首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cardiovascular responses of the taurine-depleted rat to vasoactive agents   总被引:1,自引:0,他引:1  
Mozaffari MS  Abebe W 《Amino acids》2000,19(3-4):625-634
Summary. The objective of this study was to assess the effect of taurine-depletion on cardiovascular responses of rat to vasoactive agents. Male Wistar-Kyoto (WKY) rats were given either tap water (control) or 3% β-alanine (taurine-depleted) for three weeks. Thereafter, mean arterial pressure (MAP) and heart rate of the freely moving animal were measured in response to vasoactive agents. Administration of phenylephine (5–40 μg/kg/min; i.v.) resulted in a similar and significant increase in MAP but a reduction in heart rate in both control and taurine-depleted groups. On the other hand, administration of sodium nitroprusside (15–300 μg/kg/min; i.v.) elicited a similar and significant reduction in MAP but increased heart rate in both groups. Lack of a differential response to phenylephrine and sodium nitroprusside between the two groups suggests that baroreflex regulation of cardiovascular function is not adversely affected by taurine-depletion. Administration of angiotensin II (0.1–3.0 μg/kg/min; i.v.) resulted in a dose-related increase in the pressor response and a decrease in heart rate in both groups. However, angiotensin II-induced pressor response was reduced in the taurine-depleted compared to the control rats (p < 0.05); heart rate was similarly reduced in both groups. Acute exposure to β-alanine (3 g/kg; i.v., 30-minutes) did not alter angiotensin II-induced hemodynamic responses. Similarly, incubation of aortic rings with β-alanine (40 mM, 30 minutes) did not affect the contractile responses to angiotensin II. The results suggest that β-alanine, per se, does not affect angiotensin II-induced responses in rat. However, β-alanine-induced taurine depletion is associated with a reduction in the pressor response to angiotensin II without impairing baroreflex function. Received December 17, 1999/Accepted January 12, 2000  相似文献   

2.
Yamamoto H  Inoue K  Li SM  Heide L 《Planta》2000,210(2):312-317
Geranylhydroquinone 3′′-hydroxylase, which is likely to be involved in shikonin and dihydroechinofuran biosynthesis, was identified in cell suspension cultures of Lithospermum erythrorhizon Sieb. et Zucc. (Boraginaceae). The enzyme hydroxylates the isoprenoid side chain of geranylhydroquinone (GHQ), a known precursor of shikonin. Proton/proton correlation spectroscopic and proton/proton long-range correlation spectroscopic studies confirmed that hydroxylation takes place specifically at position 3′′, i.e. at the methyl group involved in the cyclization reaction. The enzyme is membrane-bound and was found in the microsomal fraction. It requires NADPH and molecular oxygen as cofactors, and is inhibited by cytochrome P-450 inhibitors such as cytochrome c and CO. The inhibitory effect of CO is reversed by illumination. These data suggest that the enzyme is a cytochrome P-450-dependent monooxygenase. The optimum pH of GHQ 3′′-hydroxylase is 7.4, and the apparent K m value for GHQ is 1.5 μM. The reaction velocity obtained with 3-geranyl-4-hydroxybenzoic acid was more than 100 times lower than that obtained with geranylhydroquinone. Received: 20 March 1999 / Accepted: 20 July 1999  相似文献   

3.
Summary. We have examined the effects of Nω-nitro-L-arginine-methylester-hydrochloride [L-NAME; inhibitor of nitric oxide synthase], S-nitroso-N-acetyl-penicillamine [SNAP; nitric oxide donor], α-difluoro-methyl-ornithine [DFMO; inhibitor of ornithine decarboxylase] arginine or ornithine as well as the combination of arginine or ornithine with L-NAME, SNAP or DFMO on intracellular free amino- and α-keto acid profiles and the immune function markers superoxide anion and hydrogen peroxide generation as well as released myeloperoxidase activity in neutrophils (PMN). Although the underlying mechanisms still remain unclear, we believe from our results that nitric oxide as well as polyamine-dependent pathways are involved in the signal transmission of free radical molecule, beneficial nutritional therapy or maleficient pharmacological stress-induced alterations in PMN nutrient composition. Relevant changes in intragranulocyte free amino- and α-keto acid homeostasis and metabolism, especially, may be one of the determinants in PMN nutrition that positively or negatively influences and modulate neutrophil host defence capability and immunocompetence.  相似文献   

4.
Redgwell RJ  Hansen CE 《Planta》2000,210(5):823-830
 Cell wall material (CWM) was prepared from sun-dried cocoa (Theobroma cacao L.) bean cotyledons before and after fermentation. The monosaccharide composition of the CWM was identical for unfermented and fermented beans. Polysaccharides of the CWM were solubilised by sequential extraction with 0.05 M trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetic acid (CDTA), 0.05 M Na2CO3, and 1 M, 4 M and 8 M KOH. The non-cellulosic sugar composition for each fraction was similar for unfermented and fermented samples, indicating that fermentation caused no significant modification of the structural features of individual cell wall polysaccharides. Pectic polysaccharides accounted for 60% of the cell wall polysaccharides but only small amounts could be solubilised in solutions of CDTA, Na2CO3, and 1 M and 4 M KOH. The bulk of the pectic polysaccharides were solubilised in 8 M KOH and were characterised by a rhamnogalacturonan backbone heavily substituted with side-chains of 5-linked arabinose and 4-linked galactose. Linkage analysis indicated the presence of additional acidic polysaccharides, including a xylogalacturonan and a glucuronoxylan. Cellulose, xyloglucan and a galactoglucomannan accounted for 28%, 8% and 3% of the cell wall polysaccharides, respectively. It is concluded that the types and structural features of cell wall polysaccharides in cocoa beans resemble those found in the parenchymatous tissue of many fruits and vegetables rather than those reported for many seed storage polysaccharides. Received: 29 May 1999 / Accepted: 19 October 1999  相似文献   

5.
Interaction between the actions of taurine and angiotensin II   总被引:1,自引:0,他引:1  
Summary. The amino acid, taurine, is an important nutrient found in very high concentration in excitable tissue. Cellular depletion of taurine has been linked to developmental defects, retinal damage, immundeficiency, impaired cellular growth and the development of a cardiomyopathy. These findings have encouraged the use of taurine in infant formula, nutritional supplements and energy promoting drinks. Nonetheless, the use of taurine as a drug to treat specific diseases has been limited. One disease that responds favorably to taurine therapy is congestive heart failure. In this review, we discuss three mechanisms that might underlie the beneficial effect of taurine in heart failure. First, taurine promotes natriuresis and diuresis, presumably through its osmoregulatory activity in the kidney, its modulation of atrial natriuretic factor secretion and its putative regulation of vasopressin release. However, it remains to be determined whether taurine treatment promotes salt and water excretion in humans with heart failure. Second, taurine mediates a modest positive inotropic effect by regulating [Na+]i and Na+/Ca2+ exchanger flux. Although this effect of taurine has not been examined in human tissue, it is significant that it bypasses the major calcium transport defects found in the failing human heart. Third, taurine attenuates the actions of angiotensin II on Ca2+ transport, protein synthesis and angiotensin II signaling. Through this mechanism taurine would be expected to minimize many of the adverse actions of angiotensin II, including the induction of cardiac hypertrophy, volume overload and myocardial remodeling. Since the ACE inhibitors are the mainstay in the treatment of congestive heart failure, this action of taurine is probably very important. Received November 10, 1998, Accepted May 19, 1999  相似文献   

6.
Saransaari P  Oja SS 《Amino acids》2008,34(3):429-436
Summary. Nitric oxide (NO) has been shown to regulate neurotransmitter release in the brain; both inhibitory and excitatory effects have been seen. Taurine is essential for the development and survival of neural cells and protects them under cell-damaging conditions. In the brain stem, it regulates many vital functions such as cardiovascular control and arterial blood pressure. Now we studied the effects of the NO-generating compounds hydroxylamine (HA), S-nitroso-N-acetylpenicillamine (SNAP) and sodium nitroprusside (SNP) on the release of preloaded [3H]taurine under normal and ischemic conditions in slices prepared from the mouse brain stem from developing (7-day-old) to young adult (3-month-old) mice. In general, the effects of NO on the release were somewhat complex and difficult to explain, as expected from the multifunctional role of NO in the central nervous system. The basal initial release under normal conditions was enhanced by the NO donors 5 mM HA and 1.0 mM SNAP at both ages, but SNP was inhibitory in developing mice. The release was markedly enhanced by K+ stimulation. The effects of HA, SNAP and SNP on the basal release were not antagonized by the NO synthase inhibitor NG-nitro-L-arginine (L-NNA, 1.0 mM), demonstrating that mechanisms other than NO synthesis are involved. Taurine release in developing mice in the presence of SNP was reduced by the inhibitor of soluble guanylate cyclase, 1H-(1,2,3)oxadiazolo(4,3-a)quinoxalin-1-one (ODQ), indicating the possible involvement of cGMP. In normoxia, N-methyl-D-aspartate (NMDA, 1.0 mM) enhanced the SNAP- and HA-evoked taurine release in developing mice and the HA-evoked release in adults. In ischemia, both K+ stimulation and NMDA potentiated the NO-induced release, particularly in the immature mice, probably without the involvement of the NO synthase or cGMP. The substantial release of taurine in the developing brain stem evoked by NO donors together with NMDA might represent signs of important mechanisms against excitotoxicity which protect the brain stem under cell-damaging conditions. Authors’ address: Prof. Pirjo Saransaari, Brain Research Center, Medical School University of Tampere, Tampere, FIN-3 3014, Finland  相似文献   

7.
Keck ME 《Amino acids》2006,31(3):241-250
Summary. Affective disorders tend to be chronic and life-threatening diseases: suicide is estimated to be the cause of death in 10–15% of individuals with major depressive disorders. Major depression is one of the most prevalent and costly brain diseases with up to 20% of the worldwide population suffering from moderate to severe forms of the disease. Only 50% of individuals with depression show full remission in response to currently available antidepressant drug therapies which are based on serendipitous discoveries made in the 1950s. Previously underestimated, other severe depression-associated deleterious health-related effects have increasingly been recognized. Epidemiological studies have provided substantial evidence that patients with depression have a 2–4-fold increased risk both of developing cardiovascular disease and of mortality after experiencing a myocardial infarction. The majority of patients suffering from affective disorders have measurable shifts in their stress hormone regulation as reflected by elevated secretion of central and peripheral stress hormones or by altered hormonal responses to neuroendocrine challenge tests. In recent years, these alterations have increasingly been translated into testable hypotheses addressing the pathogenesis of illness. Refined molecular technologies and the creation of genetically engineered mice have allowed to specifically target individual genes involved in regulation of corticotropin releasing factor (CRF) and vasopressin (AVP) system elements. The cumulative evidence makes a strong case implicating dysfunction of these systems in the etiology and pathogenesis of depression and pathological anxiety. Translation of these advances into novel therapeutic strategies has already been started.  相似文献   

8.
Summary. Glutamate increases the extracellular adenosine levels, an important endogenous neuromodulator. The neurotoxicity induced by glutamate increases the ecto-5′-nucleotidase activity in neurons, which produces adenosine from AMP. L- and D-aspartate (Asp) mimic most of the actions of glutamate in the N-methyl-D-aspartate (NMDA) receptors. In the present study, both amino acids stimulated the ecto-5′-nucleotidase activity in cerebellar granule cells. MK-801 and AP-5 prevented the L- and D-Asp-evoked activation of ecto-5′-nucleotidase. Both NMDA receptor antagonists prevented completely the damage induced by L-Asp, but partially the D-Asp-induced damage. The antagonist of adenosine A2A receptors (ZM 241385) prevented totally the L- Asp-induced cellular death, but partially the neurotoxicity induced by D-Asp and the antagonist of adenosine A1 receptors (CPT) had no effect. The results indicated a different involvement of NMDA receptors on the L- or D-Asp-evoked activation of ecto-5′-nucleotidase and on cellular damage. The adenosine formed from ecto-5′-nucleotidase stimulation preferentially acted on adenosine A2A receptor which is probably co-operating with the neurotoxicity induced by amino acids.  相似文献   

9.
Leipner J  Stamp P  Fracheboud Y 《Planta》2000,210(6):964-969
Infiltrating detached maize (Zeamays L.) leaves with L-galactono-1,4-lactone (L-GAL) resulted in a 4-fold increase in the content of leaf ascorbate. Upon exposure to high irradiance (1000 μmol photons m−2 s−1) at 5 °C, L-GAL leaves de-epoxidized the xanthophyll-cycle pigments faster than the control leaves; the maximal ratio of de-epoxidized xanthophyll-cycle pigments to the whole xanthophyll-cycle pool was the same in both leaf types. The elevated ascorbate content, together with the faster violaxanthin de-epoxidation, did not affect the degree of photoinhibition and the kinetics of the recovery from photoinhibition, assayed by monitoring the maximum quantum efficiency of photosystem II primary photochemistry (Fv/Fm). Under the experimental conditions, the thermal energy dissipation seems to be zeaxanthin-independent since, in contrast to the de-epoxidation, the decrease in the efficiency of excitation-energy capture by open photosystem II reaction centers (Fv′/Fm′) during the high-irradiance treatment at low temperature showed the same kinetic in both leaf types. This was also observed for the recovery of the maximal fluorescence after stress. Furthermore, the elevated ascorbate content did not diminish the degradation of pigments or α-tocopherol when leaves were exposed for up to 24 h to high irradiance at low temperature. Moreover, a higher content of ascorbate appeared to increase the requirement for reduced glutathione. Received: 20 May 1999 / Accepted: 29 October 1999  相似文献   

10.
Summary. Recent literature suggests that both caffeine and taurine can induce diuresis and natriuresis in rat and man. Although they act via different cellular mechanisms, their diuretic actions might be additive. This is of considerable interest, as several commercially available energy drinks contain both substances. In this study we examined the possible diuretic effects of caffeine and taurine in a cross-over-design in which 12 healthy male volunteers received each of 4 different test drinks (750 ml of energy drink containing 240 mg caffeine and 3 g taurine, the three other test drinks either lacked caffeine, taurine or both) after restraining from fluids for 12 h. Mixed model analyses demonstrated that urinary output and natriuresis were significantly increased by caffeine (mean differences 243 ml and 27 mmol; both p < 0.001) and that there were no such effects of taurine (mean differences 59 ml and −4 mmol). Additionally, urinary osmolarity at baseline was significantly related to the urinary output (p < 0.001). Urine osmolarity values at baseline and in the 6 h urine collection did not differ significantly between treatments. Taken together, our study demonstrates that diuretic and natriuretic effects of the tested energy drink were largely mediated by caffeine. Taurine played no significant role in the fluid balance in moderately dehydrated healthy young consumers. Consequently, the diuretic potential of energy drinks will not differ significantly from other caffeine containing beverages.  相似文献   

11.
Summary. Ischemia-reperfusion (I/R) injury is one of the most common causes of renal dysfunction. Taurine is an endogenous antioxidant and a membrane-stabilizing, intracellular, free beta-amino acid. It has been demonstrated to have protective effects against I/R injuries to tissues other than kidney. The aim of this study was to determine whether taurine has a beneficial role in renal I/R injury. Forty Wistar-Albino rats were allocated into four groups as follows: sham, taurine, I/R, and I/R + taurine. Taurine 7.5 mg/kg was given intra-peritoneally to rats in the groups taurine and I/R + taurine. Renal I/R was achieved by occluding the renal arteries bilaterally for 40 min, followed by 6 h of reperfusion. Immediately thereafter, blood was drawn and tissue samples were harvested to measure 1) serum levels of BUN and creatinine; 2) serum and/or tissue levels of malondialdehyde (MDA), glutathione (GSH), glucose 6-phosphate dehydrogenase (G-6PD), 6-phosphogluconate dehydrogenase (6-PGD) and glutathione reductase (GSH-red); 3) renal morphology; and 4) immunohistochemical staining for P-selectin. Taurine administration reduced I/R-induced increases in serum BUN and creatinine, and serum and tissue MDA levels (p < 0.05). Additionally, taurine lessened the reductions in serum and tissue glutathione levels secondary to I/R (p < 0.05). Taurine also attenuated histopathologic evidence of renal injury, and reduced I/R-induced P-selectin immunoreactivity (p < 0.05). Overall, then, taurine administration appears to reduce the injurious effects of I/R on kidney.  相似文献   

12.
 Expression in transgenic tobacco (Nicotiana tabacum L.) of a pea (Pisum sativum L.) GOR2 cDNA, encoding an isoform of glutathione reductase (GOR2), resulted in a 3- to 7-fold elevation of total foliar glutathione reductase (GR) activity. The enzyme encoded by GOR2 was confirmed to be extraplastidial in organelle fractionation studies and was considered most likely to be localised in the cytosol. A partial purification of GOR2 was achieved but a standard affinity chromatography step, using adenosine-2′,5′-diphosphate-Sepharose and often employed in the purification of GR from diverse sources, was unsuccessful with this isoform. Preparative isoelectric focussing was employed as part of the purification procedure of GOR2 and a complete separation from plastidial/mitochondrial glutathione reductase (GOR1) was achieved. The isoform GOR2 was shown to have a slower migration on non-denaturing polyacrylamide gels compared with GOR1 and properties typical of GR enzymes from plant sources. Received: 9 November 1999 / Accepted: 28 February 2000  相似文献   

13.
Summary. Resveratrol (3,4′,5-trihydroxy-trans-stilbene) is a naturally occurring phytoalexin and polyphenol existing in grapes and various other plants, and one of the best known ‘nutriceuticals’. It shows a multiplicity of beneficial biological effects, particularly, by attenuating atherogenic, inflammatory, and carcinogenic processes. However, despite convincing evidence from experimental and clinical studies, data concerning the role of resveratrol and other members of the large polyphenols family for human health is still a matter of debate. One reason for this is the lack of suitable sensitive and specific methods, which would allow direct assessment of biodistribution, biokinetics, and the metabolic fate of these compounds in vivo. The unique features of positron emission tomography (PET) as a non-invasive in vivo imaging methodology in combination with suitable PET radiotracers have great promise to assess quantitative information on physiological effects of polyphenols in vivo. Herein we describe the radiosynthesis of an 18F-labelled resveratrol derivative, 3,5-dihydroxy-4′-[18F]fluoro-trans-stilbene ([18F]-1), using the Horner-Wadsworth-Emmons reaction as a novel radiolabelling technique in PET radiochemistry for subsequent functional imaging of polyphenol metabolism in vivo. In a typical “three-step/one-pot” reaction, 18F-labelled resveratrol derivative [18F]-1 could be synthesized within 120–130 min including HPLC separation at a specific radioactivity of about 90 GBq/μmol. The radiochemical yield was about 9% (decay-corrected) related to [18F]fluoride and the radiochemical purity exceeded 97%. First radiopharmacological evaluation included measurement of biodistribution ex vivo and positron emission tomography (PET) studies in vivo after intravenous application of [18F]-1 in male Wistar rats using a dedicated small animal PET camera with very high spatial resolution. Concordantly with data on bioavailability and metabolism of native resveratrol from the literature, these investigations revealed an extensive uptake and metabolism in the liver and kidney, respectively, of [18F]-1. This study represents the first investigation of polyphenols in vivo by means of PET.  相似文献   

14.
Summary. Cysteine S-conjugate β-lyases are pyridoxal 5′-phosphate-containing enzymes that catalyze β-elimination reactions with cysteine S-conjugates that possess an electron-withdrawing group attached at the sulfur. The end products of the β-lyase reaction are pyruvate, ammonium and a sulfur-containing fragment. If the sulfur-containing fragment is reactive, the parent cysteine S-conjugate may be toxic, particularly to kidney mitochondria. Halogenated alkenes are examples of electrophiles that are bioactivated (toxified) by conversion to cysteine S-conjugates. These conjugates are converted by cysteine S-conjugate β-lyases to thioacylating fragments. Several cysteine S-conjugates found in allium foods (garlic and onion) are β-lyase substrates. This finding may account in part for the chemopreventive activity of allium products. This review (1) identifies enzymes that catalyze cysteine S-conjugate β-lyase reactions, (2) suggests that toxicant channeling may contribute to halogenated cysteine S-conjugate-induced toxicity to mitochondria, and (3) proposes mechanisms that may contribute to the antiproliferative effects of sulfur-containing fragments eliminated from allium-derived cysteine S-conjugates.  相似文献   

15.
Huertas IE  Espie GS  Colman B  Lubian LM 《Planta》2000,211(1):43-49
 Inorganic carbon (Ci) uptake and efflux has been investigated in the marine microalga Nannochloropsis gaditana Lubian by monitoring CO2 fluxes in cell suspensions using mass spectrometry. Addition of H13CO3 to cell suspensions in the dark caused a transient increase in the CO2 concentration in the medium far in excess of the equilibrium CO2 concentration. The magnitude of this release was dependent on the length of time the cells had been kept in the dark. Once equilibrium between the Ci species had been achieved, a CO2 efflux was observed after saturating light intensity was applied to the cells. External carbonic anhydrase (CA) was not detected nor does this species demonstrate a capacity to take up CO2 by active transport. Photosynthetic O2 evolution and the release CO2 in the dark depend on HCO3 uptake since both were inhibited by the anion exchange inhibitor, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS). The bicarbonate uptake mechanism requires light but can also continue for short periods in the dark. Ethoxyzolamide, a CA inhibitor, markedly inhibited CO2 efflux in the dark, indicating that CO2 efflux was dependent upon the intracellular dehydration of HCO3 . These results indicate that Nannochloropsis possesses a bicarbonate uptake system which causes the accumulation of high intracellular Ci levels and an internal CA which maintains the equilibrium between CO2 and HCO3 and thus causes a subsequent release of CO2 to the external medium. Received: 20 September 1999 / Accepted: 25 October 1999  相似文献   

16.
Nuclear/cytoplasmic localization of Akt activity in the cell cycle   总被引:1,自引:0,他引:1  
Summary. The serine/threonine protein kinase Akt (also known as PKB) is a proto-oncogene and one of the most frequently hyperactivated kinases in human cancer. Its activation downstream of growth-factor-stimulated phosphatidylinositide-3′-OH kinase activity plays a role in the control of cell cycle, cell growth, apoptosis and cell energy metabolism. Akt phosphorylates some thousand downstream substrates, including typical cytoplasmic as well as nuclear proteins. Accordingly, it is not surprising that Akt activity can be found in both, the cytoplasm and the nucleus. Here we report the cell cycle regulation of nuclear and cytoplasmic Akt activity in mammalian cells. These data provide new insights into the regulation of Akt activity and have implications for future studies on the regulation of the wide variety of different nuclear and cytoplasmic Akt substrates.  相似文献   

17.
Summary. We examined the effects of DON [glutamine-analogue and inhibitor of glutamine-requiring enzymes], alanyl-glutamine (regarding its role in neutrophil immunonutrition) and alanyl-glutamine combined with L-NAME, SNAP, DON, β-alanine and DFMO on neutrophil amino and α-keto acid concentrations or important neutrophil immune functions in order to establish whether an inhibitor of •NO-synthase [L-NAME], an •NO donor [SNAP], an analogue of taurine and a taurine transport antagonist [β-alanine], an inhibitor of ornithine-decarboxylase [DFMO] as well as DON could influence any of the alanyl-glutamine-induced effects. In summary, irrespective of which pharmacological, metabolism-inhibiting or receptor-mediated mechanisms were involved, our results showed that impairment of granulocytic glutamine uptake, modulation of intracellular glutamine metabolisation and/or de novo synthesis as well as a blockade of important glutamine-dependent metabolic processes may led to significant modifications of physiological and immunological functions of the affected cells.  相似文献   

18.
Summary. Phosphate transport in bacteria occurs via a phosphate specific transporter system (PSTS) that belongs to the ABC family of transporters, a multisubunit system, containing an alkaline phosphatase. DING proteins were characterized due to the N-terminal amino acid sequence DINGG GATL, which is highly conserved in animal and plant isolates, but more variable in microbes. Most prokaryotic homologues of the DING proteins often have some structural homology to phosphatases or periplasmic phosphate-binding proteins. In E. coli, the product of the inducible gene DinG, possesses ATP hydrolyzing helicase enzymic activity. An alkaline phosphorolytic enzyme of the PSTS system was purified to homogeneity from the thermophilic bacterium Thermus thermophilus. N-terminal sequence analysis of this protein revealed the same high degree of similarity to DING proteins especially to the human synovial stimulatory protein P205, the steroidogenesis-inducing protein and to the phosphate ABC transporter, periplasmic phosphate-binding protein, putative (P. fluorescens Pf-5). The enzyme had a molecular mass of 40 kDa on SDS/PAGE, exhibiting optimal phosphatase activity at pH 12.3 and 70 °C. The enzyme possessed characteristics of a DING protein, such as ATPase, ds endonuclease and 3′ phosphodiesterase (3′-exonuclease) activities and binding to linear dsDNA, displaying helicase activity on supercoiled DNA. Purification and biochemical characterization of a T. thermophilus DING protein was achieved. The biochemical properties, N-terminal sequence similarities of this protein implied that the enzyme belongs to the PSTS family and might be involved in the DNA repair mechanism of this microorganism. Authors’ address: Assist. Prof. A. A. Pantazaki, Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece  相似文献   

19.
Weger HG  Espie GS 《Planta》2000,210(5):775-781
Iron limitation led to a large increase in extracellular ferricyanide (Fe[III]) reductase activity in cells of the green alga Chlamydomonas reinhardtii Dangeard. Mass-spectrometric measurement of gas exchange indicated that ferricyanide reduction in the dark resulted in a stimulation of respiratory CO2 production without affecting the rate of respiratory O2 consumption, consistent with the previously postulated activation of the oxidative pentose phosphate pathway in support of Fe(III) reduction by iron-limited Chlamydomonas cells (X. Xue et al., 1998, J. Phycol. 34: 939–944). At saturating irradiance, the rate of ferricyanide reduction was stimulated almost 3-fold, and this stimulation was inhibited by 3-(3′,4′-dichlorophenyl)-1,1-dimethylurea. Ferricyanide reduction during photosynthesis resulted in approximately a 50% inhibition of photosynthetic CO2 fixation at saturating irradiance, and almost 100% inhibition of CO2 fixation at sub-saturating irradiance. Photosynthesis by iron-sufficient cells was not affected by ferricyanide addition. Addition of 250 μM ferricyanide to iron-limited cells in which photosynthesis was inhibited (either by the presence of glycolaldehyde, or by maintaining the cells at the CO2 compensation point) resulted in a stimulation in the rate of gross photosynthetic O2 evolution. Chlorophyll a fluorescence measurements indicated a large increase in non-photochemical quenching during ferricyanide reduction in the light; the increase in nonphotochemical quenching was abolished by the addition of nigericin. These results suggest that reduction of extracellular ferricyanide (mediated at the plasma membrane) interacts with both photosynthesis and respiration, and that both of these processes contribute NADPH in the light. Received: 15 September 1999 / Accepted: 14 October 1999  相似文献   

20.
Suzuki H  Yamada C  Kato K 《Amino acids》2007,32(3):333-340
Summary. Some amino acids and peptides, which have low solubility in water, become much more soluble following γ-glutamylation. Compounds become more stable in the blood stream with γ-glutamylation. Several γ-glutamyl compounds are known to have favorable physiological effects on mammals. γ-Glutamylation can improve taste and can stabilize glutamine in aqueous solution. Because of such favorable features, γ-glutamyl compounds are very attractive. However, only a small number of γ-glutamyl amino acids have been studied although many other γ-glutamyl compounds may have characteristics that will benefit humans. This is mainly because γ-glutamyl compounds have not been readily available. An efficient and simple method of producing various γ-glutamyl compounds, especially γ-glutamyl amino acids, using bacterial γ-glutamyltranspeptidase has been developed. With this method, modifications of reactive groups of the substrate and energy source such as ATP are not required, and a wide-range of γ-glutamyl compounds can be synthesized. Moreover, bacterial γ-glutamyltranspeptidase, a catalyst for this method, is readily available from the strain over-producing this enzyme. The superiority of producing γ-glutamyl compounds with bacterial γ-glutamyltranspeptidase over other methods of production is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号