首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Organic mercury (Hg) species exert their toxicity primarily in the central nervous system. The food relevant Hg species methylmercury (MeHg) has been frequently studied regarding its neurotoxic effects in vitro and in vivo. Neurotoxicity of thiomersal, which is used as a preservative in medical preparations, is to date less characterised. Due to dealkylation of organic Hg or oxidation of elemental Hg, inorganic Hg is present in the brain albeit these species are not able to readily cross the blood brain barrier. This study compared for the first time toxic effects of organic MeHg chloride (MeHgCl) and thiomersal as well as inorganic mercury chloride (HgCl2) in differentiated human neurons (LUHMES) and human astrocytes (CCF-STTG1). The three Hg species differ in their degree and mechanism of toxicity in those two types of brain cells. Generally, neurons are more susceptible to Hg species induced cytotoxicity as compared to astrocytes. This might be due to the massive cellular mercury uptake in the differentiated neurons. The organic compounds exerted stronger cytotoxic effects as compared to inorganic HgCl2. In contrast to HgCl2 exposure, organic Hg compounds seem to induce the apoptotic cascade in neurons following low-level exposure. No indicators for apoptosis were identified for both inorganic and organic mercury species in astrocytes. Our studies clearly demonstrate species-specific toxic mechanisms. A mixed exposure towards all Hg species in the brain can be assumed. Thus, prospectively coexposure studies as well as cocultures of neurons and astrocytes could provide additional information in the investigation of Hg induced neurotoxicity.  相似文献   

2.
The accumulation of inorganic and organic mercury by the thornback ray has been studied using 203HgCl2 and CH3203HgCl. Observations have been made on the rates of intake and loss of 203Hg, from both labelled food and sea water, and the internal distributions of the isotope compared with that of total mercury. Both forms were readily absorbed from sea water. Retention of the two forms from food was, however, dissimilar in that, in contrast to inorganic mercury, methylmercury was readily absorbed and only slowly eliminated. The results are compared with data on the accumulation of mercury by the plaice.  相似文献   

3.
P.J. Clarke 《Aquatic Botany》1985,23(3):275-290
The nitrogen status of the soil and plant components of an estuarine wetland near Sydney were investigated over 6 months to detect seasonal and spatial changes in nitrogen content. Organic carbon, organic nitrogen and inorganic nitrogen concentrations were measured in the soil at various depths in six vegetation zones across the wetland. Carbon and nitrogen content of the plant biomass were also determined in each of the zones. Soil redox potentials and pH were measured in situ and both were found to vary with depth and inundation frequency. Organic carbon, organic nitrogen and inorganic nitrogen in the soil decreased significantly from the fringe Casuarina forest (1391 g N m?2) through to the Avicennia mangrove zone (133 g N m?2). Exchangeable NH4+, NO3? and NO2? concentrations from less than 1% of the soil nitrogen pool and vary seasonally. The distinctive feature of the mangrove zone is that the plant component of the total nitrogen pool is large (55%). This contrasts with the saltmarsh and fringe communities, where the plant pools are small (15%) in comparison with the soil. These findings are consistent with the hypothesis that mangroves export organic nutrients whereas the saltmarsh and fringe communities act as nutrient sinks.  相似文献   

4.
The accumulation of organic mercury from sea water by plaice eggs, larvae and adult fish has been studied using CH3203HgCl as a tracer. The isotope was rapidly accumulated, the largest fraction being taken up by muscle tissue. High concentration factors were attained by many internal organs, particularly blood, spleen, and kidney. Longer biological half-times than previous estimates with 203HgCl2 were obtained: the possible consequences of inorganic mercury accumulated from sea water being excreted at the rate for methylmercury have been calculated.  相似文献   

5.
The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania huxleyi (Lohman) W. W. Hay et H. Mohler. E. huxleyi has been shown to thrive on various nitrogen sources, including dissolved organic nitrogen. Nevertheless, assimilation of dissolved nitrogen under nitrogen‐replete and ‐limited conditions is not well understood in this ecologically important species. In this study, the complete amino acid sequences for three functional genes involved in nitrogen metabolism in E. huxleyi were identified: a putative formamidase, a glutamine synthetase (GSII family), and assimilatory nitrate reductase. Expression patterns of the three enzymes in cells grown on inorganic as well as organic nitrogen sources indicated reduced expression levels of nitrate reductase when cells were grown on NH4+ and a reduced expression level of the putative formamidase when growth was on NO3?. The data reported here suggest the presence of a nitrogen preference hierarchy in E. huxleyi. In addition, the gene encoding for a phosphate repressible phosphate permease was more highly expressed in cells growing on formamide than in cells growing on inorganic nitrogen sources. This finding suggests a coupling between phosphate and nitrogen metabolism, which might give this species a competitive advantage in nutrient‐depleted environments. The potential of using expression of genes investigated here as indicators of specific nitrogen‐metabolism strategies of E. huxleyi in natural populations of phytoplankton is discussed.  相似文献   

6.
Summary The toxicity of some heavy metals to the common macrophytic freshwater algaChara vulgaris was studied under laboratory conditions. For experiments, apical tips of algae containing two internodes were cultivated for fourteen days in the presence of various concentrations of cadmium, mercury or lead (as triethyl lead or lead nitrate). Fifty percent growth inhibition occurred with concentrations of 8.5×10–8 M (9.5 ppb) cadmium, 7.5×10–7M (150ppb) mercury, 1.6×10–6 M (330ppb) organic lead or 4× 10–5 M (8000 ppb) inorganic lead. Sublethal concentrations of these metals caused alterations in the fine structure of internodal cells which turned out to be at least partly metal-specific or in the case of lead, the effects depended on whether the lead was ionic or organically bound. Cadmium and inorganic lead induced disorders of cell wall microfibrils which resulted in local wall protuberances. Mercury affected the chloroplasts which mostly showed considerably increased grana stacks. In addition, mercury caused a dilation of the endoplasmic reticulum and of the mitochondrial tubuli. Organic lead damaged the membrane system of chloroplasts; sheet- or tubule-like thylakoids were disarranged and showed whorl-like structures. At higher concentrations of organic lead, tubular invaginations of the plasmalemma (charasomes) disappeared. The fine structure of nuclei was not altered by any of the metals.  相似文献   

7.
Concentrations of methyl mercury, CH3Hg (II), total mercury, Hgtot = CH3Hg (II) + Hg (II), and organic sulphur species were determined in soils, soil solutions and streams of a small (50 ha) boreal forest catchment in northern Sweden. The CH3Hg (II)/Hgtot ratio decreased from 1.2–17.2% in the peaty stream bank soils to 0.4–0.8% in mineral and peat soils 20 m away from the streams, indicating that conditions for net methylation of Hg (II) are most favourable in the riparian zone close to streams. Concentrations of CH3Hg (II) bound in soil and in soil solution were significantly, positively correlated to the concentration of Hgtot in soil solution. This, and the fact that the CH3Hg (II)/Hgtot ratio was higher in soil solution than in soil may indicate that Hg (II) in soil solution is more available for methylation processes than soil bound Hg (II). Reduced organic S functional groups (Org-SRED) in soil, soil extract and in samples of organic substances from streams were quantified using S K-edge X-ray absorption near-edge structure (XANES) spectroscopy. Org-SRED, likely representing RSH, RSSH, RSR and RSSR functionalities, made up 50 to 78% of total S in all samples examined. Inorganic sulphide [e.g. FeS2 (s)] was only detected in one soil sample out of 10, and in none of the stream samples. Model calculations showed that under oxic conditions nearly 100% of Hg (II) and CH3Hg (II) were complexed by thiol groups (RSH) in the soil, soil solution and in the stream water. Concentrations of free CH3Hg+ and Hg2+ ions in soil solution and stream were on the order of 10–18 and 10–32M, respectively, at pH 5. For CH3Hg (II), inorganic bi-sulphide complexes may contribute to an overall solubility at concentrations of inorganic sulphides higher than 10–9M, whereas considerably higher concentrations of inorganic sulphides (lower redox-potential) are required to increase the solubility of Hg (II).  相似文献   

8.
Organic and inorganic stable isotopes of lacustrine carbonate sediments are commonly used in reconstructions of ancient terrestrial ecosystems and environments. Microbial activity and local hydrological inputs can alter porewater chemistry (e.g., pH, alkalinity) and isotopic composition (e.g., δ18Owater, δ13CDIC), which in turn has the potential to impact the stable isotopic compositions recorded and preserved in lithified carbonate. The fingerprint these syngenetic processes have on lacustrine carbonate facies is yet unknown, however, and thus, reconstructions based on stable isotopes may misinterpret diagenetic records as broader climate signals. Here, we characterize geochemical and stable isotopic variability of carbonate minerals, organic matter, and water within one modern lake that has known microbial influences (e.g., microbial mats and microbialite carbonate) and combine these data with the context provided by 16S rRNA amplicon sequencing community profiles. Specifically, we measure oxygen, carbon, and clumped isotopic compositions of carbonate sediments (δ18Ocarb, δ13Ccarb, ?47), as well as carbon isotopic compositions of bulk organic matter (δ13Corg) and dissolved inorganic carbon (DIC; δ13CDIC) of lake and porewater in Great Salt Lake, Utah from five sites and three seasons. We find that facies equivalent to ooid grainstones provide time‐averaged records of lake chemistry that reflect minimal alteration by microbial activity, whereas microbialite, intraclasts, and carbonate mud show greater alteration by local microbial influence and hydrology. Further, we find at least one occurrence of ?47 isotopic disequilibrium likely driven by local microbial metabolism during authigenic carbonate precipitation. The remainder of the carbonate materials (primarily ooids, grain coatings, mud, and intraclasts) yield clumped isotope temperatures (T(?47)), δ18Ocarb, and calculated δ18Owater in isotopic equilibrium with ambient water and temperature at the time and site of carbonate precipitation. Our findings suggest that it is possible and necessary to leverage diverse carbonate facies across one sedimentary horizon to reconstruct regional hydroclimate and evaporation–precipitation balance, as well as identify microbially mediated carbonate formation.  相似文献   

9.
The effect of the sulfhydryl reagents (—SH) p-chloromercuribenzene-sulfonic acid (PCMBS), N-ethylmaleimide (NEM), and inorganic mercury on H14CO3 assimilation in Chara corallina is reported. Commercial grade PCMBS caused severe inhibition of H14CO3 assimilation. Results obtained using purified PCMBS (stock solution passed through a chelating resin) indicated that inhibition observed using unpurified PCMBS was due predominantly to the presence of inorganic mercury (as a contaminant). The inhibitory role of inorganic mercury was verified using HgCl2. This chemical caused a dramatic inhibition of H14CO3 assimilation, while it had little effect on cellular 14CO2 fixation. Reversal of the Hg2+ inhibition of H14CO3 assimilation (in presence of 1.0 millimolar dithioerythritol) was extremely slow, requiring 2 to 3 hours for the reestablishment of control rates. This slow recovery may reflect de novo synthesis of transport proteins.  相似文献   

10.
Organic and inorganic carbon concentrations in lakes and the links to catchment and water quality were studied in variable landscapes using the Finnish Lake Survey data base including 874 randomly selected lakes sampled during autumn overturn. The median total organic carbon (TOC) in these boreal lakes was 7.8 mg l?1, the median total inorganic carbon (TIC) 1.6 mg l?1 and the median partial pressure of CO2 (pCO2) 900 μatm. When the data was divided into subgroups according to land use in the catchment, the proportion of TIC of the total carbon (TC) in lakes was highest (31%) in agricultural areas and lowest (10%) in peatland areas. Elevated TIC concentrations were associated with agricultural land in the catchment, whereas elevated TOC concentrations were observed in lakes with high peatland proportion in the catchment. Two contrasting important sources of CO2 in lakes were identified on the basis of statistical analysis of the data; weathering processes in the catchments and decomposition of organic matter. CO2 was also strongly associated with total nutrients TN and TP, implying the importance of quality of organic matter and availability of nutrients for the decomposition processes.  相似文献   

11.
Porewater equilibration samplers were used to obtain porewater inventories of inorganic nutrients (NH4+, NOx, PO43−), dissolved organic carbon (DOC) and nitrogen (DON), sulfate (SO42−), dissolved inorganic carbon (DIC), hydrogen sulfide (H2S), chloride (Cl), methane (CH4) and reduced iron (Fe2+) in intertidal creek-bank sediments at eight sites in three estuarine systems over a range of salinities and seasons. Sulfate reduction (SR) rates and sediment particulate organic carbon (POC) and nitrogen (PON) were also determined at several of the sites. Four sites in the Okatee River estuary in South Carolina, two sites on Sapelo Island, Georgia and one site in White Oak Creek, Georgia appeared to be relatively pristine. The eighth site in Umbrella Creek, Georgia was directly adjacent to a small residential development employing septic systems to handle household waste. The large data set (>700 porewater profiles) offers an opportunity to assess system-scale patterns of porewater biogeochemical dynamics with an emphasis on DOC and DON distributions. SO42− depletion (SO42−)Dep was used as a proxy for SR, and (SO42−)Dep patterns agreed with measured (35S) patterns of SR. There were significant system-scale correlations between the inorganic products of terminal metabolism (DIC, NH4+ and PO43−) and (SO42−)Dep, and SR appeared to be the dominant terminal carbon oxidation pathway in these sediments. Porewater inventories of DIC and (SO42−)Dep indicate a 2:1 stoichiometry across sites, and the C:N ratio of the organic matter undergoing mineralization was between 7.5 and 10. The data suggest that septic-derived dissolved organic matter with a C:N ratio below 6 fueled microbial metabolism and SR at a site with development in the upland. Seasonality was observed in the porewater inventories, but temperature alone did not adequately describe the patterns of (SO42−)Dep, terminal metabolic products (DIC, NH4+, PO43−), DOC and DON, and SR observed in this study. It appears that production and consumption of labile DOC are tightly coupled in these sediments, and that bulk DOC is likely a recalcitrant pool. Preferential hydrolysis of PON relative to POC when overall organic matter mineralization rates were high appears to drive the observed patterns in POC:PON, DOC:DON and DIC:DIN ratios. These data, along with the weak seasonal patterns of SR and organic and inorganic porewater inventories, suggest that the rate of hydrolysis limits organic matter mineralization in these intertidal creek-bank sediments.  相似文献   

12.
B. Seeling  A. Jungk 《Plant and Soil》1996,178(2):179-184
Organic phosphorus is often a major part of total phosphorus in soil solution. The role of this fraction as a P source for plants and the mechanism involved in its transfer from soil to plant is still unclear. We studied the utilization of organic phospharus in 0.01 M calcium chloride extracts by barley and its hydrolysis by isolated acid and alkaline phosphatases. Calcium chloride extracts were used as a nutrient solution in 24 hrs assays. Concentration of organic and inorganic P in equilibrium calcium chloride extracts was 7.8 and 1.8 µmol P L-1, respectively, which was similar to the soil solution P concentration. When soil microbial biomass was destroyed by autoclaving, organic P concentration increased to 64.8 µmol P L-1 whereas the inorganic P was hardly changed. Inoculation of the autoclaved soil with non-sterile soil and incubation for 5 days decreased the organic P concentration to 27.9 µmol P L-1 but did not change inorganic P. In this study barley plants utilized organic P from all extracts. The greatest reduction of organic P concentration occurred in fresh extracts of the autoclaved soil. Inorganic P was depleted to traces in all extracts. Organic P was hydrolyzed by isolated acid and alkaline phosphatases. We conclude that organic P in soil solution is a heterogeneous pool of organic P compounds originating from microbial biomass. Its initial availability to plants was nigh but its susceptibility to phosphatase hydrolysis was quickly reduced but not completely lost.  相似文献   

13.
The forest-steppe ecotone in NW Patagonia is a semiarid ecosystem affected by natural and anthropogenic fires, and overgrazing by sheep. Following a wild fire in the driest portion of this ecotone, a 3-year study was conducted to assess the impacts of a single application of inorganic and organic fertilizers on soil and vegetation recovery. Organic fertilizers were composts derived from biosolids and municipal solid wastes. Six treatments were evaluated: screened and unscreened biosolids compost and municipal solid wastes compost (40 Mg ha?1), inorganic fertilizer (100 kg N and 35 kg P ha?1), and no application. Soils were chemically characterized, and soil microbial activity was assessed as potential respiration and N-mineralization. Vegetation responses included plant cover, composition, phytomass, and N resorption prior to abscission, and leaf litter quality of the dominant species. Organic fertilizers increased soil organic matter, nutrients and microbial activity. Plant cover and aboveground phytomass, dominated by the native perennial tussock grass Poa ligularis, showed a higher increase with inorganic than with organic fertilization. While vegetation responded more to inorganic fertilizer, due to its higher initial pulse of available N, organic fertilizers had a positive impact on soil chemical and biological properties.  相似文献   

14.
In this study, cotton seedlings were subjected to osmotic-, salt- and alkali stresses. The growth, photosynthesis, inorganic ions, and organic acids in the stressed seedlings were measured, to compare the mechanisms by which plants adapt to these stresses and attempt to probe the mechanisms by which plants adapt to high pH stress. Our results indicated that, at high stress intensity, both osmotic and alkali stresses showed a stronger injurious effect on growth and photosynthesis than salt stress. Cotton accumulated large amount of Na+ under salt and alkali stresses, but not under osmotic stress. In addition, the reductions of K+, NO3 , and H2PO4 under osmotic stress were much greater than those under salt stress with increasing stress intensity. The lack of inorganic ions limited water uptake and was the main reason for the higher injury from osmotic-compared to salt stress on cotton. Compared with salt- and alkali stresses, the most dramatic response to osmotic stress was the accumulation of soluble sugars as the main organic osmolytes. In addition, we found that organic acid metabolism adjustment may play different roles under different types of stress. Under alkali stress, organic acids might play an important role in maintaining ion balance of cotton; however, under osmotic stress, malate might play an important osmotic role.  相似文献   

15.
Community dynamics of epiphytic diatoms were studied for 3 years in a chronically and an episodically acidified tributary of Buck Creek, Adirondacks. Both streams experienced pulses of acidity during hydrologic events but these pulses were more pronounced in the episodically acidified stream, where pH decreased over two units (between 4.53 and 6.62) and the acid‐neutralizing capacity (ANC) became negative. In the chronically acidified stream, pH was below 4.9 and the ANC was negative 94% of the time. In this stream, high inorganic acidity following SO42? enrichment from snowmelt or rainstorms alternated with high organic acidity derived from a headwaters wetland during base flow. The fluctuating water chemistry generated shifts in diatom community composition: from exclusive dominance of Eunotia bilunaris (Ehrenberg) Mills during periods of high inorganic acidity to proliferation of several subdominant species during periods of high organic acidity. In the episodically acidified stream, the pulses of acidity were associated with high NO3? concentrations and the corresponding high ratios of inorganic monomeric Al (Alim) to organic monomeric Al (Alom). Diatom communities there were dominated exclusively by E. exigua (Brébisson) Rabenhorst year round; however, this species peaked during periods of low acidity. Periods of high acidity and Alim:Alom ratios were marked by a decline in E. exigua and a concomitant increase in the subdominant species. Variance partitioning into terms of environmental and temporal variance, and their covariance, suggested that diatom communities in the chronically acidic stream were governed primarily by environmental factors while in the episodically acidic stream environmental and temporal factors had equal contributions.  相似文献   

16.
The sensitivity and resistance of some Gram-negative mercury (Hg2+)-sensitive and-resistant strains to chemotherapeutic agents and to disinfectants and preservatives are described.Escherichia coli andPseudomonas aeruginosa strains harboring plasmid pUB 1351 [pUB 367:Tn 501] andE. coli bearing R100-1 were resistant to inorganic mercury and to various antibiotics, but were not more resistant to organic mercury and other preservatives and disinfectants than plasmidless strains.  相似文献   

17.
A method for the removal of mercury sulfide frommercury-contaminated sediments was developed, whichconsists of chemical leaching and volatilization ofmercury by bacteria. More than 85% of the mercury insediment containing 0.11–37.4 mg/kg of mercury wasefficiently extracted with 3 M HCl and 74 mMFeCl3. Subsequent volatilization by bacteriaresulted in the removal of 62.9–75.1% of mercury frommercury-contaminated Minamata Bay sediments. Methylmercury was also eliminated from soil at a highefficiency. Thus, this combined method of chemicaland microbial treatments could be used for efficientremoval of both organic and inorganic mercurials fromnatural sediments.  相似文献   

18.
After spiking anoxic sediment slurries of three acidic oligotrophic lakes with either HgCl2 at 1.0 μg/ml or CH3HgI at 0.1 μg/ml, both mercury methylation and demethylation rates were measured. High mercury methylation potentials were accompanied by high demethylation potentials in the same sediment. These high potentials correlated positively with the concentrations of organic matter and dissolved sulfate in the sediment and with mercury levels in fish. Adjustment of the acidic sediment pH to neutrality failed to influence either the methylation or the demethylation rate of mercury. The opposing methylation and demethylation processes converged to establish similar Hg2+-CH3Hg+ equilibria in all three sediments. Because of their metabolic dominance in anoxic sediments, mercury methylation and demethylation in pure cultures of sulfidogenic, methanogenic, and acetogenic bacteria were also measured. Sulfidogens both methylated and demethylated mercury, but the methanogen tested only catalyzed demethylation and the acetogen neither methylated nor demethylated mercury.  相似文献   

19.
Summary Selenium has been suggested to enhance the histochemical staining of mercury when sections of tissue are subjected to the silver-enhancement method. In the present study, histochemical staining patterns of mercury in tissue sections of rat livers were compared with the actual content of organic and inorganic Hg in the livers, in both the presence and the absence of Se. Rats were injected intravenously with 5g of Hgg–1 body weight as methyl [203Hg] mercury chloride (MeHg) or as [203Hg]mercuric chloride (Hg2+). After 2h, half the rats received an additional intraperitoneal injection of 2g of Se g–1 body weight as sodium [75Se]selenite. All the rats were killed 1h later. Homogenized liver samples were prepared for mercury analysis by two different methods: alkaline digestion and ultrasonic disintegration. Quantitative chemical analysis based on benzene extrction of the radioactively labelled Hg compounds showed that the chemical form of mercury, either organic or inorganic, was preserved from its administration to its deposition in the liver. Light and electron microscopy demonstrated that no silver enhancement of Hg occurred when MeHg alone was present in the sections of tissue, whereas MeHg accompanied by Se induced a moderate deposition of silver grains. In contrast, sections containing Hg2+ alone yielded some staining, and the addition of Se increased the staining dramatically. The results of the present study show that acute selenite pretreatment is a prerequisite for the histochemical demonstration of methyl mercury, and greatly increases the staining of inorganic mercury when applying the silver-enhancement method.  相似文献   

20.
Vera Istvánovics 《Hydrobiologia》1993,253(1-3):193-201
In order to estimate microbial P content and biological P uptake in sediments, the tungstate precipitation method of Orrett & Karl (1987) was used in sediment extracts. This method allows a simple and rapid separation of organic and inorganic 32P radioactivity. Either inorganic 32P (as carrierfree H3 32PO4) or organic 32P (as 32P-labelled algal material) was added to surface sediment suspensions of shallow Lake Balaton. Inorganic 32P was rapidly transformed into organic 32P, and this process was completely inhibited by formaline. P content of living benthic microorganisms was estimated from steady state distribution of the radioactivity. Transformation of algal organic P into inorganic P could also be detected.In extremely P limited Lake Balaton benthic microorganisms were shown to supplement their high P requirements by inorganic P uptake. The velocity of the inorganic into organic P transformation, i.e. the rate of microbial P uptake, was comparable to P uptake in the water column. Microbial P uptake contributed significantly to total P fixation by sediments, particularly at low ( 100 µg P l–1) phosphate additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号