首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
During early neural development, the Nkx6.1 homeodomain neural progenitor gene is specifically expressed in the ventral neural tube, and its activity is required for motoneuron generation in the spinal cord. We report that Nkx6.1 also controls oligodendrocyte development in the developing spinal cord, possibly by regulating Olig gene expression in the ventral neuroepithelium. In Nkx6.1 mutant spinal cords, expression of Olig2 in the motoneuron progenitor domain is diminished, and the generation and differentiation of oligodendrocytes are significantly delayed and reduced. The regulation of Olig gene expression by Nkx6.1 is stage dependent, as ectopic expression of Nkx6.1 in embryonic chicken spinal cord results in an induction of Olig2 expression at early stages, but an inhibition at later stages. Moreover, the regulation of Olig gene expression and oligodendrogenesis by Nkx6.1 also appears to be region specific. In the hindbrain, unlike in the spinal cord, Olig1 and Olig2 can be expressed both inside and outside the Nkx6.1-expressing domains and oligodendrogenesis in this region is not dependent on Nkx6.1 activity.  相似文献   

4.
NK-2 family members of homeodomain proteins have been identified as important regulators of growth and development in the ventral forebrain, heart, lung, and thyroid. In addition, Nk2.2 expression has been detected in the pancreas, where it is vital for the final differentiation of beta-cells. In our present paper, we have analyzed the domains necessary for nuclear transport of Nkx2.2. With the help of deletion mutants we identified two separate nuclear localization signals (NLS). Interestingly, both NLSs are situated in the homeodomain. They belong to the monopartite class of NLS; the proximal NLS has the sequence KKRKRR and lies at the very N-terminus of the homeodomain, while the more distal NLS RYKMKRAR is at the homeodomain C-terminus. Each NLS per se is sufficient for nuclear transport of Nkx2.2 into the nucleus, although inefficiently. Both identified NLSs act cooperatively in mediating complete nuclear transport of Nkx2.2.  相似文献   

5.
6.
7.
The Nkx homeobox genes are expressed in a variety of developing tissues and have been implicated in controlling tissue patterning and cell differentiation. Expression of Nkx6.2 (Gtx) was previously observed in the embryonic neural tube, testis, and differentiating oligodendrocytes. To investigate the role of Nkx6.2 in the control of cell specification and differentiation, we generated mice with null mutations in Nkx6.2 using the standard gene targeting approach. Null mutant mice were viable and fertile without apparent histological and immunohistochemical changes in the central nervous systems and testis. The absence of detectable phenotypes suggests a redundant function of Nkx6.2 in mouse development.  相似文献   

8.
9.
10.
11.
Certain cases of familial Alzheimer's disease are caused by mutants of amyloid-beta precursor protein (AbetaPP), including V642I-AbetaPP, K595N/M596L-AbetaPP (NL-AbetaPP), A617G-AbetaPP, and L648P-AbetaPP. By using an unbiased functional screening with transfection and expression of a human brain cDNA library, we searched for genes that protect neuronal cells from toxicity by V642I-AbetaPP. One protective clone was identical to the human GTX, a neuronal homeobox gene. Human Gtx (hGtx) inhibited caspase inhibitor-sensitive neuronal cell death not only by V642I-AbetaPP but also by L648P-, NL-, A617G-AbetaPP, apolipoprotein E4, and Abeta. The region of hGtx responsible for this rescue function was specified to be its homeodomain (Lys148-His207). The rescue function was shared by DLX4, a distal-less family gene with a homeodomain only 38.3% homologous to that of hGtx, suggesting that this function would be generally shared by homeodomains. The neuroprotective function of hGtx was attributable to hGtx-stimulated production and secretion of insulin-like growth factor-I. This study provides molecular clues to understand how neuronal cells developmentally regulate themselves against cell death as well as to develop reagents effective in curative therapeutics of Alzheimer's disease.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号