenetics is the classification by overall similarities, without regard to evolutionary considerations. Evolutionary classification attempts to consider all meaningful aspects of phylogeny and to use these for making a classification. The last approach has been done intuitively, without explicit methods. An enumeration of their differences and a discussion on their relative merits are presented. Three theoretical approaches have been proposed for interpreting biogeographical history: the phylogenetic theory of biogeography, classical evolutionary biogeography and vicariance biogeography. The former two show some similarities in that they usually look upon biogeography in terms of centers of origin and dispersal from the centers. But the first puts a strong emphasis on the construction of hypotheses about the phylogenetic relationships of the organisms in question and the subsequent inference of their geographic relationships; the second advocates a theory which does not have a precise deductive link with phylogenetic construction and often results in wildly narratative-type hypotheses. The vicariance approach de-emphasizes the concepts of centers of origin and dispersal and attempts to analyse distribution patterns in terms of subdivision (vicariance) of ancestral biotas. The development of the theory of plate tectonics and its universal acceptance enormously stimulate biogeographers to look at the world's continents and oceans from a mobilist point, which, along with the establishment of the rigorous tool of the phylogenetic analysis (cladistics), profoundly reshapes the above three theories. Hybridization and polyploidy are outstanding features of many plant groups. But hybridization, or reticulate evolution, is inconsistent with the basic concepts of cladistics which is an ever-branching pattern. Cladists have suggested several approaches. One of them analyses all the taxa by a standard cladistic procedure and closely examines the cladograms for polytomies and character conflicts that may indicate possible hybrids. Such generated hypothesis of hybridization can be corroborated or falsified by other forms of data, such as distribution, polyploidy, karyotype and pollen fertility. There are three criteria to justify a theory to be scientific: a) whether it is a theory composed of hypotheses strictly falsifiable; b) whether it has predictive effect; and c) whether it has a explanatory value. Cladistic systematics aims at generating cladograms, which are hypotheses of the nested pattern of synapomorphy, phylogenetic process and phyletic relationships, susceptible to testing by postulated synapomorphies. The predictive effect of systematics relies on the acceptance of hypotheses of congruence about the correlation of characters, which has been well founded. For non-systematic biologists, phylogenetic classification can be used as axiom to form a preliminary and fundamental explanation.  相似文献   

5.
The accumulation of multiple phylogenetic hypotheses for theMetazoa invites an evaluation of current progress in the field.I discuss three case studies from the recent literature to assesshow cladistic analyses of metazoan morphology have contributedto our understanding of animal evolution. The first case studyon cleavage cross patterns examines whether a decade of unanimouscharacter scoring across different cladistic studies can beconsidered a reliable indicator of accumulated wisdom. The tworemaining case studies illustrate how the unique strength ofcladistic analyses to arbitrate between competing hypothesescan be crippled when insufficient attention is directed towardsthe construction of the data matrix. The second case study discussesa recent morphological cladistic analysis aimed at providinginsight into the evolution of larval ciliary bands (prototrochs)in the Spiralia, and the third case study evaluates how foursubsequent morphological cladistic analyses have contributedto our understanding of the phylogenetic placement of a problematicum,the Myzostomida. I conclude that current phylogenetic analysesof the Metazoa have not fully exploited the power of cladisticsto test available alternative hypotheses. If our goal is togenerate genuine progress in understanding rather than stochasticvariation of opinions through time, we have to shift our attentionfrom using cladistics as an easy tool to generate "novel" hypothesesof metazoan relationships, towards employing cladistics morecritically as an effective instrument to test the relative meritof available multiple alternative hypotheses.  相似文献   

6.
D. Curnoe   《HOMO》2003,53(3):225-234
Cladistic analysis is a popular method for reconstructing evolutionary relationships on the human lineage. However, it has limitations and hidden assumptions that are often not considered by palaeoanthropologists. Some researchers who are opposed to its use regard cladistics as the preferred method for taxonomic «splitters» and claim it has lead to a revitalisation of typology. Typology remains a part of human evolutionary studies, regardless of the acceptance or use of cladistics. The assumption/preference for «splitting» over «lumping» in cladistics (alpha) taxonomy and the general failure to evaluate (post-hoc) such taxonomies have served to reinforce this assertion.

Researchers have also adopted a number of practices that are logically untenable or introduce considerable error. The evolutionary trend of human encephalisation, apparently isometric with body size, and concurrent reduction in the gut and masticatory apparatus, suggests continuous cladistic characters are biased by problems of body size.

The method suffers a logical weakness, or circularity, leading to bias when characters with multiple states are used. Coding of such characters can only be done using prior criteria, and this is usually done using an existing phylogenetic scheme. Another problem with coding character states is the handling of variation within species. While this form of variation is usually ignored by palaeoanthropologists, when characters are recognised as varying, their treatment as a separate state adds considerable error to cladograms.

The genetic proximity of humans, chimpanzees and gorillas has important implications for cladistic analyses. It is argued that chimpanzees and gorillas should be treated as ingroup taxa and an alternative outgroup such as orangutans should be used, or an (hypothetical) ancestral body plan developed. Making chimpanzees and gorillas ingroup taxa would considerably enhance the biological utility of anthropological cladograms.

All published human cladograms fail to meet standard quality criteria indicating that none of them may be considered reliable. The continuing uncertainty over the number and composition of fossil human species is the largest single source of error for cladistics and human phylogenetic reconstruction.  相似文献   


7.
Hypotheses of taxic homology are hypotheses of taxa (groups). Hypotheses of transformational homology are hypotheses of transformations between character states within the context of an explicit model of character evolution. Taxic and transformational homology are discussed with respect to secondary loss and reversal in the context of three-taxon statement analysis and standard cladistic analysis. We argue that it is important to distinguish complement relation homologies from those that we term paired homologues. This distinction means that the implementation of three-taxon statement analysis needs modification if all data are to be considered potentially informative. Modified three-taxon statement analysis and standard cladistic analysis yield different results for the example of character reversal provided by Kluge (1994) for both complement relation data and paired homologues. We argue that these different results reflect the different approaches of standard cladistic analysis and modified t.t.s. analysis. In the standard cladistic approach, absence, as secondary loss, can provide evidence for a group. This is because the standard cladistic approach implements a transformational view of homology. In the t.t.s approach discussed in this paper, absence can only be interpreted as secondary loss by congruence with other data; absence alone can never provide evidence for a group. In this respect, the modified t.t.s. approach is compatible with a taxic view of homology.  相似文献   

8.
About nothing     
In light of recent terminological controversy, this article reviews cladistic conceptions of character states coded as absences, symplesiomorphies, and secondary losses. The first section addresses absence as a question of ontology vs. epistemology. The second and third sections address the evidentiary status of symplesiomorphy in cladistics, the fourth contrasts primitive absence with secondary loss, and the fifth clarifies the meaning of “grouping”. While secondary losses (reversals) are often synapomorphies, symplesiomorphies (“absent” or otherwise) have no evidentiary import to cladistic hypotheses of relationship. Thus, we argue that identifying symplesiomorphic character states as “homologous” is conceptually vacuous, because they are either synapomorphies (homologues) of more inclusive taxa, or complementary absences that unite no group.  相似文献   

9.
Phylogenetic systematics (cladistics) is a theory of phylogeny reconstruction and classification widely used in zoology. Taxa are grouped hierarchically by the sharing of derived (advanced) characters. The information is expressed in a cladogram, a best estimate of a phylogeny. Plant systematists generally use a phenetic system, grouping taxa on overall similarity which results in many groups being formed, at least in part, on the basis of shared primitive characters.
The methods of phylogenetic systematics are used to create a preliminary cladogram of land plants. The current classification of land plants is criticized for its inclusion of many groups which are not monophyletic.
Objections to the use of phylogenetic systematics in botany, apparent convergences within major groups and frequent hybridization, are shown to be invalid. It is concluded that cladistic analysis presents the best estimate of die natural hierarchy of organisms, and should be adopted by plant systematists in their assessment of plant interrelationships.  相似文献   

10.
Phenetic classification corresponds to no biological model and lacks a sound philosophical basis. Cladistics (ignoring meaningless “transformed cladistics”) assumes divergent evolution and, usually, that best estimates of phylogeny are obtained by parsimony principles, both questionable assumptions at times. It is better than phenetics since more-or-less testable hypotheses are generated, but pitfalls are many, in data selection and interpretation (as to homology), and in commensurability of units and direction of change. Above all we learn: homoplasy is rife in nature. Much bad cladistics has been done. If it is to reflect phylogeny, classification cannot be artificially stabilized, but is its only aim to express (hypothesized) cladistic patterns? And can it do that with any degree of overall assurance? Biologists are legitimately interested in defining grades as well as clades. Recognition of an unequivocal clade-grade frequently leaves a paraphyletic grade residue that cannot itself be unequivocally resolved. This is a real problem that requires attention in formal taxonomy and in applying cladistics. Primarily morphological cladistics will be increasingly supplanted by molecular (nucleotide-sequence) cladistics. The role of evolutionary taxonomy will change accordingly.  相似文献   

11.
I examined three aspects of the cladistic treatment of a set of 17 F1 hybrids of known parental origin: (1) impact of hybrids on consistency index (CI) and number of most parsimonious trees (Trees), (2) placement of hybrids in cladograms, and (3) impact of hybrids on hypotheses of relationship among species. The hybrids were added singly and in randomly selected sets of two to five to a data set composed of Central American species of Aphelandra (including the parents of all hybrids). Compared to analyses with the same number of OTUs all of which were species, the analyses with hybrids yielded results with significantly higher CI. There was no difference in Trees between analyses with hybrids versus species. There was thus no evidence that hybrids would appear to be more problematic for cladistic methods than species. Accordingly, hybrids will not be readily identifiable as taxa that cause marked change in these indices. About % of the hybrids were placed as the cladistically basal members of the lineage that included the most apomorphic parent. Relatively apomorphic hybrids were placed proximate to the most derived parent (ca. 13% of hybrids). Other placements occurred more rarely. The most frequent placements of hybrids thus did not distinguish them from normal intermediate or apomorphic taxa. When analyses with hybrids yielded multiple most parsimonious trees, these were no more different from each other than were the equally parsimonious trees that resulted from analyses with species. Most analyses with one or two hybrids resulted in minor or no change in topology. When hybrids caused topological change, they frequently caused rearrangements of weakly supported portions of the cladogram that did not include their parents. When they disrupted the cladistic placement of their parents, they often caused their parents to change positions, with at least one topology bringing the parental lineages into closer proximity with the hybrid placed between them. Hybrids between parents from the two main lineages of the group caused total cladistic restructuring. In fact, the degree of relationship between a hybrid's parents (measured by both cladistic and patristic distance) was strongly correlated with CI (negatively) and with the degree of disturbance to cladistic relationships (positively). Thus, hybrids between distantly related parents resulted in cladograms with low CI and major topological changes. This study suggests that hybrids are unlikely to cause breakdown of cladistic structure unless they are between distantly related parents. However, these results also indicate that cladistics may not be specially useful in distinguishing hybrids from normal taxa. The applicability of these results to other kinds of hybrids is examined and the likely cladistic treatment of hybrids using other sources of data is discussed.  相似文献   

12.
The recent multiplication of cladistic hypotheses for many zoological groups poses a challenge to zoological nomenclature following the International Code of Zoological Nomenclature: in order to account for these hypotheses, we will need many more ranks than currently allowed in this system, especially in lower taxonomy (around the ranks genus and species). The current Code allows the use of as many ranks as necessary in the family-series of nomina (except above superfamily), but forbids the use of more than a few ranks in the genus and species-series. It is here argued that this limitation has no theoretical background, does not respect the freedom of taxonomic thoughts or actions, and is harmful to zoological taxonomy in two respects at least: (1) it does not allow to express in detail hypothesized cladistic relationships among taxa at lower taxonomic levels (genus and species); (2) it does not allow to point taxonomically to low-level differentiation between populations of the same species, although this would be useful in some cases for conservation biology purposes. It is here proposed to modify the rules of the Code in order to allow use by taxonomists of an indeterminate number of ranks in all nominal-series. Such an 'expanded nomenclatural system' would be highly flexible and likely to be easily adapted to any new finding or hypothesis regarding cladistic relationships between taxa, at genus and species level and below. This system could be useful for phylogeographic analysis and in conservation biology. In zoological nomenclature, whereas robustness of nomina is necessary, the same does not hold for nomenclatural ranks, as the latter are arbitrary and carry no special biological, evolutionary or other information, except concerning the mutual relationships between taxa in the taxonomic hierarchy. Compared to the Phylocode project, the new system is equally unambiguous within the frame of a given taxonomic frame, but it provides more explicit and informative nomina for non-specialist users, and is more economic in terms of number of nomina needed to account for a given hierarchy. These ideas are exemplified by a comparative study of three possible nomenclatures for the taxonomy recently proposed by Hillis and Wilcox (2005) for American frogs traditionally referred to the genus Rana.  相似文献   

13.
A unifying theory for systematic analysis states that a number of methods should be used jointly to cope with various kinds of data; also that groups should be as consistent as possible, be made with least information loss, and where needed, be polythetic. A test of relationship, homogeneity, can use various kinds of data. It can take account of the internal variation of aggregate items such as genera. It can give due emphasis to smaller clusters that have likely important contexts of external items. It helps in analysing trends, cores and hazes in dendrograms. A proposed detector for formal groups can be based on measures of isolation, identifiability and inclusiveness. Non-mathematical, inter-item reaction tests such as hybridization and serology can also be used in grouping. All relationship data are used polythetically to reveal natural groups. This leads to a unified informational concept for taxa. This is more useful than the biological species concept that is restricted to inter-breeding data. All the methods appear to be analogues of the powerful human grouping instinct. The resulting compatibility is important as precise methods are needed mainly when the data are too complex for the mind to use reliably. Cladograms can be made by self-graded deweighting of homogeneity and agglomerative clustering. Unlike classical cladistics this can reveal any polythetic group. Finding the derived states for making cladograms is often much too hypothetical for a fully cladistic approach to be properly precise. Instead, where the evidence is weak, a milder strength of graded deweighting is used for the cladistic properties, which help to show relationships along with the others. Axiomatic failures of other classes of grouping methods are discussed. Unavoidable remnants of instinctive processing lower the precision of all the methods. The Uniter computer program, based on the theory, is tested with finely graded values of artificially ‘evolved’ items and with coarsely coded cladistic data. The results show that with natural data, the program should act as a fairly sensitive probe of past evolutionary branching. Another test shows how specimens from species complexes can be grouped and how distinctions between groups are analysed.  相似文献   

14.
Jenner, R. A. (2004). The scientific status of metazoan cladistics: why current research practice must change. —Zoologica Scripta, 33, 293–310. Metazoan phylogenetics is bustling with activity. The use of comprehensive morphological data sets in recent phylogenetic analyses of the Metazoa indicates that morphological evidence continues to play a key role in the reconstruction of metazoan deep history. In this paper I review the scientific status of morphological metazoan cladistics from the perspective of cladistic research cycles. Each research cycle consists of three main steps: (1) the compilation of a data matrix (2) the simultaneous evaluation of all possible cladograms in a character congruence test, and (3) the assessment of the relationship between evidence and hypothesis after finding the optimal tree. I identify a striking discrepancy between the sophistication of the analysis of given data sets (Step 2), and their compilation and the interpretation of the results (Steps 1 and 3). The latter two steps deserve far greater attention than is current practice. Uncritical and nonexplicit character selection, character coding, and character scoring seriously compromise Step 1. Careful comparative morphological study prior to data matrix construction is necessary to remedy this problem in future cladistic analyses. Step 2 is the locus of most recent advances in metazoan cladistics through the increasing availability of computing power, and the development of increasingly efficient phylogenetic software that allows analysis of large data sets. Failure to identify problems and errors generated in Step 1 of the research cycle is testament to the general failure of Step 3. Consequently, recent progress in metazoan cladistics is primarily analytical, while the only empirical anchor of the discipline receives surprisingly little attention. Not surprisingly, the first generation of modern metazoan phylogeneticists used computers principally as a relatively quick and easy means to generate abundant phylogenies from morphological data. The next phase should build on this foundation by critically testing these alternative hypotheses by a thorough qualitative reassessment and elaboration of morphological data matrices, and a more critical approach to data selection. A rigorous research program for metazoan cladistics can only be established when the cladistic research cycle is properly completed, and when subsequent research cycles are effectively linked to previous efforts.  相似文献   

15.
The deep sea has long been a mysterious and attractive habitat for protistologists. However, logistical difficulties severely limit sampling opportunities. Consequently, our knowledge of the protists in the deep sea, (arguably the largest habitat on earth), is relatively sparse. Here, we present a unique time‐series concerning three different protist taxa that share only the characteristics of being relatively large, robust to sampling, and easily identifiable to species level using light microscopy: tintinnid ciliates, phaeogromid cercozoans (e.g. Challengerids) and amphisolenid dinoflagellates. We sampled a near‐shore deep water site in the N.W. Mediterranean Sea at 250 m depth over a 2‐yr period at approximately weekly intervals from January 2017 to December 2018. To our knowledge, no previous studies have employed sampling on a similar time scale. We found taxa that appear to be restricted to deep waters, distinct seasonal patterns of abundance in some taxa, and in others nonseasonal successional patterns. Based on data from sampling following a flash flood event, the Challengerid population appeared to respond positively to a pulse of terrigenous input. Some of the distinct mesopelagic tintinnid ciliates and amphisolinid dinoflagellates were also found in two samples from the North Atlantic mesopelagic gathered from near the Azores Islands in September 2018. We conclude that there are a variety of protist taxa endemic to the mesopelagic, that the populations are dynamic, and they may be widely distributed in the deep waters of the world ocean.  相似文献   

16.
A listing of papers and dissertations either using some type of cladistic analysis on a plant group or dealing with theoretical cladistics and written by a botanist. In addition, to facilitate studies in vicariance biogeography, this list includes the distribution of the taxa treated in the various papers.  相似文献   

17.
Evolutionary idea is the core of the modern biology. Due to this, phylogenetics dealing with historical reconstructions in biology takes a priority position among biological disciplines. The second half of the 20th century witnessed growth of a great interest to phylogenetic reconstructions at macrotaxonomic level which replaced microevolutionary studies dominating during the 30s-60s. This meant shift from population thinking to phylogenetic one but it was not revival of the classical phylogenetics; rather, a new approach emerged that was baptized The New Phylogenetics. It arose as a result of merging of three disciplines which were developing independently during 60s-70s, namely cladistics, numerical phyletics, and molecular phylogenetics (now basically genophyletics). Thus, the new phylogenetics could be defined as a branch of evolutionary biology aimed at elaboration of "parsimonious" cladistic hypotheses by means of numerical methods on the basis of mostly molecular data. Classical phylogenetics, as a historical predecessor of the new one, emerged on the basis of the naturphilosophical worldview which included a superorganismal idea of biota. Accordingly to that view, historical development (the phylogeny) was thought an analogy of individual one (the ontogeny) so its most basical features were progressive parallel developments of "parts" (taxa), supplemented with Darwinian concept of monophyly. Two predominating traditions were diverged within classical phylogenetics according to a particular interpretation of relation between these concepts. One of them (Cope, Severtzow) belittled monophyly and paid most attention to progressive parallel developments of morphological traits. Such an attitude turned this kind of phylogenetics to be rather the semogenetics dealing primarily with evolution of structures and not of taxa. Another tradition (Haeckel) considered both monophyletic and parallel origins of taxa jointly: in the middle of 20th century it was split into phylistics (Rasnitsyn's term; close to Simpsonian evolutionary taxonomy) belonging rather to the classical realm, and Hennigian cladistics that pays attention to origin of monophyletic taxa exclusively. In early of the 20th century, microevolutionary doctrine became predominating in evolutionary studies. Its core is the population thinking accompanied by the phenetic one based on equation of kinship to overall similarity. They were connected to positivist philosophy and hence were characterized by reductionism at both ontological and epistemological levels. It led to fall of classical phylogenetics but created the prerequisites for the new phylogenetics which also appeared to be full of reductionism. The new rise of phylogenetic (rather than tree) thinking during the last third of the 20th century was caused by lost of explanatory power of population one and by development of the new worldview and new epistemological premises. That new worldview is based on the synergetic (Prigoginian) model of development of non-equilibrium systems: evolution of the biota, a part of which is phylogeny, is considered as such a development. At epistemological level, the principal premise appeared to be fall of positivism which was replaced by post-positivism argumentation schemes. Input of cladistics into new phylogenetics is twofold. On the one hand, it reduced phylogeny to cladistic history lacking any adaptivist interpretation and presuming minimal evolution model. From this it followed reduction of kinship relation to sister-group relation lacking any reference to real time scale and to ancestor-descendant relation. On the other hand, cladistics elaborated methodology of phylogenetic reconstructions based on the synapomorphy principle, the outgroup concept became its part. The both inputs served as premises of incorporation of both numerical techniques and molecular data into phylogenetic reconstruction. Numerical phyletics provided the new phylogenetics with easily manipulated algorithms of cladogram construing and thus made phylogenetic reconstructions operational and repetitive. The above phenetic formula "kinship = similarity" appeared to be a keystone for development of the genophyletics. Within numerical phyletics, a lot of computer programs were elaborated which allow to manipulate with evolutionary scenario during phylogenetic reconstructions. They make it possible to reconstruct both clado- and semogeneses based on the same formalized methods. Multiplicity of numerical approaches indicates that, just as in the case of numerical phenetics, choice of adequate method(s) should be based on biologically sound theory. The main input of genophyletics (= molecular phylogenetics) into the new phylogenetics was due to completely new factology which makes it possible to compare directly such far distant taxa as prokaryotes and higher eukaryotes. Genophyletics is based on the theory of neutral evolution borrowed from microevolutionary theory and on the molecular clock hypothesis which is now considered largely inadequate. The future developments of genophyletics will be aimed at clarification of such fundamental (and "classical" by origin) problems as application of character and homology concepts to molecular structures. The new phylogenetics itself is differentiated into several schools caused basically by diversity of various approaches existing within each of its "roots". Cladistics makes new phylogenetics splitted into evolutionary and parsimonious ontological viewpoints. Numerical phyletics divides it into statistical and (again) parsimonious methodologies. Molecular phylogenetics is opposite by its factological basis to morphological one. The new phylogenetics has significance impact onto the "newest" systematics. From one side, it gives ontological status back to macrotaxa they have lost due to "new" systematics based on population thinking. From another side, it rejects some basical principles of classical phylogenetic (originally Linnean) taxonomy such as recognitions of fixed taxonomic ranks designated by respective terms and definition of taxic names not by the diagnostic characters but by reference to the ancestor. The latter makes the PhyloCode overburdened ideologically and the "newest" systematics self-controversial, as concept of ancestor has been acknowledged non-operational from the very beginning of cladistics. Relation between classical and new phylogenetics is twofold. At the one hand, general phylogenetic hypothesis (in its classical sense) can be treated as a combination of cladogenetic and semogenetic reconstructions. Such a consideration is bound to pay close attention to the uncertainty relation principle which, in case of the phylogenetics, means that the general phylogenetic hypothesis cannot be more certain than any of initial cladogenetic or semogenetic hypotheses. From this standpoint, the new phylogenetics makes it possible to reconstruct phylogeny following epistemological principle "from simple to complex". It elaborates a kind of null hypotheses about evolutionary history which are more easy to test as compared to classical hypotheses. Afterward, such hypotheses are possible to be completed toward the classical, more content-wise ones by adding anagenetic information to the cladogenetic one. At another hand, reconstructions elaborated within the new phylogenetics could be considered as specific null hypotheses about both clado- and semogeneses. They are to be tested subsequently by mean of various models, including those borrowed from "classical" morphology. The future development of the new phylogenetics is supposed to be connected with getting out of plethora of reductionism inherited by it from population thinking and specification of object domain of the phylogenetics. As the latter is a part of an evolutionary theory, its future developments will be adjusted with the latter. Lately predominating neodarwinism is now being replaced by the epigenetic evolutionary theory to which phylistics (one of the modern versions of classical phylogenetics) seems to be more correspondent.  相似文献   

18.
滇桐属系统位置的分支分析   总被引:2,自引:0,他引:2  
本文以讨论系统位置有争议的滇桐属的归属问题,尝试在植物分类学中具体应用分支系统学原理和方法的可能性。作者认为近年来分支系统学中出现的一种倾向,即不再强调祖先和直接的谱系关系,而把分支图解仅仅作为一种归类手段,为本文提供了理论基础。通过对梧桐科和椴树科7个属15个性状状态的分支分析,建立了符合简约性原则的分支图解。分支图解表明,滇桐属与通常置于梧桐科的马克韦桐属具有较密切的关系,而它们与椴树科的关系比与梧桐科的关系更接近。结论支持把滇桐属作为椴树科成员的观点。  相似文献   

19.
When molecules and morphology produce incongruent hypotheses of primate interrelationships, the data are typically viewed as incompatible, and molecular hypotheses are often considered to be better indicators of phylogenetic history. However, it has been demonstrated that the choice of which taxa to include in cladistic analysis as well as assumptions about character weighting, character state transformation order, and outgroup choice all influence hypotheses of relationships and may positively influence tree topology, so that relationships between extant taxa are consistent with those found using molecular data. Thus, the source of incongruence between morphological and molecular trees may lie not in the morphological data themselves but in assumptions surrounding the ways characters evolve and their impact on cladistic analysis. In this study, we investigate the role that assumptions about character polarity and transformation order play in creating incongruence between primate phylogenies based on morphological data and those supported by multiple lines of molecular data. By releasing constraints imposed on published morphological analyses of primates from disparate clades and subjecting those data to parsimony analysis, we test the hypothesis that incongruence between morphology and molecules results from inherent flaws in morphological data. To quantify the difference between incongruent trees, we introduce a new method called branch slide distance (BSD). BSD mitigates many of the limitations attributed to other tree comparison methods, thus allowing for a more accurate measure of topological similarity. We find that releasing a priori constraints on character behavior often produces trees that are consistent with molecular trees. Case studies are presented that illustrate how congruence between molecules and unconstrained morphological data may provide insight into issues of polarity, transformation order, homology, and homoplasy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号