首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vitro replication of adeno-associated virus DNA.   总被引:23,自引:23,他引:0       下载免费PDF全文
The study of eukaryotic viral DNA replication in vitro has led to the identification of cellular enzymes involved in DNA replication. Adeno-associated virus (AAV) is distinct from previously reported systems in that it is believed to replicate entirely by leading-strand DNA synthesis and requires coinfection with adenovirus to establish completely permissive replication. In previous work, we demonstrated that two of the AAV nonstructural proteins, Rep78 and -68, are site-specific endonucleases and DNA helicases that are capable of resolving covalently closed AAV termini, a key step in AAV DNA replication. We have now cloned the AAV nonstructural proteins Rep78, Rep68, and Rep52 in the baculovirus expression system. Using the baculovirus-expressed proteins, we have developed an efficient in vitro AAV DNA replication system which mimics the in vivo behavior of AAV in every respect. With no-end AAV DNA as the starting substrate, the reaction required an adenovirus-infected cell extract and the presence of either Rep78 or Rep68. Rep52, as expected, did not support DNA replication. A mutant in the AAV terminal resolution site (trs) was defective for DNA replication in the in vitro assay. Little, if any, product was formed in the absence of the adenovirus-infected HeLa cell extract. In general, uninfected HeLa extracts were less efficient in supporting AAV DNA replication than adenovirus-infected extracts. Thus, the requirement for adenovirus infection in vivo was partially duplicated in vitro. The reduced ability of uninfected HeLa extracts to support complete DNA replication was not due to a defect in terminal resolution but rather to a defect in the reinitiation reaction or in elongation. Rep78 produced a characteristic monomer-dimer pattern of replicative intermediates, but surprisingly, Rep68 produced little, if any, dimer replicative form. The reaction had a significant lag (30 min) before incorporation of 32P-deoxynucleoside triphosphate could be detected in DpnI-resistant monomer replicative form and was linear for at least 4 h after the lag. The rate of incorporation in the reaction was comparable to that in the simian virus 40 in vitro system. Replication of the complete AAV DNA molecule was demonstrated by the following criteria. (i) Most of the monomer and dimer product DNAs were completely resistant to digestion with DpnI. (ii) Virtually all of the starting substrate was converted to heavy-light or heavy-heavy product DNA in the presence of bromo-dUTP when examined on CsCl density gradients.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
C Balagúe  M Kalla    W W Zhang 《Journal of virology》1997,71(4):3299-3306
Two adeno-associated virus (AAV) elements are necessary for the integration of the AAV genome: Rep78/68 proteins and inverted terminal repeats (ITRs). To study the contribution of the Rep proteins and the ITRs in the process of integration, we have compared the integration efficiencies of three different plasmids containing a green fluorescent protein (GFP) expression cassette. In one plasmid, no viral sequences were present; a second plasmid contained AAV ITRs flanking the reporter gene (integration cassette), and a third plasmid consisted of an integration cassette plus a Rep78 expression cassette. One day after transfection of 293 cells, fluorescent cells were sorted by flow cytometry and plated at 1 cell per well. Two weeks after sorting, colonies were monitored for stable expression of GFP. Transfection with the GFP plasmid containing no viral sequences resulted in no stable fluorescent colonies. Transfection with the plasmid containing the integration cassette alone (GFP flanked by ITRs) produced stable fluorescent colonies at a frequency of 5.3% +/- 1.0% whereas transfection with the plasmid containing both the integration cassette and Rep78 expression cassette produced stable fluorescent colonies at a frequency of 47% +/- 7.5%. Southern blot analysis indicated that in the presence of Rep78, integration is targeted to the AAVSI site in more than 50% of the clones analyzed. Some clones also showed tandem arrays of the integrated GFP cassette. Both head-to-head and head-to-tail orientations were detected. These findings indicate that the presence of AAV ITRs and the Rep78 protein enhance the integration of DNA sequences into the cellular genome and that the integration cassette is targeted to AAVS1 in the presence of Rep78.  相似文献   

3.
The Rep proteins encoded by the adeno-associated virus type 2 (AAV) play a crucial role in the rescue, replication, and integration of the viral genome. In the absence of a helper virus, little expression of the AAV Rep proteins occurs, and the AAV genome fails to undergo DNA replication. Since previous studies have established that expression of the Rep78 and Rep68 proteins from the viral p5 promoter is controlled by the Rep-binding site (RBS) and the YY1 factor-binding site (YBS), we constructed a number of recombinant AAV plasmids containing mutations and/or deletions of the RBS and the YBS in the p5 promoter. These plasmids were transfected in HeLa or 293 cells and analyzed for the potential to undergo AAV DNA rescue and replication. Our studies revealed that (i) a low-level rescue and autonomous replication of the wild-type AAV genome occurred in 293 but not in HeLa cells; (ii) mutations in the RBS resulted in augmented expression from the p5 promoter, leading to more efficient rescue and/or replication of the AAV genome in 293 but not in HeLa cells; (iii) little rescue and/or replication occurred from plasmids containing mutations in the YBS alone in the absence of coinfection with adenovirus; (iv) expression of the adenovirus E1A gene products was insufficient to mediate rescue and/or replication of the AAV genome in HeLa cells; (v) autonomously replicated AAV genomes in 293 cells were successfully encapsidated in mature progeny virions that were biologically active in secondary infection of HeLa cells in the presence of adenovirus; and (vi) stable transfection of recombinant AAV plasmids containing a gene for resistance to neomycin significantly affected stable integration only in 293 cells, presumably because rescue and autonomous replication of the AAV genome from these plasmids occurred in 293 cells but not in HeLa or KB cells. These data suggest that in the absence of adenovirus, the AAV Rep protein-RBS interaction plays a dominant role in down-regulating viral gene expression from the p5 promoter and that perturbation in this interaction is sufficient to confer autonomous replication competence to AAV in 293 cells.  相似文献   

4.
5.
Adeno-associated virus type 2 (AAV-2) gene expression is tightly controlled by functions of the helper virus as well as by the products of its own viral rep gene. Double-immunofluorescence studies of Rep and VP protein expression in cells coinfected with AAV-2 and adenovirus type 2 showed that a large proportion of these cells expressed Rep78 and Rep52 but no capsid proteins. The percentage of Rep78/Rep52- and capsid protein-positive cells was strongly influenced by the relative ratio of AAV-2 to adenovirus type 2. In contrast, nearly all cells positive for Rep68/Rep40 were also positive for capsid protein expression. Examination of p40 promoter transactivation by individual Rep proteins in the presence of adenovirus, however, showed that both Rep78 and Rep68 efficiently stimulated p40 mRNA accumulation and capsid protein expression. This strong transactivation was reliant upon the presence of terminal repeats and correlated with template amplification. In replication-deficient expression constructs, transactivation was observed only with Rep68 and was dependent on the linear Rep binding site within the left terminal repeat which was detected in the presence of high adenovirus concentrations. In the absence of any terminal repeat sequences, Rep68 expression again led to a minor transactivation of capsid protein expression which was detectable only at low adenovirus concentrations. This low level of transactivation of capsid protein expression by Rep proteins in the absence of terminal repeats resulted in a lower efficiency of capsid assembly. The data show a dominant influence of adenovirus type 2 functions on AAV-2 gene expression, a requirement for terminal repeats for strong transactivation of the p40 promoter by Rep proteins, and differential influences of Rep78 and Rep68 on AAV-2 promoters. Implications for the production of recombinant AAV-2 vectors are discussed.  相似文献   

6.
T H Walton  P T Moen  Jr  E Fox    J W Bodnar 《Journal of virology》1989,63(9):3651-3660
Biochemical evidence is presented that both minute virus of mice (MVM) and adenovirus interact with the nucleolus during lytic growth and that MVM can also target specific changes involving nucleolar components in adenovirus-infected cells. These virus-nucleolus interactions were studied by analysis of intranuclear compartmentalization of both viral DNAs and host nucleolar proteins: (i) MVM in mouse cells (its normal host) replicates its DNA in the host nucleoli; (ii) specific nucleolar proteins as well as small nuclear ribonucleoprotein antigens are recompartmentalized to multiple intranuclear foci in adenovirus-infected HeLa cells; and (iii) when adenovirus helps MVM DNA replication in a nonpermissive human cell (HeLa), the MVM DNA is also recompartmentalized for synthesis. The data suggest mechanisms for disruption of nucleolar function common to oncogenic or oncolytic virus lytic growth and cell transformation.  相似文献   

7.
8.
The adeno-associated virus 2 (AAV) contains a single-stranded DNA genome of which the terminal 145 nucleotides are palindromic and form T-shaped hairpin structures. These inverted terminal repeats (ITRs) play an important role in AAV DNA replication and resolution, since each of the ITRs contains a terminal resolution site (trs) that is the target site for the AAV rep gene products (Rep). However, the Rep proteins also interact with the AAV DNA sequences that lie outside the ITRs, and the ITRs also play a crucial role in excision of the proviral genome from latently infected cells or from recombinant AAV plasmids. To distinguish between Rep-mediated excision of the viral genome during rescue from recombinant AAV plasmids and the Rep-mediated resolution of the ITRs during AAV DNA replication, we constructed recombinant AAV genomes that lacked either the left or the right ITR sequence and one of the Rep-binding sites (RBSs). No rescue and replication of the AAV genome occurred from these plasmids following transfection into adenovirus type 2-infected human KB cells, as expected. However, excision and abundant replication of the vector sequences was clearly detected from the plasmid that lacked the AAV left ITR, suggesting the existence of an additional putative excision site in the left end of the AAV genome. This site was precisely mapped to one of the AAV promoters at map unit 5 (AAV p5) that also contains an RBS. Furthermore, deletion of this RBS abolished the rescue and replication of the vector sequences. These studies suggest that the Rep-mediated cleavage at the RBS during viral DNA replication may, in part, account for the generation of the AAV defective interfering particles.  相似文献   

9.
Prior genetic analysis provided evidence for trans-acting regulatory proteins (Rep) coded by the left-hand open reading frame (orf-1) of adeno-associated virus (AAV). We have used immunoblotting analysis to identify four protein products of orf-1. Antibodies elicited against an oligopeptide encoded by orf-1 were reacted with extracts of cells that were infected with AAV or transfected with AAV recombinant vectors in the presence or absence of helper adenovirus. The antibody recognized four polypeptides with apparent molecular weights of 78,000, 68,000, 52,000, and 40,000. The 78,000-dalton (78K) (Rep78) and 68K (Rep68) proteins appear to be encoded by the unspliced 4.2-kilobase (kb) and spliced 3.9-kb mRNAs, respectively, transcribed from the p5 promoter. The 52K (Rep52) and 40K (Rep40) proteins appear to be the products of the unspliced 3.6-kb and the spliced 3.3-kb mRNAs, respectively, transcribed from the p19 promoter. Rigorous identification of Rep68 as an AAV-coded protein is compromised by a cross-reacting cellular protein of similar size. All four proteins were expressed in the human cell lines 293, HeLa, HT29, and A549 infected with AAV together with adenovirus. Rep78 and Rep52 were detected at lower levels in cells infected with AAV at high multiplicity in the absence of adenovirus. Human 293 cells transfected with a recombinant AAV vector (pAV2) also expressed Rep proteins in the presence or absence of adenovirus. Mutations introduced into the Rep region of pAV2 further identified the Rep proteins. The amount of each Rep protein varied between nuclear and cytoplasmic extracts, but all four proteins accumulated during the lytic cycle of the viral infection. Other studies have indicated that the Rep proteins have independent trans-acting functions in viral DNA replication and negative and positive regulation of gene expression. Correlation of each trans-acting function with individual Rep proteins will be facilitated with the antibodies described herein.  相似文献   

10.
Recently, we demonstrated that inverted repeat sequences inserted into first-generation adenovirus (Ad) vector genomes mediate precise genomic rearrangements resulting in vector genomes devoid of all viral genes that are efficiently packaged into functional Ad capsids. As a specific application of this finding, we generated adenovirus-adeno-associated virus (AAV) hybrid vectors, first-generation Ad vectors containing AAV inverted terminal repeat sequences (ITRs) flanking a reporter gene cassette inserted into the E1 region. We hypothesized that the AAV ITRs present within the hybrid vector genome could mediate the formation of rearranged vector genomes (DeltaAd.AAV) and stimulate transgene integration. We demonstrate here that DeltaAd.AAV vectors are efficiently generated as by-products of first-generation adenovirus-AAV vector amplification. DeltaAd.AAV genomes contain only the transgene flanked by AAV ITRs, Ad packaging signals, and Ad ITRs. DeltaAd.AAV vectors can be produced at a high titer and purity. In vitro transduction properties of these deleted hybrid vectors were evaluated in direct comparison with first-generation Ad and recombinant AAV vectors (rAAVs). The DeltaAd.AAV hybrid vector stably transduced cultured cells with efficiencies comparable to rAAV. Since cells transduced with DeltaAd.AAV did not express cytotoxic viral proteins, hybrid viruses could be applied at very high multiplicities of infection to increase transduction rates. Southern analysis and pulsed-field gel electrophoresis suggested that DeltaAd.AAV integrated randomly as head-to-tail tandems into the host cell genome. The presence of two intact AAV ITRs was crucial for the production of hybrid vectors and for transgene integration. DeltaAd.AAV vectors, which are straightforward in their production, represent a promising tool for stable gene transfer in vitro and in vivo.  相似文献   

11.
Adeno-associated virus (AAV) replication depends on two viral components for replication: the AAV nonstructural proteins (Rep) in trans, and inverted terminal repeat (ITR) sequences in cis. AAV type 5 (AAV5) is a distinct virus compared to the other cloned AAV serotypes. Whereas the Rep proteins and ITRs of other serotypes are interchangeable and can be used to produce recombinant viral particles of a different serotype, AAV5 Rep proteins cannot cross-complement in the packaging of a genome with an AAV2 ITR. In vitro replication assays indicated that the block occurs at the level of replication instead of at viral assembly. AAV2 and AAV5 Rep binding activities demonstrate similar affinities for either an AAV2 or AAV5 ITR; however, comparison of terminal resolution site (TRS) endonuclease activities showed a difference in specificity for the two DNA sequences. AAV2 Rep78 cleaved only a type 2 ITR DNA sequence, and AAV5 Rep78 cleaved only a type 5 probe efficiently. Mapping of the AAV5 ITR TRS identified a distinct cleavage site (AGTG TGGC) which is absent from the ITRs of other AAV serotypes. Comparison of the TRSs in the AAV2 ITR, the AAV5 ITR, and the AAV chromosome 19 integration locus identified some conserved nucleotides downstream of the cleavage site but little homology upstream.  相似文献   

12.
Granzymes are key components of the immune response that play important roles in eliminating host cells infected by intracellular pathogens. Several granzymes are potent inducers of cell death. However, whether granzymes use additional mechanisms to exert their antipathogen activity remains elusive. Here, we show that in adenovirus-infected cells in which granzyme B (gzmB) and downstream apoptosis pathways are inhibited, granzyme H (gzmH), an orphan granzyme without known function, directly cleaves the adenovirus DNA-binding protein (DBP), a viral component absolutely required for viral DNA replication. We directly addressed the functional consequences of the cleavage of the DBP by gzmH through the generation of a virus that encodes a gzmH-resistant DBP. This virus demonstrated that gzmH directly induces an important decay in viral DNA replication. Interestingly, gzmH also cleaves the adenovirus 100K assembly protein, a major inhibitor of gzmB, and relieves gzmB inhibition. These results provide the first evidence that granzymes can mediate antiviral activity through direct cleavage of viral substrates, and further suggest that different granzymes have synergistic functions to outflank viral defenses that block host antiviral activities.  相似文献   

13.
SR proteins purified from uninfected HeLa cells inhibit adenovirus IIIa pre-mRNA splicing by binding to the intronic IIIa repressor element (3RE). In contrast, SR proteins purified from late adenovirus-infected cells are functionally inactivated as splicing repressor proteins by a virus-induced dephosphorylation. We have shown that the adenovirus E4-ORF4 protein, which binds the cellular protein phos phatase 2A (PP2A) and activates IIIa splicing in vitro and in vivo, induces SR protein dephosphorylation. Here we show that E4-ORF4 interacts with only a subset of SR proteins present in HeLa cells. Thus, E4-ORF4 interacts efficiently with SF2/ASF and SRp30c, but not with other SR proteins. Interestingly, E4-ORF4 interacts with SF2/ASF through the latter's RNA recognition motifs. Furthermore, E4-ORF4 interacts preferentially with the hyperphosphorylated form of SR proteins found in uninfected HeLa cells. E4-ORF4 mutant proteins that fail to bind strongly to PP2A or SF2/ASF do not relieve the repressive effect of HeLa SR proteins on IIIa pre-mRNA splicing in transient transfection experiments, suggesting that an interaction between all three proteins is required for E4-ORF4-induced SR protein dephosphorylation.  相似文献   

14.
Adeno-associated virus (AAV) integrates very efficiently into a specific site (AAVS1) of human chromosome 19. Two elements of the AAV genome are sufficient: the inverted terminal repeats (ITRs) and the Rep78 or Rep68 protein. The incorporation of the AAV integration machinery in nonviral delivery systems is of great interest for gene therapy. We demonstrate that purified recombinant Rep68 protein is functionally active when directly delivered into human cells by using the polycationic liposome Lipofectamine, promoting the rescue-replication of a codelivered ITR-flanked cassette in adenovirus-infected cells and its site-specific integration in noninfected cells. The sequencing of cloned virus-host DNA junctions confirmed that lipofected Rep68 protein triggers site-specific integration at the same sites in chromosome 19 already characterized in cells latently infected with AAV.  相似文献   

15.
Depeng Wang  Yanjie Li 《FEBS letters》2009,583(18):3039-3044
We used a xenograft model to investigate whether the aryl hydrocarbon receptor deletion construct CΔ553 suppresses tumor growth. HeLa cells that were infected with CΔ553 expressing adenovirus (Ad553) formed very small tumors whereas the control adenovirus-infected cells formed large tumors at day 15. CΔ553 inhibited the formation of the HIF-1 DNA complex and suppressed the induction of the HIF-1α target proteins CAIX and GLUT1. The Ad553 tumors had less HIF-1 function since they showed reduced microvessel formation and lesser amounts of HIF-1α, Arnt, phospho-Akt, CAIX, and GLUT1. Proteasome-mediated Arnt degradation was enhanced in Ad553-infected HeLa cells and tumors.  相似文献   

16.
A molecular clone of the simian immunodeficiency virus SIVSMM isolate PBj14, lacking the ATG initiation codon for Rev protein (PBj-1.5), did not produce virus or large unspliced or singly spliced viral RNA upon transfection of HeLa cells. Low but significant levels of virus and large viral RNA production were observed upon transfection of PBj-1.5 into HeLa Rev cells expressing the rev gene of human immunodeficiency virus type 1. Furthermore, abundant virus and large viral RNA production occurred upon transfection of PBj-1.5 into HeLa Rex cells expressing the rex gene of human T-cell leukemia virus type I. Virus produced from HeLa Rex and HeLa Rev transfections was infectious, produced large amounts of virus, and was cytopathic for Rex-producing MT-4 cells. In contrast, no or only low levels of virus production were observed upon infection of H9 cells. These studies show that a defective SIV rev gene can be transcomplemented with human immunodeficiency virus type 1 Rev and with high efficiency by human T-cell leukemia virus type I Rex, and they suggest that rev-defective viruses could serve as a source for production of a live attenuated SIV vaccine.  相似文献   

17.
18.
人博卡病毒1 (human bocaparvovirus 1, HBoV1)为感染人并引起疾病的两种细小病毒之一。其感染2−5岁婴幼儿,能引起轻度或重度急性呼吸道疾病,严重时可危及生命。HBoV1基因组末端含末端反向重复序列(repeat the sequence in reverse, ITR),为病毒基因组复制所必需,但是难以进行PCR扩增合成。本研究通过分步合成末端ITR及分子克隆方法成功构建HBoV1的全长感染性克隆pSKHBoV1。经转染HEK293细胞后,分别从重要非结构蛋白的表达、病毒RNA转录后修饰与加工、病毒基因组复制水平以及子代病毒粒子基因组鉴定等方面,证实构建的感染性克隆在转染HEK293细胞后能够进入正常的复制周期并具有拯救出病毒粒子的潜力,这为后续研究HBoV1的复制增殖、病毒与宿主互作关系以及病毒疫苗的研发奠定了基础。  相似文献   

19.
The proteins encoded by the adeno-associated virus type 2 (AAV-2) rep and cap genes obtained during a productive infection of HeLa cells with AAV-2 and adenovirus type 2 were fractionated according to solubility, cellular localization, and sedimentation properties. The majority of Rep and Cap proteins accumulated in the nucleus, where they distributed into a soluble and an insoluble fraction. Analysis of the soluble nuclear fraction of capsid proteins by sucrose density gradients showed that they formed at least three steady-state pools: a monomer pool sedimenting at about 6S, a pool of oligomeric intermediates sedimenting between 10 and 15S, and a broad pool of assembly products with a peak between 60 and 110S, the known sedimentation positions of empty and full capsids. While the soluble nuclear monomer and oligomer pool contained predominantly only two capsid proteins, the 30 to 180S assembly products contained VP1, VP2, and VP3 in a stoichiometry similar to that of purified virions. They probably represent different intermediates in capsid assembly, DNA encapsidation, and capsid maturation. In contrast, the cytoplasmic fraction of capsid proteins showed a pattern of oligomers continuously increasing in size without a defined peak, suggesting that assembly of 60S particles occurs in the nucleus. Soluble nuclear Rep proteins were distributed over the whole sedimentation range, probably as a result of association with AAV DNA. Subfractions of the Rep proteins with defined sedimentation values were obtained in the soluble nuclear and cytoplasmic fractions. We were able to coimmunoprecipitate capsid proteins sedimenting between 60 and 110S with antibodies against Rep proteins, suggesting that they exist in common complexes possibly involved in AAV DNA packaging. Antibodies against the capsid proteins, however, precipitated Rep78 and Rep68 predominantly with a peak around 30S representing a second complex containing Rep and Cap proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号