首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Retroviral integration in vivo is mediated by preintegration complexes (PICs) derived from infectious virions. In addition to the integrase enzyme and cDNA substrate, PICs contain a variety of viral and host cell proteins. Whereas two different cell proteins, high-mobility group protein A1 (HMGA1) and the barrier-to-autointegration factor (BAF), were identified as integration cofactors based on activities in in vitro PIC assays, only HMGA1 was previously identified as a PIC component. By using antibodies against known viral and cellular PIC components, we demonstrate here functional coimmunoprecipitation of endogenous BAF protein with human immunodeficiency virus type 1 (HIV-1) PICs. Since integrase protein and integration activity were also coimmunoprecipitated by anti-BAF antibodies, we conclude that BAF is a component of HIV-1 PICs. These data are consistent with the model that BAF functions as an integration cofactor in vivo.  相似文献   

2.
Integration of retroviral cDNA in vivo is normally not sequence specific with respect to the integration target DNA. We have been investigating methods for directing the integration of retroviral DNA to predetermined sites, with the dual goal of understanding potential mechanisms governing normal site selection and developing possible methods for gene therapy. To this end, we have fused retroviral integrase enzymes to sequence-specific DNA-binding domains and investigated target site selection by the resulting proteins. In a previous study, we purified and analyzed a fusion protein composed of human immunodeficiency virus integrase linked to the DNA-binding domain of lambda repressor. This fusion could direct selective integration in vitro into target DNA containing lambda repressor binding sites. Here we investigate the properties of a fusion integrase in the context of a human immunodeficiency virus provirus. We used a fusion of integrase to the DNA binding domain of the zinc finger protein zif268 (IN-zif). Initially we found that the fusion was highly detrimental to replication as measured by the multinuclear activation of a galactosidase indicator (MAGI) assay for infected centers. However, we found that viruses containing mixtures of wild-type integrase and IN-zif were infectious. We prepared preintegration complexes from cells infected with these viruses and found that such complexes directed increased integration near zif268 recognition sites.  相似文献   

3.
4.
Retroviral integrases (INs) function in the context of preintegration complexes (PICs). Two conserved Lys residues in the N-terminal domain of human immunodeficiency virus type 1 (HIV-1) IN were analyzed here for their roles in integration and virus replication. Whereas HIV-1(K46A) grew like the wild type, HIV-1(K34A) was dead. Yet recombinant IN(K34A) protein functioned in in vitro integration assays, and Vpr-IN(K34A) efficiently transcomplemented the infectivity defect of an IN active site mutant virus in cells. HIV-1(K34A) was therefore similar to a number of previously characterized mutant viruses that failed to replicate despite encoding catalytically competent IN. To directly analyze mutant PIC function, a sensitive PCR-based integration assay was developed. HIV-1(K34A) and related mutants failed to support detectable levels (<1% of wild type) of integration. We therefore concluded that mutations like K34A disrupted higher-order interactions important for PIC function/maturation compared to the innate catalytic activity of IN enzyme.  相似文献   

5.
We have investigated the function of two DNA binding proteins that stimulate human immunodeficiency virus type 1 cDNA integration in vitro, the cellular HMGa1 protein and the viral nucleocapsid (NC) protein. Of the three forms of NC (NCp7, NCp9, and NCp15), we find that NCp9 is the most effective at increasing integration in vitro; thus, processing of NC may potentially modulate its activities during infection. We also found that maximal stimulation by NCp9 required roughly enough NC to coat the reactant DNAs whereas less HMGa1 was required, and the reactions displayed different optima for divalent metal cofactors and order of addition. These findings reveal probable distinct mechanisms of action in vitro.  相似文献   

6.
Integration of retroviral cDNA involves coupled joining of the two ends of the viral genome at precisely spaced positions in the host cell DNA. Correct coupled joining is essential for viral replication, as shown, for example, by the finding that viral mutants defective in coupled joining are defective in integration and replication. To date, reactions with purified human immunodeficiency virus type 1 (HIV-1) integrase protein in vitro have supported mainly uncoupled joining of single cDNA ends. We have analyzed an activity stimulating coupled joining present in HIV-1 virions, which led to the finding that the HIV-1 nucleocapsid (NC) protein can stimulate coupled joining more than 1,000-fold under some conditions. The requirements for stimulating coupled joining were investigated in assays with mutant NC proteins, revealing that mutations in the zinc finger domains can influence stimulation of integration. These findings (i) provide a means for assembling more authentic integrase complexes for mechanistic studies, (ii) reveal a new activity of NC protein in vitro, (iii) indicate a possible role for NC in vivo, and (iv) provide a possible method for identifying a new class of inhibitors that disrupt coupled joining.  相似文献   

7.
8.
The integration of linear retrovirus DNA by the viral integrase (IN) into the host chromosome occurs by a concerted mechanism (full-site reaction). IN purified from avian myeloblastosis virus and using retrovirus-like DNA restriction fragments (487 bp in length) as donors and circular DNA (pGEM-3) as the target can efficiently catalyze that reaction. Nonionic detergent lysates of purified human immunodeficiency virus type 1 (HIV-1) virions were also capable of catalyzing the concerted integration reaction. The donor substrates were restriction fragments (469 bp) containing either U3-U5 (H-2 donor) or U5-U5 (H-5 donor) long terminal repeat sequences at their ends. As was shown previously with bacterially expressed HIV-1 IN, the U5 terminus of H-2 was preferred over the U3 terminus by virion-associated IN. The reactions involving two donors per circular target by HIV-1 IN preferred Mg2+ over Mn2+. Both metal ions were equally effective for the circular half-site reaction involving only one donor molecule. The linear 3.8-kbp recombinant products produced from two donor insertions into pGEM were genetically selected, and the donor-target junctions of individual recombinants were sequenced. A total of 55% of the 87 sequenced recombinants had host site duplications of between 5 and 7 bp, with the HIV-1 5-bp-specific duplication predominating. The other recombinants that migrated at the linear 3.8-kbp position were mainly small deletions that were grouped into four sets of 17, 27, 40, and 47 bp, each having a periodicity mimicking a turn of the DNA helix. Aprotic solvents (dimethyl sulfoxide and 1,4-dioxane) enhanced both the half-site and the linear 3.8-kbp strand transfer reactions which favored low-salt conditions (30 mM NaCl). The order of addition of the donor and target during preincubation with HIV-1 IN on ice did not affect the quantity of linear 3.8-kbp recombinants relative to that of the circular half-site products that were produced; only the quantity of donor-donor versus donor-target recombinants was affected. The presence of Mg2+ in the preincubation mixtures containing donor and target substrates was not necessary for the stability of preintegration complexes on ice or at 22 degrees C. Comparisons of the avian and HIV-1 concerted integration reactions are discussed.  相似文献   

9.
We have established an assay for the function of preintegration complexes (PICs) of human immunodeficiency virus type 2 (HIV-2) to investigate the integration mechanism and to develop additional methods for screening candidate integration inhibitors. We partially purified HIV-2 PICs and found that they were competent to integrate viral cDNA into target DNA in vitro. Analysis of the structure of integration products on Southern blots revealed forms consistent with those expected for authentic integration products and circular forms containing one and two long terminal repeats. To determine whether in vitro products had the detailed structure expected of integration products formed in vivo, we recovered product molecules and analyzed junctions between viral DNA and target DNA. In the integration junctions of all nine molecules examined, we observed the 5-bp duplication of target sequence characteristic of integration in vivo. We investigated the possible role in integration of Vpx, a protein present in HIV-2 but not HIV-1 and known to be present in viral cores. Although association of Vpx with viral cDNA was detectable, our studies revealed no obvious role of Vpx in integration since the activities of PICs from Vpx- virions were indistinguishable from those of wild type. We have also investigated the use of HIV-2 PICs as tools to screen candidate HIV inhibitors. Assays with HIV-2 PICs, like assays with HIV-1 PICs, were less sensitive to many small molecule inhibitors than were reactions with purified integrase only. Comparing results of assays with PICs from HIV-1 and HIV-2 may be particularly useful, since inhibitors active against both may be more widely useful and less vulnerable to escape mutants.  相似文献   

10.
Holmes-Son ML  Chow SA 《Journal of virology》2000,74(24):11548-11556
Purified fusion proteins made up of a retroviral integrase and a sequence-specific DNA-binding protein have been tested in in vitro assays for their ability to direct integration into specific target sites. To determine whether these fusion proteins can be incorporated into human immunodeficiency virus type 1 (HIV-1) and are functional to mediate integration, we used an in trans approach to deliver various integrase-LexA proteins to an integrase-defective virus containing an integrase mutation at aspartate residue 64. Integrase-LexA, integrase-LexA DNA-binding domain, or N- or C-terminally truncated integrase-LexA proteins were fused to the HIV-1 accessory protein, Vpr. Coexpression of the Vpr fusion proteins and an integrase-defective HIV-1 molecular clone by a producer cell line resulted in efficient incorporation of the fusion protein into the integrase-mutated virus. In addition, each of these viruses was infectious and capable of performing integration, as determined by two independent cellular assays that measure reporter gene expression. With the exception of the N-terminally truncated integrase fused to LexA, which was at about 1%, all of the fusion proteins restored integration to a similar level, at 17 to 24% of that of the wild-type virus. The low level observed with the N-terminally truncated integrase fused to LexA is consistent with previous results implying that the N terminus of integrase is involved in multiple steps of the retroviral life cycle. These data indicate that the integrase-fusion proteins retain catalytic function in the integrase-mutated viruses and demonstrate the feasibility of incorporating integrase fusion proteins into HIV-1 for the development of site-directed retroviral vectors.  相似文献   

11.
12.
13.
14.
Human immunodeficiency virus type 1 (HIV-1) DNA integration intermediates consist of viral and host DNA segments separated by a 5-nucleotide gap adjacent to a 5'-AC unpaired dinucleotide. These short-flap (pre-repair) integration intermediates are structurally similar to DNA loci undergoing long-patch base excision repair in mammalian cells. The cellular proteins flap endonuclease 1 (FEN-1), proliferating cell nuclear antigen, replication factor C, DNA ligase I and DNA polymerase delta are required for the repair of this type of DNA lesion. The role of FEN-1 in the base excision repair pathway is to cleave 5'-unpaired flaps in forked structures so that DNA ligase can seal the single-stranded breaks that remain following gap repair. The rate of excision by FEN-1 of 5'-flaps from short- and long-flap oligonucleotide substrates that mimic pre- and post-repair HIV-1 integration intermediates, respectively, and the effect of HIV-1 integrase on these reactions were examined in the present study. Cleavage of 5'-flaps by FEN-1 in pre-repair HIV-1 integration intermediates was relatively inefficient and was further decreased 3-fold by HIV-1 integrase. The rate of removal of 5'-flaps by FEN-1 from post-repair HIV-1 integration intermediates containing relatively long (7-nucleotide) unpaired 5'-tails and short (1-nucleotide) gaps was increased 3-fold relative to that seen with pre-repair substrates and was further stimulated 5- to 10-fold by HIV-1 integrase. Overall, post-repair structures were cleaved 18 times more effectively in the presence of HIV-1 integrase than pre-repair structures. The site of cleavage was 1 or 2 nucleotides 3' of the branch point and was unaffected by HIV-1 integrase. Integrase alone had no detectable activity in removing 5'-flaps from either pre- or post-repair substrates.  相似文献   

15.
16.
The retroviral encoded protein integrase (IN) is required for the insertion of the human immunodeficiency virus type 1 (HIV-1) proviral DNA into the host genome. In spite of the crucial role played by IN in the retroviral life cycle, which makes this enzyme an attractive target for the development of new anti-AIDS agents, very few inhibitors have been described and none seems to have a potential use in anti-HIV therapy. To obtain potent and specific IN inhibitors, we used the two-hybrid system to isolate short peptides. Using HIV-1 IN as a bait and a yeast genomic library as the source of inhibitory peptides (prey), we isolated a 33-mer peptide (I33) that bound tightly to the enzyme. I33 inhibited both in vitro IN activities, i.e. 3' end processing and strand transfer. Further analysis led us to select a shorter peptide, EBR28, corresponding to the N-terminal region of I33. Truncated variants showed that EBR28 interacted with the catalytic domain of IN interfering with the binding of the DNA substrate. Alanine single substitution of each EBR28 residue (alanine scanning) allowed the identification of essential amino acids involved in the inhibition. The EBR28 NMR structure shows that this peptide adopts an alpha-helical conformation with amphipathic properties. Additionally, EBR28 showed a significant antiviral effect when assayed on HIV-1 infected human cells. Thus, this potentially important short lead peptide may not only be helpful to design new anti-HIV agents, but also could prove very useful in further studies of the structural and functional characteristics of HIV-1 IN.  相似文献   

17.
Replication of retroviruses requires integration of the linear viral DNA genome into the host chromosomes. Integration requires the viral integrase (IN), located in high-molecular-weight nucleoprotein complexes termed preintegration complexes (PIC). The PIC inserts the two viral DNA termini in a concerted manner into chromosomes in vivo as well as exogenous target DNA in vitro. We reconstituted nucleoprotein complexes capable of efficient concerted (full-site) integration using recombinant wild-type human immunodeficiency virus type I (HIV-1) IN with linear retrovirus-like donor DNA (480 bp). In addition, no cellular or viral protein cofactors are necessary for purified bacterial recombinant HIV-1 IN to mediate efficient full-site integration of two donor termini into supercoiled target DNA. At about 30 nM IN (20 min at 37 degrees C), approximately 15 and 8% of the input donor is incorporated into target DNA, producing half-site (insertion of one viral DNA end per target) and full-site integration products, respectively. Sequencing the donor-target junctions of full-site recombinants confirms that 5-bp host site duplications have occurred with a fidelity of about 70%, similar to the fidelity when using IN derived from nonionic detergent lysates of HIV-1 virions. A key factor allowing recombinant wild-type HIV-1 IN to mediate full-site integration appears to be the avoidance of high IN concentrations in its purification (about 125 microg/ml) and in the integration assay (<50 nM). The results show that recombinant HIV-1 IN may not be significantly defective for full-site integration. The findings further suggest that a high concentration or possibly aggregation of IN is detrimental to the assembly of correct nucleoprotein complexes for full-site integration.  相似文献   

18.
We investigated the in vitro RNA dimerization properties of the untranslated leader RNA derived from human immunodeficiency virus type 1 variants circulating in an individual with a low viral load and slow disease progression. The leader sequences of these viruses contain highly unusual polymorphisms within the dimerization initiation site (DIS): an insert that abolishes dimerization and a compensatory substitution. The dimerization of leader RNA from late stages of infection is further improved by additional mutations outside the DIS motif that facilitate a secondary structure switch from a dimerization-incompetent to a dimerization-competent RNA conformation.  相似文献   

19.
Retroviral replication requires the integration of reverse-transcribed viral cDNA into a cell chromosome. A key barrier to forming the integrated provirus is the nuclear envelope, and numerous regions in human immunodeficiency virus type 1 (HIV-1) have been shown to aid the nuclear localization of viral preintegration complexes (PICs) in infected cells. One region in integrase (IN), composed of Val-165 and Arg-166, was reportedly essential for HIV-1 replication and nuclear localization in all cell types. In this study we confirmed that HIV-1(V165A) and HIV-1(R166A) were replication defective and that less mutant viral cDNA localized to infected cell nuclei. However, we present three lines of evidence that argue against a specific role for Val-165 and Arg-166 in PIC nuclear import. First, results of transient transfections revealed that V165A FLAG-tagged IN and green fluorescent protein-IN fusions carrying either V165A or R166A predominantly localized to cell nuclei. Second, two different strains of previously described class II IN mutant viruses displayed similar nuclear entry profiles to those observed for HIV-1(V165A) and HIV-1(R166A), suggesting that defective nuclear import may be a common phenotype of replication-defective IN mutant viruses. Third, V165A and R166A mutants were defective for in vitro integration activity, when assayed both as PICs isolated from infected T-cells and as recombinant IN proteins purified from Escherichia coli. Based on these results, we conclude that HIV-1(V165A) and HIV-1(R166A) are pleiotropic mutants primarily defective for IN catalysis and that Val-165 and Arg-166 do not play a specific role in the nuclear localization of HIV-1 PICs in infected cells.  相似文献   

20.
Nuclear import of the retroviral preintegration complex and integration of retroviral with host cell DNA are essential steps for completion of the virus life cycle. The preintegration complex of the lentivirus human immunodeficiency virus type 1 (HIV-1) displays karyophilic properties and, as a consequence, is rapidly directed to the host cell nucleus by an energy-dependent transport pathway. The karyophilic properties of nuclear proteins are governed by a nuclear localization sequence, the targeting function of which can be inhibited in the presence of excess targeting signals. Here we present evidence that the nuclear import of a large karyophile--the preintegration complex of HIV-1--is inhibited in the presence of a prototypic nuclear targeting signal of simian virus 40 T antigen. This points to a novel strategy which prevents establishment of the provirus by interrupting nuclear localization of HIV-1 DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号