首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane-associated phosphatidylserine synthase was purified from Saccharomyces cerevisiae (Bae-Lee, M., and Carman, G. M. (1984) J. Biol. Chem. 259, 10857-10862) and reconstituted into phospholipid vesicles containing phosphatidylcholine/phosphatidylethanolamine/ phosphatidylinositol/phosphatidylserine. Reconstitution was performed by removing detergent from an octyl glucoside/phospholipid/Triton X-100/enzyme mixed micelle by Sephadex G-50 super-fine chromatography. The average diameter of the vesicles was 90 nm, and the enzyme was reconstituted asymmetrically with the active site facing outward. The enzymological properties of reconstituted phosphatidylserine synthase were determined in the absence of detergent. The enzyme was reconstituted into vesicles with phospholipid compositions approximating those of wild type and mutant strains of S. cerevisiae. Reconstituted activity was modulated by the phosphatidylinositol/phosphatidylserine ratio in the vesicles. The modulation of activity observed in the vesicles is enough to account for some of the fluctuations in the phosphatidylserine content in vivo.  相似文献   

2.
M D Bazzi  G L Nelsestuen 《Biochemistry》1987,26(16):5002-5008
The phospholipid selectivity of protein kinase C (PKC) activation was examined by using two substrates, histone and a random copolymer of lysine and serine [poly(lysine, serine)] (PLS), plus phospholipids provided as vesicles or as Triton-mixed micelle preparations. The results indicated that substrate-phospholipid interaction was an essential component of PKC activation and that many in vitro properties of PKC activation are attributable to this interaction. The substrate histone interacted with phospholipid-Triton mixed micelles containing phosphatidylserine (PS), but not with those containing phosphatidylinositol (PI) or phosphatidylglycerol (PG). In direct correlation, only PS-Triton mixed micelles were effective in supporting PKC activity. Also, the minimum PS composition (4 mol % in Triton) required to induce significant histone-PS interaction coincided with the minimum composition required for phosphorylation of histones. Moreover, the PS composition required for maximum activity varied with the histone concentration of the reaction. In contrast to histone, PLS interacted with phospholipid-Triton mixed micelles containing either PS, PI, or PG, and all these mixed micelles supported the phosphorylation of PLS. In fact, by selection of appropriate experimental conditions (e.g., concentration of substrate and phospholipid), any of the three mixed micelles could appear the most effective in supporting PKC activity. Phospholipid vesicles containing PS, PG, or PI were found to interact with both histone and PLS and to support the activity of PKC. Physical properties of the solution and conditions used for preparation of phospholipid vesicles had considerable influence on PKC activation. At high phospholipid concentrations, vesicles containing PS, PI, or PG supported the activity of PKC to essentially the same level, provided that the physical differences among the phospholipid vesicles were minimized.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Purified membrane-associated phosphatidylinositol synthase (CDP diacylglycerol:myo-inositol 3-phosphatidyltransferase, EC 2.7.8.11) from Saccharomyces cerevisiae was reconstituted into unilamellar phospholipid vesicles. Reconstitution of the enzyme was performed by removing detergent from an octylglucoside/phospholipid/Triton X-100/enzyme mixed micelle mixture by Sephadex G-50 superfine column chromatography. The average diameter of the vesicles was 40 nm and chymotrypsin treatment of intact vesicles indicated that over 90% of the reconstituted enzyme had its active site facing outward. The enzymological properties and reaction mechanism of reconstituted phosphatidylinositol synthase were determined in the absence of detergent. The reconstituted enzyme was used as a model system to study the regulation of activity. Phosphatidylinositol synthase was constitutive in wild type cells grown in the presence of water-soluble phospholipid precursors as determined by enzyme activity and immunoblotting. Reconstituted enzyme was not effected by water-soluble phospholipid precursors or nucleotides. Maximum activity was found when the enzyme was reconstituted into phosphatidylcholine: phosphatidylethanolamine: phosphatidylinositol: phosphatidylserine vesicles. Phosphatidylserine stimulated reconstituted activity, suggesting that the local phospholipid environment may regulate phosphatidylinositol synthase activity.  相似文献   

4.
Hydrolysis of lipid mixtures by rat hepatic lipase   总被引:1,自引:0,他引:1  
The hydrolysis of phospholipid mixtures by purified rat hepatic lipase, also known as hepatic triglyceride lipase, was studied in a Triton X-100/lipid mixed micellar system. Column chromatography of the mixed micelles showed elution of Triton X-100 and binary lipid mixtures of phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine as a single peak. This indicated that the mixed micelles were homogenous and contained all components in the designated molar ratios. The molar ratio of Triton X-100 to lipid was kept constant at 4 to 1. Labeling one lipid with 3H and the other lipid with 14C enabled us to determine the hydrolysis of both components of these binary lipid mixed micelles. We found that the hydrolysis of phosphatidylcholine was activated by the inclusion of small amounts of phosphatidic acid (2.5-fold), phosphatidylethanolamine (1.5-fold) or phosphatidylserine (1.4-fold). The maximal activation of phosphatidylcholine hydrolysis was observed when 5 mol% of phosphatidylethanolamine, 7.5 mol% phosphatidic acid or 5 mol% phosphatidylserine was added to Triton X-100 mixed micelles. The hydrolysis of phosphatidic acid was activated 30%, and that of phosphatidylserine was inhibited 30% when the molar proportion of phosphatidylcholine was less than 50 mol%. The hydrolysis of phosphatidylethanolamine was slightly activated when the mol% of phosphatidylcholine was below 5. The hydrolysis of phosphatidylserine was inhibited by phosphatidylethanolamine when the mol% of the latter was 50 or less whereas phosphatidylethanolamine hydrolysis was not affected by phosphatidylserine. Under the conditions used sphingomyelin and cholesterol did not have a significant effect on the hydrolysis of the phospholipids studied. In agreement with our previous study (Kucera et al. (1988) J. Biol. Chem. 263, 1920-1928) these studies show that the phospholipid polar head group is an important factor which influences the action of hepatic lipase and that the interfacial properties of the substrate play a role in the expression of the activity of this enzyme. The molar ratios of phosphatidic acid, phosphatidylethanolamine and phosphatidylserine which activated phosphatidylcholine hydrolysis correspond closely to the molar ratios of these lipids found in the surface lipid film of lipoproteins e.g., high density lipoproteins.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The effect of low concentrations of nonionic detergents with different critical micelle concentrations such as Triton X-100, Brij 35 and octylglucoside on rabbit liver microsomes is studied by means of 31P-NMR, 1H-NMR, dynamic light scattering and functional investigations. Hexane phosphonic acid diethyl ester was used as a phosphorus membrane probe molecule to monitor the interaction of detergent molecules with microsomal phospholipids by 31P-NMR. This method is more sensitive than 31P-NMR of phospholipids alone and permitted the estimation of the maximum number of detergent molecules which can be incorporated in microsomes without the formation of mixed micelles outside the membrane. These membrane saturation concentrations were determined to be 0.07 (Brij 35), 0.1 (Triton X-100) and 0.4 (octylglucoside) (molar ratio of detergent/total phospholipids). Above these detergent concentrations, mixed micelles consisting of detergent and membrane constituents are formed, coexisting with the microsomes up to the membrane solubilization concentration. The results indicate a dependence of the membrane saturation concentration on the critical micelle concentration of the detergent and a preferential removal of phosphatidylcholine over phosphatidylethanolamine from the microsomes by all detergents studied.  相似文献   

6.
W L Dean  C P Suárez 《Biochemistry》1981,20(7):1743-1747
The interaction of Triton X-100 and other nonionic detergents with a delipidated preparation of the Ca2+ ATPase from sarcoplasmic reticulum has been studied. Binding of radiolabeled Triton X-100 was determined by column chromatography at 6 degrees C, and two classes of binding sites were observed. Below the critical micelle concentration (cmc), binding of Triton occurred at 35-40 equivalent sites on the delipidated ATPase with a binding constant of 2.7 X 10(4) M-1. Near the cmc cooperative binding of an additional 70 molecules of the detergent was observed. The binding of monomeric Triton X-100 below the cmc was associated with a parallel activation of over half of the ATPase activity, and the remainder of the activity was recovered after the detergent concentration was increased to the cmc. The ability to reactivate ATPase activity was more dependent on the polar poly(oxyethylene) portion of nonionic detergents than on the hydrocarbon portion. Generalizing for all amphiphiles, these results suggest that there are discrete binding sites on the Ca2+ ATPase for phospholipid molecules in the native membrane and that the polar head groups of phospholipids interact more strongly with the protein than the hydrophobic acyl chains. Perturbations in micelle structure were observed for several nonionic detergents by measurement of cis-parinaric acid fluorescence and differential scanning calorimetry, and discontinuities in Arrhenius plots occurred at the transition temperature of the detergent used for reactivation of ATPase activity. It is concluded that both the physiol state of teh micelle and the intrinsic behavior of the ATPase polypeptide affect the temperature dependence of ATPase activity.  相似文献   

7.
Interaction with phospholipids of a membrane thiol peptidase [referred to as trigger peptidase (TPase), T. Miyakawa et al. (1987) J. Bacteriol. 169, 1626-1631] that plays a key role in the signalling of a lipopeptidyl mating pheromone at the cell surface of pheromone-target cell (mating type a) of Rhodosporidium toruloides was studied. The activity of highly purified TPase which requires phospholipids was restored by reconstitution of the enzyme into liposomes prepared with phospholipids extracted from the yeast cell. The presence of Ca2+ was essential for both the reconstitution process and the catalytic reaction of TPase. Triton X-100 mixed micelles containing phospholipids also activated the enzyme. The specificity and stoichiometry of activation by phospholipids was investigated by determination of TPase in the presence of mixed micelles that contained defined classes and numbers of phospholipid molecules in the Triton X-100 micelles. It was demonstrated that TPase is activated by mixed micelles containing 2-6 molecules of phosphatidylserine or phosphatidylethanolamine. Other phospholipids of the membranes of this organism, such as phosphatidylcholine and phosphatidylglycerol, had little effect on activation, indicating that the amino group of the phospholipids may be required for the function of TPase. Direct evidence for the interaction of TPase and Triton X-100/phosphatidylserine mixed micelles was obtained by molecular sieve chromatography on Sephacryl S-200. These data established that a phospholipid bilayer is not a requirement for TPase activation, and that the purified enzyme can be activated by a relatively small number of phospholipid molecules of specific classes.  相似文献   

8.
The activities of acetylcholinesterase and Ca2+ + Mg2+ ATPase were measured following treatment of human erythrocyte membranes with nonsolubilizing and solubilizing concentrations of Triton X-100. A concentration of 0.1% (v/v) Triton X-100 caused a significant inhibition of both enzymes. The inhibition appears to be caused by perturbations in the membrane induced by Triton X-100 incorporation. No acetylcholinesterase activity and little Ca2+ + Mg2+ ATPase activity were detected in the supernatant at 0.05% Triton X-100 although this same detergent concentration induced changes in the turbidity of the membrane suspension. Also, no inhibition of soluble acetylcholinesterase was observed over the entire detergent concentration range. The inhibition of these enzymes at 0.1% Triton X-100 was present over an eightfold range of membrane protein in the assay indicating an independence of the protein/detergent ratio. The losses in activities of these two enzymes could be prevented by either including phosphatidylserine in the Triton X-100 suspension or using Brij 96 which has the same polyoxyethylene polar head group but an oleyl hydrophobic tail instead of the p-tert-octylphenol group of Triton X-100. The results are discussed in regard to the differential recovery of enzyme activities over the entire detergent concentration range.  相似文献   

9.
The number of phosphatidylserine molecules involved in activating protein kinase C was determined in a mixed micelle system where one monomer of protein kinase C binds to one detergent:lipid micelle of fixed composition. Unusually high cooperativity, specificity, and multiplicity in the protein kinase C-phospholipid interaction are demonstrated by examining the lipid dependence of enzymatic activity. The rates of autophosphorylation and substrate (histone) phosphorylation are specifically regulated by the phosphatidylserine content of the micelles. Hill coefficients of 8-11 were calculated for phosphatidylserine-dependent stimulation of enzyme activity, with a maximum occurring in micelles containing greater than or equal to 12 phosphatidylserine molecules. The high specificity that exists is illustrated by the fact that phosphatidylethanolamine and phosphatidylglycerol, but not phosphatidylcholine or phosphatidic acid, can replace only some of the phosphatidylserine molecules. We propose that Ca2+ and acidic phospholipids cause the protein to undergo a conformation change revealing multiple phosphatidylserine binding sites and resulting in the highly cooperative and specific interaction of protein kinase C with phosphatidylserine. Consistent with this, the proteolytic sensitivity of protein kinase C increases approximately 10-fold in the presence of phosphatidylserine and Ca2+ compared to Ca2+ alone. The high degree of cooperativity and specificity may provide a sensitive method for the physiological regulation of protein kinase C by phospholipid.  相似文献   

10.
The synthesis and high-pressure liquid chromatographic purification of the homogeneous nonionic surfactant p-(1,1,3,3-tetramethylbutyl)phenoxynonaoxyethylene glycol (OPE-9) in quantities suitable for membrane solubilization studies is reported. Micelles of OPE-9 and mixed micelles of OPE-9 with dimyristoyl and dipalmitoyl phosphatidylcholine as well as phosphatidylserine, phosphatidylethanolamine, lysophosphatidylcholine, sphingomyelin, and palmitic acid were characterized by column chromatography on 6% agarose. It was found that at 28°C OPE-9 micelles have a Stokes' radius of 32 Å, giving a molecular weight for a spherical micelle of about half that of micelles of the polydisperse nonionic surfactant Triton X-100 under the same conditions. The micelle size is temperature dependent: at 40°C the OPE-9 micelles have a Stokes' radius of 44 Å, giving a molecular weight for a spherical micelle of about twice that of the OPE-9 micelles at 28°C. The size of the mixed micelles varies linearly (as measured by Kav) with the mole fraction of phospholipid. The mixed micelle size was found to be relatively independent of the absolute concentration of surfactant over a four-fold range if the mole fraction of phospholipid is kept constant. The usefulness of the OPE-9/phospholipid mixed micelle system for lipolytic enzyme substrates and membrane-related studies is considered.  相似文献   

11.
A A Ribeiro  E A Dennis 《Biochemistry》1975,14(17):3746-3755
Proton magnetic resonance and gel chromatographic studies on mixtures of phospholipid and the nonionic surfactant Triton X-200 have shown that at temperatures above the thermotropic phase transition of the phospholipid and below the cloud point of Triton, mixed micelles are present at molar ratios above about 2:1 Triton/phospholipid. Proton T1 and T2 (from line widths) relaxation times are reported for protons in Triton micelles and in mixed micelles of Triton and dimyristoylphosphatidylcholine at a molar ratio of 3:1 Triton/phospholipid. The T1 values and their temperature dependence and the activation energies of the various Triton proton groups appear to reflect internal motions of the Triton molecules in the micelle. Measurements of the T1/T2 ratio and frequency dependence (55-220 MHz) suggest that the hydrophobic tert-butyl group in Triton is observed under extreme narrowing conditions. The T1 and T2 values of Triton are unchanged in the presence of phosphatidylcholine. The T1 values of various protons of dimyristoylphosphatidylcholine in mixed micelles are similar to those reported for the phospholipid in sonicated vesicles, which are used as membrane models, and presumably the same coupled trans-gauche motions dominate. The T2 values for the terminal methyl and choline methyl protons in the phospholipid are longer than those reported for these groups in vesicles. Hence, the motion of the phospholipid in the mixed micelles appears to be less restricted than in vesicles. T1 measurements in H20/D20 mixtures are consistent with the idea that water does not penetrate the hydrophobic core of the mixed micelles, while water does solvate the polar oxyethylene and choline methyl groups. Titration with Mn2+ confirms that the oxyethylene and choline methyl groups are on the exterior of the mixed micelle while the hydrophobic groups are located in the micellar interior.  相似文献   

12.
Effective detergent:lipid ratios (i.e. molar ratios in the mixed aggregates, vesicles or micelles) have been estimated for the solubilization of phosphatidylcholine vesicles by Triton X-100. Effective molar ratios are given for both the onset and the completion of bilayer solubilization; small unilamellar, large unilamellar and multilamellar vesicles have been used. Effective detergent:lipid ratios are independent of phospholipid concentration, and their use allows a deeper understanding of membrane-surfactant interactions.  相似文献   

13.
Lipid exchange between mixed micelles of phospholipid and triton X-100   总被引:1,自引:0,他引:1  
If phospholipase catalyzed hydrolysis of phospholipid dissolved in a detergent mixed micelle is limited to the phospholipid carried by a single micelle, then hydrolysis ceases upon exhaustion of that pool. However, if the rate of phospholipid exchange between micelles exceeds the catalytic rate then all of the phospholipid is available for hydrolysis. To determine phospholipid availability we studied the exchange of 1,2-dioleoyl-sn-glycero-3-phosphocholine between mixed micelles of phospholipid and non-ionic Triton detergents by both stopped-flow fluorescence-recovery and nuclear magnetic resonance-relaxation techniques. Stopped-flow analysis was performed by combining mixed micelles of Triton and phospholipid with mixed micelles that contained the fluorescent phospholipid 1-palmitoyl-2-(12-[{7-nitro-2-1, 3-benzoxadiazo-4-yl}amino]dodecanoyl)-sn-glycero-3-phosphocholine (P-2-NBD-PC). The concentration dependence of fluorescence recovery suggested a second-order exchange mechanism that was saturable. The true second-order rate constant depends on the specific mechanism for exchange, which was not determined in this study, but the rate constant will be on the order of 106 to 107 M-1s-1. Incorporation of 1-palmitoyl-2-(16-doxylstearoyl)phosphatidylcholine into micelles increased the rate of proton relaxation and gave a limiting relaxation time of 1.3 ms. The results demonstrate that phospholipid exchange was rapid and that the phospholipid content of a single micelle did not limit the rate of phospholipid hydrolysis by phospholipases.  相似文献   

14.
A mixed micellar assay for the binding of phorbol-esters to protein kinase C was developed to investigate the specificity and stoichiometry of phospholipid cofactor dependence and oligomeric state of protein kinase C (Ca2+/phospholipid-dependent enzyme) required for phorbol ester binding. [3H]Phorbol dibutyrate was bound to protein kinase C in the presence of Triton X-100 mixed micelles containing 20 mol % phosphatidylserine (PS) in a calcium-dependent manner with a Kd of 5 X 10(-9) M. The [3H]phorbol dibutyrate X protein kinase C . Triton X-100 . PS mixed micellar complex eluted on a Sephacryl S-200 molecular sieve at an Mr of approximately 200,000; this demonstrates that monomeric protein kinase C binds phorbol dibutyrate. This conclusion was supported by molecular sieve chromatography of a similar complex where Triton X-100 was replaced with beta-octylglucoside. Phorbol dibutyrate activation of protein kinase C in Triton X-100/PS mixed micelles occurred and was dependent on calcium. The PS dependence of both phorbol ester activation and binding to protein kinase C lagged initially and then was highly cooperative. The minimal mole per cent PS required was strongly dependent on the concentration of phorbol dibutyrate or phorbol myristic acetate employed. Even at the highest concentration of phorbol ester tested, a minimum of 3 mol % PS was required; this indicates that approximately four molecules of PS are required. [3H]Phorbol dibutyrate binding was independent of micelle number at 20 mol % PS. The phospholipid dependencies of phorbol ester binding and activation were similar, with PS being the most effective; anionic phospholipids (cardiolipin, phosphatidic acid, and phosphatidylglycerol were less effective, whereas phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin did not support binding or activation. sn-1,2-Dioleoylglycerol displaced [3H]phorbol dibutyrate quantitatively and competitively. The data are discussed in relation to a molecular model of protein kinase C activation.  相似文献   

15.
The phospholipid requirement of the (Ca2+ + Mg2+)-ATPase present in a membrane fraction from human platelets was studied using various purified phospholipases. Only those phospholipases, which hydrolyse the negatively charged phospholipids, inhibited the (Ca2+ + Mg2+)-ATPase activity. The ATPase activity could be restored by adding mixed micelles of Triton X-100 and phosphatidylserine or phosphatidylinositol. Micelles with phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine or sphingomyelin could not be used for reconstitution and inhibited the activity of the native enzyme.  相似文献   

16.
A kinetic scheme is proposed for the action of cobra venom phospholipase A2 on mixed micelles of phospholipid and the nonionic detergent Triton X-100, based on the "dual phospholipid model." (formula; see text) The water-soluble enzyme binds initially to a phospholipid molecule in the micelle interface. This is followed by binding to additional phospholipid in the interface and then catalytic hydrolysis. A kinetic equation was derived for this process and tested under three experimental conditions: (i) the mole fraction of substrate held constant and the bulk substrate concentration varied; (ii) the bulk substrate concentration held constant and the Triton X-100 concentration varied (surface concentration of substrate varied); and (iii) the Triton X-100 concentration held constant and the bulk substrate concentration varied. The substrates used were chiral dithiol ester analogs of phosphatidylcholine (thio-PC) and phosphatidylethanolamine (thio-PE), and the reactions were followed by reaction of the liberated thiol with a colorimetric thiol reagent. The initial binding (Ks = k1/k-1) was apparently similar for thio-PC and thio-PE (between 0.1 and 0.2 mM) as were the apparent Michaelis constants (Km = (k-2 + k3)/k2) (about 0.1 mol fraction). The Vmax values for thio-PC and thio-PE were 440 and 89 mumol min-1 mg-1, respectively. The preference of cobra venom phospholipase A2 for PC over PE in Triton X-100 mixed micelles appears to be an effect on k3 (catalytic rate) rather than an effect on the apparent binding of phospholipid in either step of the reaction.  相似文献   

17.
The phospholipid, sn-1,2-diacylglycerol, and calcium dependencies of rat brain protein kinase C were investigated with a mixed micellar assay (Hannun, Y., Loomis, C., and Bell, R.M. (1985) J. Biol. Chem. 260, 10039-10043). Protein kinase C activity was independent of the number of Triton X-100, phosphatidylserine (PS), and sn-1,2-dioleoylglycerol (diC18:1) mixed micelles. Activation was strongly dependent on the mole per cent of PS and diC18:1. Activity of protein kinase C was dependent on PS, diC18:1, and calcium in mixed micelles prepared from detergents other than Triton X-100. This is consistent with the micelle providing an inert surface into which the lipid cofactors partition. Molecular sieve chromatography provided direct evidence for the homogeneity of Triton X-100, PS, and diC18:1 mixed micelles. Mixing studies and surface dilution studies indicated that PS and diC18:1 rapidly equilibrate among the mixed micelles. At saturating calcium, the diC18:1 dependence was strongly dependent on the mole per cent PS present. At 10 mol % PS, 0.25 mol % diC18:1 gave maximal activity whereas 6 mol % PS and 6 mol % diC18:1 did not give maximal activity. diC18:1 dependencies were hyperbolic at all PS levels tested. The data support the conclusion that a single molecule of diC18:1/micelle is sufficient to activate monomeric protein kinase C. The mole per cent PS required for maximal activation was reduced markedly as the mole per cent diC18:1 increased. Under all conditions tested, the PS dependence of protein kinase C activation lagged until greater than 3 mol % PS was present. Then activation occurred in a cooperative manner with Hill numbers near 4. These data indicate that 4 or more molecules of PS are required to activate monomeric protein kinase C. PS was the most effective of all the phospholipids tested in the mixed micelle assay. diC18:1 was found to modulate the amount of calcium required for maximal activity. As the level of Ca2+ increased, the mole per cent PS required reached a limiting value of 3 mol %. A number of sn-1,2-diacylglycerols containing short chain fatty acids activated protein kinase C in a saturable manner in mixed micelles. The data are discussed in relation to a model for protein kinase activation.  相似文献   

18.
The phospholipid requirement of the (Ca2+ + Mg2+)-ATPase present in a membrane fraction from human platelets was studied using various purified phospholipases. Only those phospholipases, which hydrolyse the negatively charged phospholipids, inhibited the (Ca2+ + Mg2+)-ATPase activity. The ATPase activity could be restored by adding mixed micelles of Triton X-100 and phosphatidylserine or phosphatidylinositol. Micelles with phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine or sphingomyelin could not be used for reconstitution and inhibited the activity of the native enzyme.  相似文献   

19.
On the substrate specificity of rat liver phospholipase A1   总被引:1,自引:0,他引:1  
The substrate specificity of purified phospholipase A1 was studied using mixed micelles of phospholipid and Triton X-100. The kinetic analysis employed determined Vmax, Ks (a dissociation constant for the phospholipase A1-mixed micelle complex), and Km (the Michaelis constant for the catalytic step which reflects the binding of the enzyme to the substrate in the interface). The order of Vmax values was phosphatidic acid greater than phosphatidylethanolamine greater than phosphatidylcholine greater than phosphatidylserine. The order of Ks values was phosphatidylcholine greater than phosphatidylethanolamine greater than phosphatidic acid greater than phosphatidylserine; the order of Km values was phosphatidic acid greater than phosphatidylethanolamine = phosphatidylserine greater than phosphatidylcholine. When present together, phosphatidylcholine inhibited the hydrolysis of phosphatidylethanolamine but phosphatidylethanolamine did not affect the hydrolysis of phosphatidylcholine. Sphingomyelin, phosphatidylcholine plasmalogen, and phosphatidylethanolamine plasmalogen had no effect on the hydrolysis of phosphatidylethanolamine. The effects of the reaction products, lysolipids and/or fatty acids, were also considered for their influence on phosphatidylethanolamine hydrolysis catalyzed by phospholipase A1. Free fatty acid was found to inhibit, whereas lysophospholipids stimulated hydrolysis of phosphatidylethanolamine. In a mixture of 1,2- and 1,3-diacylglycerides in mixed micelles, only the acyl chain at the sn-1 position of the 1,2 compound was hydrolyzed. Surface charge did not modulate the hydrolysis of phosphatidylcholine vesicles or mixed micelles. In conclusion, it is hypothesized that steric hindrance at position 3 of the glycerol regulates substrate binding in the active site and that an acyl group in position 1 is favored over a vinyl ether linkage for binding.  相似文献   

20.
Human thrombomodulin, an endothelial-cell-membrane glycoprotein, has been purified from placenta by Triton X-100 extraction and by affinity chromatography on concanavalin A-Sepharose and thrombin-Sepharose. It has been characterized by its ability to promote the activation of human protein C by human alpha-thrombin in the presence of Ca2+ and fulfilled the requirements of a cofactor. Reconstitution of thrombomodulin into phospholipid vesicles containing anionic phospholipids resulted in an increased rate of activation of protein C. Cardiolipin and vesicles containing phosphatidylcholine/phosphatidylserine (1:1, w/w) were the most effective. The apparent Km of the thrombin-thrombomodulin complex for protein C was 2 microM. It was not changed in the presence of phospholipid, whereas the Vmax. could be apparently increased up to 3.2-fold depending on the phospholipid and on its concentration, the catalytic-centre activity reaching 15.7 mol of activated protein C formed/min per mol of thrombin. Above their optimal concentrations, phospholipids inhibited the amidolytic activity of activated protein C. Phospholipids had no effect on the activation of 4-carboxyglutamic acid-domainless protein C, a proteolytic derivative of protein C lacking the 4-carboxyglutamic acid residues. These results show that the positive effect of anionic phospholipids in the activation of protein C by the thrombin-thrombomodulin complex involves a Ca2+-dependent interaction between protein C and phospholipids. They suggest that the enhancement of thrombomodulin activity by such phospholipids may be of functional significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号