首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The low potential c-type cytochrome from the phototrophic purple sulphur bacterium Thiocapsa roseopersicina, strain BBS was isolated in electrophoretically homogeneous state. The bulk of the cytochrome (approximately 90%) after disruption of the cells remained in the membrane fraction. The absorption spectrum of the cytochrome was characterized by the maxima at 420, 523 and 552 nm in the reduced state and at 408 nm in the oxidized one. The cytochrome interacted with CO in the reduced state. The molecular weight of the cytochrome is 50 000. The cytochrome contains great amounts of phenylalanine, leucine, valine, aspartic and glutamic acids and can be reduced by dithionite but not by cysteine, sulfide or ascorbate. Besides, the cytochrome can also be reduced by NAD(P)H in the presence of NAD(P)-reductases of T. roseopersicina, when ferredoxin of Spirulina platensis or benzyl viologen are added to the reaction mixture. The cytochrome can act as an electron donor (acceptor) for T. roseopersicina hydrogenase.  相似文献   

2.
The phototrophic sulphur bacterium. Thiocapsa roseopersicina, strain BBS, was grown under anaerobic conditions in the darkness on the medium containing glucose and thiosulphate or molecular sulphur. The assimilation of glucose is accompanied by the accumulation of small amounts of pyruvate in the medium, and the uptake of thiosulphate or molecular sulphur leads to the formation of sulphates and hydrogen sulphide.  相似文献   

3.
The method of purification up to electrophoretical homogeneity of cytochrome c552 from the phototrophic bacterium Thiocapsa roseopersicina, strain BBS is described. For the cytochrome absorption spectrum the maxima at 417, 523 and 552 nm are characteristic for the reduced state and at 409 nm--for the oxidized state. The molecular weight is equal to 62000. The cytochrome contains two hemes per molecule and consists of two subunits. pI is 4.1; E0' is about 10 mV. Cytochrome c552 is a flavoprotein according to its fluorescence spectrum and subunit structure. T. roseopersicina cytochrome c552 is able to be reduced with sulphide, cysteine and ascorbate as well as with H2 in the presence of hydrogenase from the same bacterium. These data suggest that cytochrome c552 from T. roseopersicina functions in vivo at the initial stage of electron transport from hydrogen and sulphide.  相似文献   

4.
The thermostable hydrogenase from Thiocapsa roseopersicina was examined by low-temperature ESR spectroscopy. Two types of signals were detected, from an oxidized iron-sulphur cluster and a nickel centre (Ni-A). In the oxidized protein additional signals were observed due to spin-spin interaction between the two paramagnetic centres. This interaction could be reversibly abolished by reduction to a redox potential below 105 mV. This implies that an additional redox centre is involved in the interaction, for which an Fe3+ ion is suggested. Reduction with hydrogen induced a second type of nickel ESR signal (Ni-C), corresponding to an intermediate redox state seen in other nickel hydrogenases. The Ni-C species was light-sensitive at cryogenic temperatures. At temperatures near to 4.2 K the Ni-C signal showed evidence of interaction with another paramagnetic centre, presumably a second iron-sulphur cluster. On reoxidation a signal due to a third Ni(III) species, Ni-B, increased in amplitude. These results establish that metal centres in the hydrogenase from T. roseopersicina are closely similar to those of the well-studied hydrogenase from Chromatium vinosum.  相似文献   

5.
A layer of fungiform macromolecular subunits was found on the surface of the cell wall of Thiocapsa roseopersicina, a purple sulphur bacterium, strain BBS. The cap of a particle has a diameter of 40 to 60 A; the stalk is 80 to 100 A long and 20 to 30 A thick. Under the conditions of nitrogen fixation and a low content of vitamin B12 (0.1 mcg/litre) in the cultural broth, a second layer of similar particles is formed over the first layer.  相似文献   

6.
The growth of Thiobacillus ferrooxidans on sulphur is known to proceed through the attachment of cells to the sulphur particles. Experiments, However, show that the cells in the liquid phase, which are not attached to the sulphur particles, also grow. It has been shown through the use of a two-compartment membrane reactor that this increase is partially due to the release of ions, corresponding to partially oxidized of sulphur, into the solution by the attached cells. The main soluble ion has been found to the thiosulphate, but traces of sulphite have also been detected. (c) 1993 John Wiley & Sons, Inc.  相似文献   

7.
Optical characteristics of a Thiocapsa roseopersicina culture and environmental samples containing T. roseopersicina were investigated in the spectral range of 400 to 1,100 nm (absorption coefficient, diffuse attenuation coefficient, and reflectance). Specific absorption coefficients of T. roseopersicina at wavelengths of 480, 520, 550, 580, 805, 860, and 880 nm were determined. It is suggested that the optical properties of T. roseopersicina in the near-infrared range of 800 to 930 nm, confirmed in this study, may be used for development of remote sensing techniques for real-time monitoring of T. roseopersicina and other bacteriochlorophyll a-containing microbes.  相似文献   

8.
Abstract The mycorrhizal fungi Amanita muscaria, Paxillus involutus, Hymenoscyphus ericae, Pisolithus tinctorius, Rhizopogon roseolus , and Suillus bovinus oxidized elemental sulphur to thiosulphate and sulphate in vitro. In some, but not all cases, tetrathionate was also formed. Limited oxidation of elemental sulphur by R. roseolus also occurred when growing in association with Pinus contorta in unsterilized peat. Although yeasts capable of oxidizing sulphur could not be isolated from a wide range of soils, a yeast-like fungus ( Monilia sp.) isolated from deciduous woodland soil oxidized elemental sulphur to sulphate, forming thiosulphate, but not tetrathionate. This fungus also oxidized tetrathionate to sulphate but showed only limited ability to oxidize thiosulphate to tetrathionate. Both Aspergillus niger and Trichoderma harzianum oxidized elemental sulphur in mixed culture with Mucor flavus . Larger amounts of sulphate were initially formed in mixed, compared to single culture; but by week 5 of the incubation period sulphate formation was greatest in single culture. The wood-rotting fungi, Hypholoma fasciculare and Phanerochaete velutina showed a limited ability to oxidize elemental sulphur in vitro but were incapable of oxidizing the element when growing as mycelial cords in non-sterilized soils. The relevance of these results to the possibility that fungi play a role in sulphur oxidation in soils is commented upon.  相似文献   

9.
Abstract The affinities for sulfide and acetate under mixotrophic conditions have been determined for the brown Chlorobium phaeobacteroides and the purple Thiocapsa roseopersicina isolated from a bloom in Lake Kinneret (Israel) at a depth of about 18 m. C. phaeobacteroides exhibited a far higher affinity for sulfide than T. roseopersicina . For acetate, the opposite was observed.
In light-limited continuous cultures, C. phaeobacteroides preferentially used sulfide, whereas in mixotrophic cultures of T. roseopersicina sulfide could be detected without detectable acetate. Competition experiments under increasingly severe light limitation resulted in co-existence of the two strains. Relatively high light intensities resulted in a dominance of T. roseopersicina over C. phaeobacteroides , whereas at lower intensities C. phaeobacteroides became dominant. However, at light intensities below 2 μEin · m−2· s−1, T. roseopersicina was completely excluded.
At low light intensities, C. phaeobacteroides is able to grow at a much higher rate than T. roseopersicina . The maintenance rate constant μe of C. phaeobacteroides is −0.001 h−1, whereas that of T. roseopersicina is −0.011 h−1. However, high light intensities inhibit the growth rate of C. phaeobacteroides , but not that of T. roseopersicina .
The explanation of the high numbers of C. phaeobacteroides in Lake Kinneret appears to be the combination of low light intensities and low sulfide concentrations. As a result, the incorporation of acetate is enhanced. The low numbers of T. roseopersicina can be explained by the high maintenance energy requirements of this organism, which exceed the available light at the depth of the bloom.  相似文献   

10.
Abstract Mass developments of the purple sulfur bacterium Thiocapsa roseopersicina in the surface layers of sandy beaches on the Orkney Islands were examined with respect to microcolony formation on sand grains, vertical distribution of viable cells and the ability to colonize beach surfaces. It was observed that microcolonies of the non-motile phototrophic bacterium cemented individual sand grains to each other and that the resulting aggregates could withstand severe wave action and may play a decisive role in the stabilization of these sandy beaches.
After removal of the top layer similar population densities of T. roseopersicina were recorded within seven days. It was calculated that the net specific growth rate initially was 0.53 day−1 (0.022 h−1).
Laboratory studies strongly suggest that the populations of T. roseopersicina on sheltered beaches on the Orkney Islands were growing phototrophically in the light even when the microenvironment was oxic. Bacteriochlorophyll a synthesis was repressed by oxygen and occurred during periods with low light intensities when the microenvironment was anoxic and contained sulfide.  相似文献   

11.
The method of solution and puridication of hydrogenase from chromatophores of purpur sulphur bacteria Thiocapsa roseopersicina strain BBS are described. Hydrogenase molecular weight is 73000. It contains 4,4 mole S2- and 3.1 mole Fe2+ per mole of protein; pI 4.15. The enzyme absorption spectrum has the maximun et 400-410 nm, which is characteristic of proteins containing non-haem iron. Membrane--linked enzyme as well as soluble hydrogenase of that microorganism is characterized by high thermal stability: inactivation occurs at the temperature above 78 degrees C when the optimal temperature for that enzyme is 70 degrees C. Homogenous enzyme catalyses D2--H2O exchange reaction, reversible redox reaction of methyl viologene and benzyl viologene.  相似文献   

12.
13.
Streptomyces colonies, apparently all of the same species, were isolated from a range of soils using a polysulphide medium lacking an organic carbon source. Growth on this medium, and clearing of the otherwise white, opaque overlay, suggested that the organisms were capable of growing autotrophically. However, investigation of one of these isolates showed that it was unable to fix 14CO2 and did not possess the enzyme ribulose bisphosphate carboxylase, showing that it was incapable of autotrophic growth. The isolate oxidized elemental sulphur, thiosulphate and tetrathionate to sulphate in vitro in carbon-deficient medium, and also oxidized elemental sulphur to sulphate when inoculated into autoclaved soil supplemented with sulphur. It also oxidized polysulphide when growing on Czapek Dox and plate count agars. The isolate can therefore grow heterotrophically in both carbon-rich media and in media lacking organic carbon — presumably by scavenging organic carbon from the laboratory atmosphere. The possible role of these organisms in sulphur oxidation in soils is commented upon.  相似文献   

14.
Archives of Microbiology - Plants absorb sulphate, the oxidized form of elemental sulphur (S°), from soil. Sulphur-oxidizing bacteria play a key role in transformation of sulphur in soil. Oil...  相似文献   

15.
X-ray edge absorption of copper and extended fine structure studies of both copper and iron centers have been made of cytochrome oxidase from beef heart, Paracoccus dentrificans, and HB-8 thermophilic bacteria (1-2.5 mM in heme). The desired redox state (fully oxidized, reduced CO, mixed valence formate and CO) in the x-ray beam was controlled by low temperature (-140 degrees C) and was continuously monitored by simultaneous optical spectroscopy and by electron paramagnetic resonance (EPR) monitoring every 30 min of x-ray exposure. The structure of the active site, a cytochrome a3-copper pair in fully oxidized and in mixed valence formate states where they are spin coupled, contains a sulphur bridge with three ligands 2.60 +/- 0.03 A from Fea3 and 2.18 +/- 0.03 A from Cua3. The distance between Fea3 and Cua3 is 3.75 +/- 0.05 A, making the sulphur bond angle 103 degrees reasonable for sp3 sulphur bonding. The Fea3 first shell has four typical heme nitrogens (2.01 +/- 0.03 A) with a proximal nitrogen at 2.14 +/- 0.03 A. The sixth ligand is the bridging sulphur. The Cua3 first shell is identical to oxidized stellacyanin containing two nitrogens and a bridging sulphur. Upon reduction with CO, the active site is identical to reduced stellacyanin for the Cua3 first shell and contains the sulphur that forms the bridge in fully oxidized and mixed valence formate states. The Fea3 first shell is identical to oxyhemoglobin but has CO instead of O2. The other redox centers, Fea and the other "EPR detectable" Cu are not observed in higher shells of Fea3. Fea has six equidistant nitrogens and Cua has one (or two) nitrogens and three (or two) sulphurs with typical distances; these ligands change only slight on reduction. These structures afford the basis for an oxygen reduction mechanism involving oxy- and peroxy intermediates.  相似文献   

16.
Unlike Rhodospirillum rubrum, the highly purified preparations of NADP-reductase Thiocapsa roseopersicina are capable of reduction of cytochrome c though they do not catalyse diaphorase reaction in the presence of methyl viologen or benzyl viologen and NADH. T. roseopersicina reductase has more high temperature optimum (50-65 degrees) and more high thermal stability (65 degrees) and it is capable to catalyse diaphorase and menadione-reductase reactions under more high pH values (11.0-12.0) than NADP-reductase of R. rubrum. NADP-reductase of T. roseopersicina is more stable under storing than the enzyme from R. rubrum: the semi-inactivation period of the enzyme when storing in Ar or the air is about 10 and 4 days, respectively, and it takes about three days for R. rubrum.  相似文献   

17.
The isolation method and some peoperties of purple sulphur bacteria (Thiocapsa roseopersicina strain BBS) hydrogenase are described Hydrogenase molecular weight is found to be 66000; it contains 3.7 moles of S2- and 3.9 moles of Fe2+ per one mole of the enzyme;pI=4.2. The enzyme absorption spectrum has the maximum at 400-412 nm which is characteristic of proteins containing non-haem iron. Hydrogenase is suggested to consist pf 4 subunits of two types: with molar weight 27000 and 6000. Unlike other hydrogenases, this enzyme is rather resistant to O2 and is more thermostable: the inactivation of the enzyme was observed at the temperature above 80 degrees C; Hydrogenase preparation catalyses D2-H2O exchange reaction, H2 evolution from the reduced methyl viologene (MV) and H2 absorption in the presense of MV or benzylviologene but not in the presense of NAD(P), FAD, FMN, azocarmine, methylene blue and ferricyanide.  相似文献   

18.
Abstract Incorporation of [ methyl -3H]thymidine into bacterial DNA was determined for a range of axenic anaerobic bacterial cultures: fermentative heterotrophs, sulphate-reducing bacteria, purple sulphur bacteria, acetogens and methanogens. Anaerobically growing Bacillus sp. and the obligate aerobe Thiobacillus ferrooxidans were also investigated. Actively growing cultures of sulphate-reducing bacteria belonging to the genera Desulfovibrio, Desulfotomaculum, Desulfobacter, Desulfobotulus and Desulfobulbus , purple sulphur bacteria ( Chromatium vinosum OP2 and Thiocapsa roseopersicina OP1), methanogens ( Methanococcus GS16 and Methanosarcina barkeri ) and an acetogen ( Acetobacterium woodii ) did not incorporate [ methyl -3H]thymidine into DNA. The only obligate anaerobes in which thymidine incorporation into DNA could be unequivocally demonstrated were members of the genus Clostridium . Anaerobically growing Bacillus sp. also incorporated thymidine. These data demonstrate that pure culture representatives of major groups of anaerobic bacteria involved in the terminal oxidation of organic carbon and anoxygenic phototrophs within sediments are unable to incorporate [ methyl -3H]thymidine into DNA, although some obligate and facultative anaerobes can. Variability in thymidine incorporation amongst pure culture isolates indicates that unless existing techniques can be calibrated to take this into consideration then productivity estimates in both aerobic and anaerobic environments may be greatly underestimated using the [ methyl -3H]thymidine technique.  相似文献   

19.
Summary The microbial oxidation of pyritic sulphur was studied in a 4.5-l airlift fermentor at pH 1.5 and 100 g/l pulp density. By microbial leaching with Leptospirillum-like bacteria 85% of the pyritic sulphur was removed within 40 days; 30% of the removed pyrite was oxidized to elemental sulphur, the rest being transformed to soluble sulphate. Accumulation of elemental sulphur could be avoided by using a mixed culture of Leptospirillum-like bacteria and Thiobacillus ferrooxidans. Apart from oxidation of elemental sulphur neither the pure nor the mixed culture showed a significant difference as to removal of pyrite.  相似文献   

20.
I N Gogotov 《Biochimie》1978,60(3):267-275
Purple bacteria Rhodospirillum rubrum and Thiocapsa roseopersicina form two enzymes, hydrogenase and nitrogenase, which participate in hydrogen metabolism. H2 photoproduction in these bacteria is associated mainly or completely with the action of nitrogenase. The soluble and membrane-bound hydrogenases of T. roseopersicina have similar physicochemical properties (mol. weight, subunit composition, N-terminal amino acids, Fe2+ and S2- content, pl. Eo'). In comparison with other hydrogenases the enzyme from R. rubrum and T. roseopersicina evolve H2 with high rate from reduced cytochrome c3, but not from ferredoxins. H2 production and N2 fixation take place in the presence of NAD(P)H. NADP-reductase, ferredoxin and cytochrome c3 participate in this reaction. Possible relationships between hydrogenase-nitrogenase in the metabolism of molecular hydrogen are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号