首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The internal female genitalia of fifteen species of Zygaenidae (representing seven genera of Zygaeninae), one species of Heterogynidae and one species of Limacodidae have been studied in order to delimit the distribution of Petersen's glands within the Zygaenidae. The study demonstrates a considerable amount of structural variation. Petersen's glands are found to represent an autapomorphic character of the Zygaeninae, while the pseudobursa is restricted to the Zygaenini. Most likely it is an autapomorphic character of this tribe. Some other characters that were studied are discussed with special reference to their usefulness for a reconstruction of the phylogeny of the Zygaenidae.  相似文献   

2.
We describe the morphology of alar androconia and the female abdominal scent gland of Heliconius erato phyllis, Heliconius ethilla narcaea, and Heliconius besckei. Androconial scales of Heliconius, which are arranged in overlapping wing bands, release pheromones during courtship, probably through vibratory movements of male wings over the female to induce her to mate. An antiaphrodisiac is produced by glands located in the valves of the male and is transferred during copulation to the yellow dorsal abdominal sac present in the virgin female, causing this sac to emit a scent that reduces the attractiveness of the female for courtship with other males. Stereomicroscopy, SEM, and TEM analyses were conducted to describe the morphology of the internal and external scales and the external abdominal scent sac. The findings revealed different sizes of external androconial scales and an internal group of porous structural vesicles that are probably related to the preservation of internal space, reception and storage of secretions, and elimination of volatiles when the male is actively involved in courtship. Translucent projections on the female abdominal scent sac create open reservoirs for the reception, storage, and emission of antiaphrodisiac volatiles along with stink clubs. Male valve denticles vary in form and probably attach securely to the female sac during mating, thus ensuring secretion transfer. These features are discussed in the context of a comparative analysis.  相似文献   

3.
A comparative study of male and female genitalia was carried out in thirty‐seven Libyan species representing twenty genera of the family Acrididae. An attempt has been made to describe and illustrate the different structures, namely, epiphallus, aedeagus, subgenital plate, supra‐anal plate and cerci of the male, and spermatheca, ovipositor, subgenital plate, supra‐anal plate and cerci of the female, in Acridids, with an aim to discover their significance in order to make the identification of genera and species, together with other generic characters, more perfect and convenient. Distinct family characters are shield or bridge‐shaped condition of epiphallus; presence or absence of dorso‐lateral appendices, oval sclerites and lophi on epiphallus; divided, undivided or flexured condition of aedeagus; presence or absence of gonopore process on aedeagus; condition of apical and pre‐apical diverticula of spermatheca; presence or absence of glandular pouches of Cornstock and Kellog on female subgenital plate; and rudimentary or well developed condition of egg‐guide. Stable characters for separating the subfamilies are taken to be presence or absence of ancorae on epiphallus, long or short condition of aedeagal sclerites; elongate, slender or short and broad condition of ovipositor valves: presence or absence of Jannone's organs and setae on posterior margin of female subgenital plate; and shape of diverticula of spermatheca. Useful generic characters are shape of male subgenital plate, supra‐anal plate and cerci, broad or narrow condition of bridge, presence or absence of branch of bridge connecting lophi with bridge of epiphallus; mono‐, bi‐ or tri‐lobate condition of lophi of epiphallus, length and upcurved or downcurved condition of apical valve of aedeagus, shape of posterior margin of female subgenital plate, presence of setae on the whole posterior margin or confined to lateral margins only; and toothed, tuberculate or smooth condition of ovipositor valves, length of the lateral apodeme in relation to the dorsal valves. Specific characters are shape of egg‐guide of female subgenital plate, shape of ovipositor valves and apical tips, shape of male supra‐anal plate and cerci, size of anterior and posterior lobes of lophi of epiphallus, size and shape of ancorae, shape of apical valves of aedeagus; and size of apical and pre‐apical diverticula and presence of protuberance on pre‐apical diverticulum.  相似文献   

4.
Female Heterobathmia have the segments behind VIII forming a compact ‘terminal unit’ with a large saddle-shaped dorsal plate and a membranous ventroposterior surface bearing the separate gonopore and anus. While females of most of the nine known species are overall similar, Heterobathmia valvifer is unique amongst lepidopterans in possessing paired ventral appendages (‘ovipositor valves’) arising from the intersegmental groove following segment VIII; evidence from musculature contradicts an interpretation of these appendages structures as ‘true’ ovipositor valves. The ventroposterior wall of the terminal unit in H. valvifer bears paired sclerites, possible homologues of the ‘ventral rods’ in basal Lepidoptera-Glossata. In Heterobathmia megadecella sclerites on paired longitudinal elevations in comparable positions probably are/include homologues of these sclerites. Their similarity with paired sclerotizations in the corresponding region of hydrobiosid caddisflies is noted. A prominent frame-like sclerotization in the genital chamber, located in front of the spermathecal duct origin, is present only in H. megadecella.Putative heterobathmiid autapomorphies include an enlarged ‘subgenital plate’ on venter VIII, absence of apophyses on segment VIII, shortened apophyses on the terminal unit, multilobed accessory glands (but their ‘type 1’ secretory epithelium is plesiomorphic at this level), a conspicuous papilla in the chamber cuticle bearing the opening of the ductus bursae on its apex, and inwards-pointing spines in the ductus bursae. A variably developed thickening of the anterior genital chamber intima is another putative family autapomorphy, while an extreme thickening of the posterior intima seen in Heterobathmia pseuderiocrania is not of general occurrence in heterobathmiids. A sistergroup relationship between Heterobathmiidae and Glossata is supported by their fully developed ‘2-compartment section’ of the spermathecal duct and losses of some likely lepidopteran groundplan muscles.  相似文献   

5.
Species-level phylogeny of the Butterfly tribe Argynnini is established based on 141 characters derived from wing and genitalia morphology of both sexes. The Argynnini can be divided into three subtribes; Yrameina comprising Yramea and Boloria s . l ., Argynnina comprising Prokuekenthaliella , Issoria , Brenthis , and all the 'large fritillary' species joined in the genus Argynnis s . l . and a new subtribe Euptoietina comprising only the genus Euptoieta . The classical genus Issoria s . l . is polyphyletic regarding Yramea and possibly paraphyletic regarding the two Afrotropic species baumanni and hanningtoni ; these two species are tentatively transferred to the old genus/subgenus Prokuekenthaliella . Surprisingly, one Afrotropic species, Issoria smaragdifera is closely related to the East Palaearctic Issoria species. A revised classification of Argynnini is proposed based on the obtained phylogeny. Studies of larval host plants based on the obtained phylogeny suggest that the ancestral Argynnini used Passiflora and Violaceae, but already the ancestor of Yrameina + Argynnina was probably specialized on Violaceae. Whereas the Boloria species have turned to other food plants such as Dryas , Vaccinium and Salix on several occasions, only Brenthis among the Argynnina use other host plants than Viola (mainly Rosaceae). The habit of laying eggs away from the food plant has probably evolved twice within Argynnina.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 627–673.  相似文献   

6.
Abstract. Fine morphological details of the genitalia have large potential consequences for the understanding of the reproductive biology of a particular species, especially when mating behavioral studies are difficult to conduct. Oonopidae are a highly diverse spider family comprising a variety of species with complex female reproductive systems, which may have evolved under sexual selection by cryptic female choice. The present study describes the female genitalia of five oonopid species belonging to both conventionally recognized subfamilies by means of semi‐thin sections and scanning electron microscopy. In addition, the male palps are briefly described. The organization of the female genitalia in Scaphiella hespera and Scaphiella sp. resembles the entelegyne type. A chitinized canal connects the receptaculum, where sperm are stored, with the uterus. Sperm are also present in the uterus and the canal is suggested to function as fertilization duct. The genitalia of the parthenogenetic species Triaeris stenaspis are surprisingly complex. A large sac with glands is proposed to represent the equivalent of a receptaculum in sexually reproducing females. In females of Opopaea recondita, sperm are stored in a bulge derivating from the uterus. Contractions of muscles attached to the bulge may lead to sperm dumping. The uterus can be closed by a sclerite in its anterior wall. The receptacula of females of Stenoonops reductus are joined together and contain masses of spermatozoa. Additional sperm were found in the receptacula connection suggesting that fertilization takes place there. The male palps of all the investigated species, except for S. hespera, seem to lack a distincly sclerotized sperm duct. Spermatozoa and secretions are stored in a large reservoir inside the genital bulb surrounded by glandular epithelium.  相似文献   

7.
The cutaneous glands of the forehead and the metatarsus were studied by histological and histochemical methods and electron microscopy in adult male and female impalas in various seasons of the year. All glandular areas consist of apocrine and holocrine glands, which, however, occur in different proportions. Our findings in the apocrine gland cells suggest (1) the synthesis and exocytosis of a glycoproteinaceous secretory product stored in secretory granules, (2) typical apocrine secretion of the transformed apical cytoplasm, and (3) transepithelial fluid transport. The Golgi apparatus and apical membrane have binding sites for several lectins (PNA, HPA, RCA I, WGA). Cytokeratins 7, 14 and 19 are expressed at various intracellular localizations, suggesting an active role in the secretory mechanisms. The glands of the male forehead show marked seasonal changes in activity that are correlated with the main phases of the reproductive cycle, with the highest cellular activity occurring during the rut in April/May. The female forehead glands are only moderately developed and do not undergo seasonal changes. The metatarsal glands are of equal size in males and females and show no seasonal changes in activity. This study supports the hypothesis that (1) forehead glands in the male have a signaling role in the rut and (2) the metatarsal glands have a more general, probably social role maintaining and restoring contact between herd members.  相似文献   

8.
Summary Tarsal glands are located in the 6th tarsomere of adult honeybee queens, workers and drones. Their structural features are not cast or sex specific. The glandular epithelium is lined by a thin endocuticular layer. A cuticular pocket is formed from a postimaginal delamination of the cuticle secreted by the glandular epithelium. The apical plasma membrane of the glandular cells shows numerous cristae and microvilli lining large crypts that communicate with the subcuticular space. Pinocytotic vesicles, multivesicular bodies and residual dense bodies are present in the apical part of the glandular cells. The RER is well developed in perinuclear and basal parts of the glandular cells, but the Golgi apparatus is a discrete organelle without secretory granules. No exocytotic secretory structures were observed. To reach the glandular pocket, the non-proteinaceous secretory product must pass across the subcuticular space, the cuticular intima, the space between the intima and the cuticular wall, and the cuticular wall of the glandular pocket.  相似文献   

9.
Histological studies upon the salivary glands of ten species of triatomine bugs were performed looking for their number and structural organization in different genera. It was possible to evaluate the celular epithelium type of each gland, as well as the merocrine and apocrine secretions of the glands. Secretion run until the hilo and after to salivary pump and hypofaringe. The glandular components, D1, D2 and D3 are always present in the Triatoma, Panstrongylus and Diptelogaster but in Rhodnius there are only the first two pairs of glands. The salivary channels and the hilo are analyzed by histology. The whole pair D3 has a clear valve that regularizes the exit of the secretions to the hilo. According to the genus the valves appear in different locations. They have low and dense epithelium, and their nucleus are rich in chromatin. The secondary channels leaving these valves, are very different, with clear chitinous ringer, low level of chromatin in the nucleus and homogeneous cytoplasm.  相似文献   

10.
Proteins (18-20 kDa) belonging to lipocalin family have been reported to act as carriers for ligands binding to pheromones in mouse urine, pig saliva, hamster vaginal fluid and human sweat, that are involved in pheromonal communication. As the preputial gland is a major pheromonal source, the present study was aimed to detect the specific protein bands (around 18-20 kDa) in the preputial and clitoral glands of the house rat, R. rattus. The amount of protein was higher in preputial gland of the male than that of female (clitoral) gland. A 20 kDa protein was noted in male and female glands; however, the intensity of the band was much higher in male than in female. In addition, 70, 60, 35 kDa bands, identified in male preputial gland, were absent in females. The presence of higher concentration of glandular proteins in the male preputial gland suggests that male rats may depend more on these glandular proteins for the maintenance of reproductive and dominance behaviours. The results further suggest that these glandular proteins (20 kDa) may act as a carrier for ligand binding.  相似文献   

11.
The wing scale ultrastructure of the reflective under wing pattern found in many Argynnini butterflies are examined for all recognised genera and subgenera and compared to that of some basal Heliconiini. A true reflective pattern probably evolved once within the Argynnini. But the phylogenetic information in these structures is limited due to a high degree of homoplasy in the scale ultrastructure related to the reflective patterns. The degree of specialisation is also homoplastic. The general morphological modification responsible for the reflective patterns seems to be a “closing” of the large windows, which generally occupy most of the inter-ridge space on the abwing surface in the scales of higher Lepidoptera. The fact that the Argynnis niobe morphs with a silvery pattern have scales with ‘closed windows’ whereas the Argynnis niobe morphs without a silvery pattern have typical non-reflective scales with very large windows supports this conclusion.The degrees of modification of the scales, including whether both cover and ground scales or only cover scales are modified, are to some extent correlated to the degree of reflectiveness in the wing pattern. Boloria eunomia has, as the only species, more modified ground scales than cover scales.  相似文献   

12.
Gerald  Legg 《Journal of Zoology》1974,173(3):323-339
The genitalia of the male Cheiridium museorum Leach consists of a cup-shaped ejaculatory canal atrium which opens into a simple saccate genital atrium. Associated with the genital atrium are a number of thickened regions of the cuticle: the dorsal apodeme, lateral apodemes and lateral rods. These both support the genital atrium and provide regions for muscle attachment. Two pairs of accessory glands, anterior and posterior dorsal glands, are present.
The genital atrium of the female is divided into a median and two lateral diverticula. Lateral apodemes are present, as are two sets of accessory glands, lateral and median glands.
The possible function of the genitalia of the male is considered.  相似文献   

13.
The scent apparatus of male Eldana saccharina is a glandular complex on the costal area of the forewing. It consists of two parts; glandular complex 1 is composed of five kinds of cells (epidermal cells, scale cells, glandular cells, supporting cells, duct cells); glandular complex 2 also shows five types of cells (epidermal cells, scale cells, glandular cells, duct cells, trichogen cells). The secretory products of the two parts are discharged into separate ducts which converge before opening onto the lower side of the wing. The male also has two prominent hair-pencils borne on the coremata and large secretory trichogen cells on the genital valves. Each of these exocrine gland components plays an important part in formation of the chemically complex pheromones utilized in the precopulatory behavior of the male.  相似文献   

14.
The functional morphology of the male genitalia and the insemination process of Taeniopoda eques were examined using scanning electron microscopy and dissections of mating pairs. Male accessory glands consist of 17 separate tubules belonging to eight categories. Males attach to females via a genital locking mechanism, with special motions of the four aedeagal valves aiding in insertion of the aedeagus. The male passes a series of spermatophores. Each is emptied of its spermatodesm contents, then extracted from the male and female genital tracts through motions of the aedeagal valves, while the pair remain in copulo. This allows the male to keep a strong hold on the female, presumably preventing usurpation by other males, while filling the spermatheca with sperm.  相似文献   

15.
 The distribution of S-100 protein and its α- and β-subunits in bovine exocrine glands was studied by indirect immunohistochemistry. The entire spectrum of salivary glands, glands of the respiratory tract, intestinal glands, male and female genital glands, and skin glands was examined. S-100 and its β-subunit were identified in most serous secretory cells of mixed salivary glands, although secretory acini in some serous glands remained unreactive for these antigens. Mucous cells were constantly negative; mucoid cells were positive in the lacrimal and Harderian gland. The α-subunit of S-100 protein was identified in serous cells but the staining reaction was faint. Subunits of S-100 showed a characteristic distribution along the excretory duct systems of compound glands: S-100 and the β-subunit were present in intercalated duct epithelium, while striated duct epithelium stained for S100-α. Therefore, it is suggested that S100-α is related to resorption and secretion in striated ducts, while S100-β may govern acinar exocytosis and probably regulates proliferation and differentiation of glandular cells. Differing staining intensities for S-100 and its subunits in secretory cells of exocrine glands most probably indicate functional differences with regard to secretory activity and the cell cycle. Accepted: 11 February 1997  相似文献   

16.
In the adult male Saguinus fuscicollis , the scrotal skin and the area above the root of the penis are raised in a sharply defined cushion, which extends cranially into a rectangular suprapubic pad. The circumgenital area of the adult female resembles that of the male, except that the suprapubic pad is relatively and absolutely larger. A complex glandular organ, composed of holocrine and apocrine glands, is located beneath the epidermis of the circumgenital skin. In males, specialized holocrine glands associated with hair follicles predominate. They form a layer, 2-3 mm deep beneath the epidermis. These holocrine glands have a complex alveolar structure and possess numerously branched excretory ducts. Each group of glands empties into a common duct which enters the hair follicle. In males, the apocrine glands are located predominantly at the periphery of the glandular pad and between the scrotal and perineal areas. The excretory ducts of most apocrine glands empty on to the skin surface in close spatial association with hair follicles. However, independent openings were also observed. In females, the specialized holocrine glands resemble those of males but are more frequently interspersed with apocrine glands. The apocrine glands are larger and much more numerous than in males, especially in the region of the labia majora. Gonadectomy of an adult male and female resulted in a reduction in the size of the holocrine glands but had much less effect on the apocrine glands of the scent organ. In addition, the sexual dimorphism in gland histology was retained years after castration.  相似文献   

17.
The genital morphology of female Pholcus phalangioidesis examined to clarify the composition of the uterus externus and the place of sperm storage in this species. Two conspicuous pore plates serve as exits for glandular secretion that gets discharged into the uterus externus. The secretion accumulates close to the pore plates and to some extent in the region of the heavily sclerotized valve that separates the uterus externus from the uterus internus. During copulation, the male transfers spermatozoa and male secretions into the female genital tract where they are embedded and stored in the female secretion. As Ph. phalangioidesdoes not possess any separate sperm storage organs such as receptacula seminis, the glandular secretion serves to store and fix the sperm mass in a specific position within the uterus externus itself.  相似文献   

18.
Cytological variations of the median and the 2 lateral accessory glands of Bruchidius atrolineatus Pic (Coleoptera : Bruchidae) were examined as a function of age and the reproduction of the male. In sexually active virgin males, the secretory epithelium is columnar at emergence, but progressively flattens, and the secretions formed and stored by its cells are expelled by exocytosis into the glandular lumen. After 10 days, the male accessory glands exhibit a stage of repletion, characteristic of glands temporarily storing their secretions in their lumen. In diapausing males, the genital tract is relatively undeveloped and the accessory glands are reduced to tubules, whose lumen, surrounded by an epithelium composed of narrow cells, contains little secreted material. The presence of secretion aggregates in the secretory epithelial cells, the abundance of rough endoplasmic reticulum in them, and the release of a part of their secretions into the glandular lumen, indicate that reproductive diapause in B. atrolineatus is characterized by a decrease in the reproductive function. and not its total arrest.  相似文献   

19.
泽兰实蝇内生殖器官的结构及其发育状况   总被引:1,自引:0,他引:1  
【背景】泽兰实蝇属双翅目实蝇科,是杂草紫茎泽兰的重要专性天敌。该蝇幼虫可蛀入紫茎泽兰内部形成虫瘿,有效控制紫茎泽兰的扩散,许多国家都利用泽兰实蝇控制紫茎泽兰的危害。【方法】通过光学显微法观察了泽兰实蝇成虫内生殖器官的结构及其发育动态。【结果】雌性泽兰实蝇的内生殖系统主要由卵巢、输卵管、受精囊、雌性附腺等器官组成,雄性生殖系统由精巢、输精管、雄性附腺、射精管组成。在成虫发育过程中,雌虫卵巢的长度在第4日龄时达最大值,宽度在1日龄时达最大值,与其他日龄相比有显著差异,雌性附腺及受精囊的大小在各日龄间无显著差异;雄虫精巢长度在4日龄时达到最大,宽度在2日龄时达最大,且不同日龄间也有显著差异,而雄性附腺的大小在不同龄期间无显著差异。【结论与意义】本文阐明了泽兰实蝇的内生殖系统结构与发育状况,这有助于为提高泽兰实蝇人工繁殖效率及生物防治效果奠定理论基础。  相似文献   

20.
The aim of the present work was to study the sexual differences in secretory mechanisms and intracellular calcium ion dynamics in the Harderian gland of the golden hamster. In both sexes the Harderian gland consisted of small and large lobes. In the intact control male glands the secretory portions of both lobes showed wide lumina that contained secretory material and cytoplasmic fragments, suggestive of the occurrence of exocytosis and apocrine secretion. After perfusion with HEPES-buffered Ringer's solution containing 10 microM carbamylcholine (CCh), the glandular cells showed features of enhanced secretion and a rise in intracellular calcium concentration ([Ca2+]i). In the intact control female gland the lumina of most secretory portions in the large lobe contained porphyrin accretions, and exocytosis was the sole secretory mechanism. Stimulation of the large lobe with 10 microM CCh did not raise [Ca2+]i or cause enhanced secretion. The small lobe in females resembled the male gland in secretory functions, and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration in males abolished apocrine secretion; exocytosis became the sole secretory mechanism, and stimulation of the glandular cells with CCh did not cause enhanced secretion or induce a rise in [Ca2+]i. To the contrary, in females, castration restored apocrine secretion and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration did not affect the secretory mechanisms and the effect of CCh on the glandular cells in the small lobes of both male and female glands. The present study points to the possibility that sex hormones may control the functioning or expression of muscarinic receptors in the Harderian gland of the golden hamster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号