首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified plasma membranes of Schizosaccharomyces pombe were obtained by precipitation at pH 5.2 of a crude particulate fraction, followed by differential centrifugations and isopycnic centrifugation in a discontinuous sucrose gradient. The specific activity of the Mg2+-requiring plasma membrane ATPase activity (EC 3.6.1.3) was enriched from 0.3 mumol min-1 x mg-1 of protein in the homogenate to 26 in the purified membranes. The optimal conditions for solubilization of the ATPase activity by lysolecithin were found to be: 2 mg/ml of lysolecithin, a lysolecithin to protein ratio of 8 at pH 7.5, and 15 degrees C in the presence of 1 mM ATP and 1 mM ethylenediaminetetraacetic acid. A 6- to 7-fold purification of the solubilized ATPase activity was obtained by centrifugation of the lysolecithin extract in sucrose gradient. Part of the ATPase activity which was inactivated during the centrifugation in the sucrose gradient could be restored by addition of a micellar solution of 50 microgram of lysolecithin/ml during the assay. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate of the purified enzyme showed only one band of Mr = 105,000 stained with Coomassie blue. Another ATPase component of apparent molecular weight lower than 10,000 was stained by periodic Schiff reagent but not colored by Coomassie blue. The purified enzyme was 85% inhibited by 50 micrometer N,N'-dicyclohexylcarbodiimide and 94% inhibited by 53 microgram of Dio-9/ml.  相似文献   

2.
Plasma membrane ghosts were isolated from Candida albicans ATCC 10261 yeast cells following stabilisation of spheroplasts with concanavalin A, osmotic lysis and Percoll density gradient centrifugation. Removal of extrinsic proteins with NaCl and methyl alpha-mannoside gave increased ATPase and chitin synthase specific activities in the resultant plasma membrane fraction. Sonication of this fraction yielded unilamellar plasma membrane vesicles which exhibited ATPase and chitin synthase specific activities of 4.5-fold and 3.0-fold, respectively, over those of the plasma membrane ghosts. ATPase activity in the membrane ghosts was optimal at pH 6.4, showed high substrate specificity (for Mg X ATP) and was inhibited 80% by sodium vanadate but less than 4% by oligomycin and azide. The effects of a range of other inhibitors were also characterised. Temperature effects of ATPase activity were marked, with a maximum at 35 degrees C. Breaks in the Arrhenius plot, at 12.2 degrees C and 28.9 degrees C, coincided with endothermic heat flow peaks detected by differential scanning calorimetry. ATPase was solubilised from the plasma membranes with Zwittergent in the presence of glycerol and phenylmethylsulphonyl fluoride and partially purified by glycerol density gradient centrifugation. The solubilised enzyme hydrolysed Mg X ATP at Vmax = 20 mumol X min-1 X mg-1 in the presence of phospholipids, with optimal activity at pH 6.0--6.5.  相似文献   

3.
The plasma membrane ATPase was purified to near homogeneityfrom corn roots. Procedures included partition in an aqueouspolymer two-phase system, solubilization of the enzyme fromplasma membranes with lysolecithin, and vertical centrifugationwith a glycerol gradient. The purified enzyme had a high specificactivity [4.7 µmol.min–1. (mgprotein)–1] absolutelyrequiring potassium ions for catalytic function. A specificpolyclonal antibody was produced against the 90-kDa polypeptideof the enzyme. (Received March 7, 1987; Accepted July 1, 1987)  相似文献   

4.
Large-scale isolation of the Neurospora plasma membrane H+-ATPase   总被引:3,自引:0,他引:3  
A method for the purification of relatively large quantities of the Neurospora crassa plasma membrane proton translocating ATPase is described. Cells of the cell wall-less sl strain of Neurospora grown under O2 to increase cell yields are treated with concanavalin A to stabilize the plasma membrane and homogenized in deoxycholate, and the resulting lysate is centrifuged at 13,500g. The pellet obtained consists almost solely of concanavalin A-stabilized plasma membrane sheets greatly enriched in the H+-ATPase. After removal of the bulk of the concanavalin A by treatment of the sheets with alpha-methylmannoside, the membranes are treated with lysolecithin, which preferentially extracts the H+-ATPase. Purification of the lysolecithin-solubilized ATPase by glycerol density gradient sedimentation yields approximately 50 mg of enzyme that is 91% free of other proteins as judged by quantitative densitometry of Coomassie blue-stained gels. The specific activity of the enzyme at this stage is about 33 mumol of P1 released/min/mg of protein at 30 degrees C. A second glycerol density gradient sedimentation step yields ATPase that is about 97% pure with a specific activity of about 35. For chemical studies or other investigations that do not require catalytically active ATPase, virtually pure enzyme can be prepared by exclusion chromatography of the sodium dodecyl sulfate-disaggregated, gradient-purified ATPase on Sephacryl S-300.  相似文献   

5.
Liposomes prepared by sonication of asolectin were fractionated by glycerol density gradient centrifugation, and the small liposomes contained in the upper region of the gradients were used for reconstitution of purified, radiolabeled Neurospora plasma membrane H+-ATPase molecules by our previously published procedures. The reconstituted liposomes were then subjected to two additional rounds of glycerol density gradient centrifugation, which separate the H+-ATPase-bearing proteoliposomes from ATPase-free liposomes by virtue of their greater density. The isolated H+-ATPase-bearing proteoliposomes in two such preparations exhibited a specific H+-ATPase activity of about 11 mumol of Pi liberated/mg of protein/min, which was approximately doubled in the presence of nigericin plus K+, indicating that a large percentage of the H+-ATPase molecules in both preparations were capable of generating a transmembrane protonic potential difference sufficient to impede further proton translocation. Importantly, quantitation of the number of 105,000-dalton ATPase monomers and liposomes in the same preparations by radioactivity determination and counting of negatively stained images in the electron microscope indicated ATPase monomer to liposome ratios of 0.97 and 1.06. Because every liposome in the preparations must have had at least one ATPase monomer, these ratios indicate that very few of the liposomes had more than one, and simple calculations show that the great majority of active ATPase molecules in the preparations must have been present as proton-translocating monomers. The results thus clearly demonstrate that 105,000-dalton monomers of the Neurospora plasma membrane H+-ATPase can catalyze efficient ATP hydrolysis-driven proton translocation.  相似文献   

6.
K S Dhugga  P M Ray 《FEBS letters》1991,278(2):283-286
By glycerol gradient centrifugation of a detergent-solubilized plasma membrane fraction from pea tissue, we find a polypeptide of 55 kDa that copurifies with beta-1,3-glucan synthase activity. An antiserum against this polypeptide adsorbs glucan synthase activity and the 55 kDa polypeptide from digitonin-solubilized plasma membrane. These results indicate that the 55 kDa polypeptide is involved in pea beta-1,3-glucan synthase activity.  相似文献   

7.
The isolation of Golgi membranes from suspension-cultured cellsof rice (Oryza sativa L.) was attempted by linear glycerol densitygradient centrifugation. When "burst" membranes in the pelletobtaind after differential centrifugation at 100,000 ? g weresuspended in 20% (w/w) glycerol in 50 mM malate-NaOH (pH 6.0)and loaded onto a linear density gradient of glycerol, whichextended from 30 to 80% (w/w) in 1 mM EDTA in 50 mM glycylglycine-NaOH(pH 7.5), IDPase, a marker enzyme for Golgi membranes, was separatedfrom other membrane markers on the glycerol gradient. In addition,UDPase and GDPase activities overlapped with the peak fractionof IDPase activity. Furthermore, membrane glycoproteins in eachfraction were characterized by lectin-peroxidase staining. ConcanavalinA and lentil lectin, which have the ability to bind to the high-mannosetype of oligosaccharide, bound to glycoproteins distributedin ER membrane fractions, while wheat germ lectin, castor beanlectin, peanut lectin, and Ulex europaeus lectin-I which recognizethe complex type and/or the mucin type of oligosaccharides interactedwith glycoproteins in the Golgi membrane fractions but not withthose in the ER membrane. These results strongly suggest thatthe oligosaccharide structures of glycoproteins in the ER membraneare of the high-mannose type, whereas glycoproteins in the Golgimembrane have modified N-linked and/or O-linked oligosaccharidechains. (Received November 9, 1988; Accepted October 17, 1989)  相似文献   

8.
Plasma membrane vesicles from roots of barley (Hordeum vulgare L., var. Arivat) had an equilibrium density in sucrose of about 1.16 grams per cubic centimeter, but could not be purified satisfactorily with the procedure developed for roots of other plant species. The reported procedure involving differential centrifugation to remove mitochondria (peak density of 1.18 grams per cubic centimeter) and subsequent density gradient centrifugation to purify plasma membrane vesicles was modified to include a narrower differential centrifugation fraction (13,000 to 40,000g instead of 13,000 to 80,000g) and a narrower density range in the sucrose gradient (1.15 to 1.18 grams per cubic centimeter instead of 1.15 to 1.20 grams per cubic centimeter). The fraction obtained by the modified procedure was between 60 and 70% pure as determined by staining with the phosphotungstic acid-chromic acid procedure, which was judged to be reliable for identifying plasma membrane vesicles in subcellular fractions from barley roots. The plasma membrane fraction was enriched in K+-stimulated ATPase activity at pH 6.5. The presence of nonspecific ATP-hydrolyzing activity in the plasma membrane fraction made it difficult to determine if the ATPase had properties in common with those reported for cation absorption in barley roots.  相似文献   

9.
An investigation was conducted into the isolation of plasma membrane vesicles from primary roots of corn (Zea mays L., WF9 × M14) by sucrose density gradient centrifugation. Identification of plasma membranes in cell fractions was by specific staining with the periodic-chromic-phosphotungstic acid procedure. Plasma membrane vesicles were rich in K+-stimulated ATPase activity at pH 6.5, and equilibrated in linear gradients of sucrose at a peak density of about 1.165 g/cc. It was necessary to remove mitochondria (equilibrium density of 1.18 g/cc) from the homogenate before density gradient centrifugation to minimize mitochondrial contamination of the plasma membrane fraction. Endoplasmic reticulum (NADH-cytochrome c reductase) and Golgi apparatus (latent IDPase) had equilibrium densities in sucrose of about 1.10 g/cc and 1.12 to 1.15 g/cc, respectively. A correlation (r = 0.975) was observed between K+-stimulated ATPase activity at pH 6.5 and the content of plasma membranes in various cell fractions. ATPase activity at pH 9 and cytochrome c oxidase activity were also correlated.  相似文献   

10.
Kasamo K 《Plant physiology》1986,80(4):818-824
The plasma membrane ATPase of mung bean (Phaseolus mungo L.) roots has been solubilized with a two-step procedure using the anionic detergent, deoxycholate (DOC) and the zwitterionic detergent, zwittergent 3-14 as follows: (a) loosely bound membrane proteins are removed by treatment with 0.1% DOC; (b) The ATPase is solubilized with 0.1% zwittergent in the presence of 1% DOC; (c) the solubilized material is further purified by centrifugation through a glycerol gradient (45-70%). Typically, about 10% of the ATPase activity is recovered, and the specific activity increases about 11-fold. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis shows that the peak fraction from the glycerol gradient contains three major polypeptides of Mr = 105,000, 67,000, and 57,000 daltons. The properties of the purified ATPase are essentially the same as those of membrane-bound ATPase, with respect to pH optimum, substrate specificity, inhibitor sensitivity, and ion stimulation.  相似文献   

11.
《Plant science》1986,45(1):43-50
Maize shoot plasma membranes were prepared using either polyethyleneglycol (PEG)-dextran phase partition or centrifugation through a 30% sucrose cushion. The ATPase specific activity of membranes obtained with the phase partition method (1.4 μmol Pi · min−1 · mg−1 protein) was twice that of those prepared with the sucrose cushion method. After solubilization by lysolecithin and precipitation by ammonium sulfate, ATPase activities of the order of 3.0–3.5 μmol Pi · min−1 · mg−1 were obtained. A polypeptide of Mr = 90 000 was enriched during ATPase purification.Antibodies against pure plasma membrane ATPase from Saccharomyces cerevisiae inhibited the plant ATPase activity. Immunodetection during purification of the plant enzyme strongly supported the conclusion that the polypeptide of Mr = 90 000 belongs to plant plasma membrane ATPase.  相似文献   

12.
Sucrose gradient centrifugation was used to separate the microsomalmembranes and purify the plasma membrane ATPase from Ricinuscotyledons. The pellet from a three-step (30, 34, 38%) sucrosegradient was enriched in plasma membrane as determined by acombination of marker assays. The partially purified plasma membrane ATPase was magnesium-dependentand had a pH optimum of 6.5. It showed high sensitivity to vanadate,erythrosin B, SW 26, DCCD and PCMBS but low sensitivity to azide,nitrate and NEM. Substitution of calcium for magnesium resultedin low activity, and in the presence of magnesium, calcium wasinhibitory. KCl stimulation was low (less than 50%) and of thepotassium salts tested all were stimulatory except which was inhibitory. Specificity for nucleotide triphosphateswas high, greatest activity occurring with ATP. Proton-pumping activity measured using quinacrine fluorescencequenching was inhibited by vanadate and erythrosin B but notby nitrate and oligomycin indicating that activity was mainlydue to the plasma membrane ATPase. Key words: ATPase, cotyledons, plasma membrane, proton pumping, Ricinus communis  相似文献   

13.
A vanadate-sensitive and nitrate-resistant ATPase was solubilizedwith Zwittergent 3–14 from a highly purified plasma membranefraction of mung bean hypocotyls and partially purified by glyceroldensity gradient centrifugation and phenyl-Sepharose columnchromatography. Either phosphatidylcholine or phosphatidylserinein addition to Mg2 + was required for the enzyme activity, whereasK+, phosphatidylethanolamine and lysophosphatidylcholine hadno effect on the activity. The purified enzyme preparation containedtwo major polypeptides with molecular masses of 67 and 55 kDaas analyzed by SDS-polyacrylamide gel electrophoresis. Whenthe plasma membrane fraction was incubated with [-32P]ATP, a45-70-kDa polypeptide(s) was labeled, and the label could berapidly chased with cold ATP. When the fraction was incubatedwith [14C]N,N'-dicyclohexylcarbodiimide, an inhibitor for theATPase, a 15-20-kDa polypeptide was labeled. We propose thatthe enzyme is a new type of higher plant plasma membrane ATP-aseand is composed of 67- and 55-kDa subunits and probably alsoa 15-20-kDa subunit. 1Present address: Takarazuka Institute, Sumitomo Chemical IndustriesLtd., Takatsukasa, Takarazuka, Hyogo 665, Japan (Received September 2, 1987; Accepted May 20, 1988)  相似文献   

14.
A membrane fraction enriched with magnesium-dependent ATPase activity was isolated from sugarbeet (Beta vulgaris L.) taproot by a combination of differential centrifugation, extraction with KI and sucrose density gradient centrifugation. This activity was inhibited by vanadate, N,N′-dicyclohexylcarbodiimide and diethylstilbestrol, but was insensitive to molybdate, azide, oligomycin, ouabain, and nitrate, suggesting enrichment in plasma membrane ATPase. The enzyme was substrate specific for ATP, had a pH optimum of 7.0, but showed little stimulation by 50 mM KCl. The sugarbeet ATPase preparation contained endogenous protein kinase activity which could be reduced by extraction of the membranes with 0.1% (w/v) sodium deoxycholate. Reduction of protein kinase activity allowed the demonstration of a rapidly turning over phosphorylated intermediate on a Mr 105000 polypeptide, most likely representing the catalytic subunit of the ATPase. Phosphorylation was magnesium dependent, sensitive to diethylstilbestrol and vanadate but insensitive to oligomycin and azide. Neither the ATPase activity nor phosphoenzyme level were affected by combinations of sodium and potassium in the assay. These results argue against the presence of a synergistically stimulated NaK-ATPase at the plasma membrane of sugarbeet.  相似文献   

15.
Subunit composition of vacuolar membrane H(+)-ATPase from mung bean   总被引:11,自引:0,他引:11  
The vacuolar H(+)-ATPase from mung bean hypocotyls was solubilized from the membrane with lysophosphatidycholine and purified by QAE-Toyopearl column chromatography. The purified ATPase was active only in the presence of exogenous phospholipid and was inhibited by nitrate, dicyclohexyl carbodiimide and Triton X-100, but not by vanadate or azide. Dodecyl sulfate/polyacrylamide gel electrophoresis of the purified ATPase yielded ten polypeptides of molecular masses of 68 kDa, 57 kDa, 44 kDa, 43 kDa, 38 kDa, 37 kDa 32 kDa, 16 kDa, 13 kDa and 12 kDa. All polypeptides remained in the peak activity fraction after glycerol density gradient centrifugation. Nine of them, excluding the 43-kDa polypeptide, comigrated in a polyacrylamide gradient gel in the presence of 0.1% Triton X-100. The 16-kDa polypeptide could be labeled with [14C]dicyclohexylcarbodiimide. The amino-terminal amino acid sequence of the isolated 68-kDa polypeptide generally agreed with that deduced from the cDNA for the carrot 69-kDa subunit [Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H. & Taiz, L. (1988) J. Biol. Chem. 263, 9102-9112]. Thus, mung bean vacuolar H(+)-ATPase seems to consist of nine distinct subunits.  相似文献   

16.
The plasma membrane of Neurospora crassa contains a proton-translocating ATPase, which functions to generate a large membrane potential and thereby to drive a variety of H+-dependent co-transport systems. We have purified this ATPase by a three-step procedure in which 1) loosely bound membrane proteins are removed by treatment with 0.1% deoxycholate; 2) the ATPase is solubilized with 0.6% deoxycholate in the presence of 45% glycerol; and 3) the solubilized enzyme is purified by centrifugation through a glycerol gradient. This procedure typically yields approximately 30% of the starting ATPase activity in a nearly homogeneous enzyme preparation of high specific activity, 61-98 mumol/min/mg of protein. The membrane-bound and purified forms of the ATPase are very similar with respect to kinetic properties (pH optimum, nucleotide and divalent cation specificity, sigmoid dependence upon Mg-ATP concentration) and sensitivity to inhibitors (including N,N'-dicyclohexylcarbodiimide and vanadate). Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified ATPase displays a single major polypeptide band of Mr = 104,000, which is essentially identical in its electrophoretic mobility with the large subunit of [Na+, K+]-ATPase of animal cell membranes and [Ca2+]-ATPase of sarcoplasmic reticulum. The structural similarity of the fungal and animal cell ATPases, together with the fact that both are known to form acyl phosphate intermediates, suggests that they may share a common reaction mechanism.  相似文献   

17.
Tonoplast and plasma membrane vesicles were prepared from rice(Oryza sativa L. var. Yuukara) culture cells with step sucrosegradient (30% and 42.9%, w/v) and/or step dextran T-70 gradient(1% and 8%, w/w) to determine the inhibition of tonoplast andplasma membrane AT-Pases by local anesthetics. The degree towhich the anesthetics inhibited these ATPases was of the followingorder: dibucaine>lidocainetetracaine>procaineGABA. Dibucaineranging in concentration from 0.2 nui to 2 mM inhibited tonoplastATPase activity more than plasma membrane ATPase, the half inhibitionsbeing 0.8 and 1.1 mM, respectively. The Km values of tonoplastand plasma membrane ATPases were not affected by dibucaine,but various values were noted for Vmax. Dibucaine inhibitedtonoplast and plasma membrane ATPases solubilized from 0.1%DOC pellet by n-octylglucoside and zwittergent 3–14, respectively.The addition of a phospholipid mixture (asolectin) to solubilizedboth ATPases had no effect on the inhibition by dibucaine. Thus,local anesthetics may act directly on the ATPase moiety withoutlipid mediation. (Received June 15, 1987; Accepted November 13, 1987)  相似文献   

18.
To investigate the function and subcellular localization ofsorbitol oxidase, free cells, protoplasts and isolated vacuolesof apple cotyledons (Malus pumila Mill. var. domestica Schneid.)were examined by differential and sucrose density gradient centrifugation.Twenty percent of the activity of sorbitol oxidase in the wholetissue was contained in the subcellular fraction (d=1.06) whichcorresponded closely to the main peaks of activity and proteinafter the recentrifugation of the 150,000?g pellet of rupturedvacuoles with a linear sucrose density gradient. The enzymethus appears to be derived from the tonoplast membrane. Thistonoplast membrane-bound sorbitol oxidase may play an importantrole in the transport of vacuolar sorbitol into the cytoplasm,rather than in the transport of sorbitol into the vacuole. About10% of the enzyme activity also occurred in the subcellularfraction having a density of 1.12–1.16, which coincidedwith the peaks of acid phosphatase and ATPase activities. Thereforesorbitol oxidase may also be associated with the plasma membrane.Furthermore, 30–40% of its activity was located in theinterspace between the cell wall and the plasma membrane, orperhaps attached weakly to them. These results suggest thatsorbitol is transported into the cytoplasm by being convertedto glucose by sorbitol oxidase. 1 This paper is contribution A-138 of the Fruit Tree ResearchStation. (Received January 20, 1982; Accepted May 18, 1982)  相似文献   

19.
A plasma membrane fraction was obtained by the combined use of differential centrifugation and aqueous polymer two-phase partitioning techniques. Vanadate-inhibited ATPase and glucan synthase activities were highly enriched in this fraction, although the presence of ATPase activity which was not inhibited by vanadate, nitrate, molybdate, anyimycin A or azide was also detected. Other intracellular membrane marker activities were present at very low or undetectable levels. A further separation step using Percoll density gradient centrifugation resulted in the separation of a fraction which exclusively contained vanadate-inhibited ATPase activity, and was enriched with silicotungstic-acid-staining membrane material. Latency tests performed on the plasma membrane markers showed that the membrane vesicles were in the right-side-out orientation.  相似文献   

20.
Root and hypocotyl plasma membrane H+-ATPases were partially purified from deoxycholate-solubilized fractions of microsomes in mung bean (Vigna radiata L.) plants in the presence of glycerol. Certain properties of the ATPases and the manner in which phospholipids affect their activity were compared. Root ATPase was similar to hypocotyl ATPase with respect to substrate specificity, salt stimulation, pH dependence, Km for ATP·Mg2+ and inhibitor sensitivity, except for inhibition by vanadate. Both purified ATPases required phospholipids for their activation. Optimum concentrations of exogenously added phospholipid mixture (asolectin) to hypocotyl and root ATPase mixture were 0.03% and 1.0%, respectively. Root ATPase activation did not decrease if more than 1.0% asolectin was added. Qualitatively, phosphatidylserine and phosphatidylcholine brought about greater ATPase activation than other phospholipids. The hypocotyl ATPase was activated by phosphatidylinositol, phosphatidylserine and phosphatidylglycerol to a greater extent than the root ATPase. Root, but not hypocotyl ATPase, was slightly inhibited by the addition of phosphatidylinositol, phosphatidylethanolamine, and phosphatidic acid. The hypocotyl plasma membrane contained phosphatidylinositol + phosphatidylserine, phosphatidylglycerol and phosphatidic acid, and unsaturated fatty acids in greater abundance than the root plasma membrane. The differential activation of the plasma membrane ATPases may arise from these differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号