首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nucleotide sequences of the cysB region of Salmonella typhimurium and Escherichia coli have been determined and compared. A total of 1759 nucleotides were sequenced in S. typhimurium and 1840 in E. coli. Both contain a 972-nucleotide open reading frame identified as the coding region for the cysB regulatory protein on the basis of sequence homology and by comparison of the deduced amino acid sequences with known physicochemical properties of this protein. The DNA sequence identity for the cysB coding region in the two species is 80.5%. The deduced amino acid sequences are 95% identical. The predicted cysB polypeptide molecular weights are 36,013 for S. typhimurium and 36,150 for E. coli. For both proteins a helix-turn-helix region similar to that found in other DNA-binding proteins is predicted from the deduced amino acid sequence. Sequences upstream to cysB contain open reading frames which represent the carboxyl-terminal end of the topA gene product, DNA topoisomerase I. A pattern of highly conserved nucleotide sequences in the 151 nucleotides immediately preceding the cysB initiator codon in both species suggests that this region may contain multiple signals for the regulation of cysB expression.  相似文献   

2.
3.
Triazole and azaserine resistant mutants of E. coli K12 affecting cysK gene coding for O-acetylserine sulphydrylase were isolated. The cysK gene in E. coli is located in the same region of chromosome as the cycK gene in Salmonella typhimurium. All azaserine and some triazole resistant mutants require cysteine for growth at a normal rate. The cysK mutants have reduced sulphate uptake. Stability and transfer by conjugation of triazole resistant phenotype were checked. Differences in sulphate metabolism between closely related organisms E. coli and S. typhimurium are discussed.  相似文献   

4.
5.
In Escherichia coli, efficient mutagenesis by UV requires the umuDC operon. A deficiency in umuDC activity is believed to be responsible for the relatively weak UV mutability of Salmonella typhimurium LT2 compared with that of E. coli. To begin evaluating this hypothesis and the evolutionary relationships among umuDC-related sequences, we cloned and sequenced the S. typhimurium umuDC operon. S. typhimurium umuDC restored mutability to umuD and umuC mutants of E. coli. DNA sequence analysis of 2,497 base pairs (bp) identified two nonoverlapping open reading frames spanning 1,691 bp that were were 67 and 72% identical at the nucleotide sequence level to the umuD and umuC sequences, respectively, from E. coli. The sequences encoded proteins whose deduced primary structures were 73 and 84% identical to the E. coli umuD and umuC gene products, respectively. The two bacterial umuDC sequences were more similar to each other than to mucAB, a plasmid-borne umuDC homolog. The umuD product retained the Cys-24--Gly-25, Ser-60, and Lys-97 amino acid residues believed to be critical for RecA-mediated proteolytic activation of UmuD. The presence of a LexA box 17 bp upstream from the UmuD initiation codon suggests that this operon is a member of an SOS regulon. Mu d-P22 inserts were used to locate the S. typhimurium umuDC operon to a region between 35.9 and 40 min on the S. typhimurium chromosome. In E. coli, umuDC is located at 26 min. The umuDC locus in S. typhimurium thus appears to be near one end of a chromosomal inversion that distinguishes gene order in the 25- to 35-min regions of the E. coli and S. typhimurium chromosomes. It is likely, therefore, that the umuDC operon was present in a common ancestor before S. typhimurium and E. coli diverged approximately 150 million years ago. These results provide new information for investigating the structure, function, and evolutionary origins of umuDC and for exploring the genetic basis for the mutability differences between S. typhimurium and E. coli.  相似文献   

6.
7.
8.
H J Pel  M Rep    L A Grivell 《Nucleic acids research》1992,20(17):4423-4428
We have recently reported the cloning and sequencing of the gene for the mitochondrial release factor mRF-1. mRF-1 displays high sequence similarity to the bacterial release factors RF-1 and RF-2. A database search for proteins resembling these three factors revealed high similarities to two amino acid sequences deduced from unassigned genomic reading frames in Escherichia coli and Bacillus subtilis. The amino acid sequence derived from the Bacillus reading frame is 47% identical to E.coli and Salmonella typhimurium RF-2, strongly suggesting that it represents B.subtilis RF-2. Our comparison suggests that the expression of the B.subtilis gene is, like that of the E.coli and S. typhimurium RF-2 genes, autoregulated by a stop codon dependent +1 frameshift. A comparison of prokaryotic and mitochondrial release factor sequences, including the putative B.subtilis RF-2, leads us to propose a five-domain model for release factor structure. Possible functions of the various domains are discussed.  相似文献   

9.
10.
11.
The umuDC operon of Escherichia coli encodes functions required for mutagenesis induced by radiation and a wide variety of chemicals. The closely related organism Salmonella typhimurium is markedly less mutable than E. coli, but a umu homolog has recently been identified and cloned from the LT2 subline. In this study the nucleotide sequence and structure of the S. typhimurium LT2 umu operon have been determined and its gene products have been identified so that the molecular basis of umu activity might be understood more fully. S. typhimurium LT2 umu consists of a smaller 417-base-pair (bp) umuD gene ending 2 bp upstream of a larger 1,266-bp umuC gene. The only apparent structural difference between the two operons is the lack of gene overlap. An SOS box identical to that found in E. coli is present in the promoter region upstream of umuD. The calculated molecular masses of the umuD and umuC gene products were 15.3 and 47.8 kilodaltons, respectively, which agree with figures determined by transpositional disruption and maxicell analysis. The S. typhimurium and E. coli umuD sequences were 68% homologous and encoded products with 71% amino acid identity; the umuC sequences were 71% homologous and encoded products with 83% amino acid identity. Furthermore, the potential UmuD cleavage site and associated catalytic sites could be identified. Thus the very different mutagenic responses of S. typhimurium LT2 and E. coli cannot be accounted for by gross differences in operon structure or gene products. Rather, the ability of the cloned S. typhimurium umuD gene to give stronger complementation of E. coli umuD77 mutants in the absence of a functional umuC gene suggests that Salmonella UmuC protein normally constrains UmuD protein activity.  相似文献   

12.
In the gap between two closely linked flagellar gene clusters on the Escherichia coli and Salmonella typhimurium chromosomes (at about 42 to 43 min on the E. coli map), we found an open reading frame whose sequence suggested that it encoded an alpha-amylase; the deduced amino acid sequences in the two species were 87% identical. The strongest similarities to other alpha-amylases were to the excreted liquefying alpha-amylases of bacilli, with > 40% amino acid identity; the N-terminal sequence of the mature bacillar protein (after signal peptide cleavage) aligned with the N-terminal sequence of the E. coli or S. typhimurium protein (without assuming signal peptide cleavage). Minicell experiments identified the product of the E. coli gene as a 56-kDa protein, in agreement with the size predicted from the sequence. The protein was retained by spheroplasts rather than being released with the periplasmic fraction; cells transformed with plasmids containing the gene did not digest extracellular starch unless they were lysed; and the protein, when overproduced, was found in the soluble fraction. We conclude that the protein is cytoplasmic, as predicted by its sequence. The purified protein rapidly digested amylose, starch, amylopectin, and maltodextrins of size G6 or larger; it also digested glycogen, but much more slowly. It was specific for the alpha-anomeric linkage, being unable to digest cellulose. The principal products of starch digestion included maltotriose and maltotetraose as well as maltose, verifying that the protein was an alpha-amylase rather than a beta-amylase. The newly discovered gene has been named amyA. The natural physiological role of the AmyA protein is not yet evident.  相似文献   

13.
Ethanolamine ammonia-lyase is a bacterial enzyme that catalyzes the adenosylcobalamin-dependent conversion of certain vicinal amino alcohols to oxo compounds and ammonia. Studies of ethanolamine ammonia-lyase from Clostridium sp. and Escherichia coli have suggested that the enzyme is a heterodimer composed of subunits of Mr approximately 55,000 and 35,000. Using a partial Sau3A Salmonella typhimurium library ligated into pBR328 and selecting by complementation of a mutant lacking ethanolamine ammonia-lyase activity, we have cloned the genes for the 2 subunits of the S. typhimurium enzyme. The genes were localized to a 6.5-kilobase fragment of S. typhimurium DNA, from which they could be expressed in E. coli under noninducing conditions. Sequencing of a 2526-base pair portion of this 6.5-kilobase DNA fragment revealed two open reading frames separated by 21 base pairs. The open reading frames encoded proteins of 452 and 286 residues whose derived N-terminal sequences were identical to the N-terminal sequences of the 2 subunits of the E. coli ethanolamine ammonia-lyase, except that residue 16 of the large subunit was asparagine in the E. coli sequence and aspartic acid in the S. typhimurium sequence.  相似文献   

14.
The mutS gene product of Escherichia coli and Salmonella typhimurium is one of at least four proteins required for methyl-directed mismatch repair in these organisms. A functionally similar repair system in Streptococcus pneumoniae requires the hex genes. We have sequenced the S. typhimurium mutS gene, showing that it encodes a 96-kilodalton protein. Amino-terminal amino acid sequencing of purified S. typhimurium MutS protein confirmed the initial portion of the deduced amino acid sequence. The S. typhimurium MutS protein is homologous to the S. pneumoniae HexA protein, suggesting that they arose from a common ancestor before the gram-negative and gram-positive bacteria diverged. Overall, approximately 36% of the amino acids of the two proteins are identical when the sequences are optimally aligned, including regions of stronger homology which are of particular interest. One such region is close to the amino terminus. Another, located closer to the carboxy terminus, includes homology to a consensus sequence thought to be diagnostic of nucleotide-binding sites. A third one, adjacent to the second, is homologous to the consensus sequence for the helix-turn-helix motif found in many DNA-binding proteins. We found that the S. typhimurium MutS protein can substitute for the E. coli MutS protein in vitro as it can in vivo, but we have not yet been able to demonstrate a similar in vitro complementation by the S. pneumoniae HexA protein.  相似文献   

15.
H Y Qi  K Sankaran  K Gan    H C Wu 《Journal of bacteriology》1995,177(23):6820-6824
The structure-function relationship of bacterial prolipoprotein diacylgyceryl transferase (LGT) Has been investigated by a comparison of the primary structures of this enzyme in phylogenetically distant bacterial species, analysis of the sequences of mutant enzymes, and specific chemical modification of the Escherichia coli enzyme. A clone containing the gene for LGT, lgt, of the gram-positive species Staphylococcus aureus was isolated by complementation of the temperature-sensitive lgt mutant of E. coli (strain SK634) defective in LGT activity. In vivo and in vitro assays for prolipoprotein diacylglyceryl modification activity indicated that the complementing clone restored the prolipoprotein modification activity in the mutant strain. Sequence determination of the insert DNA revealed an open reading frame of 837 bp encoding a protein of 279 amino acids with a calculated molecular mass of 31.6 kDa. S. aureus LGT showed 24% identity and 47% similarity with E. coli, Salmonella typhimurium, and Haemophilus influenzae LGT.S. aureus LGT, while 12 amino acids shorter than the E. coli enzyme, had a hydropathic profile and a predicted pI (10.4) similar to those of the E. coli enzyme. Multiple sequence alignment among E. coli, S. typhimurium, H. influenzae, and S. aureus LGT proteins revealed regions of highly conserved amino acid sequences throughout the molecule. Three independent lgt mutant alleles from E. coli SK634, SK635, and SK636 and one lgt allele from S. typhimurium SE5221, all defective in LGT activity at the nonpermissive temperature, were cloned by PCR and sequenced. The mutant alleles were found to contain a single base alteration resulting in the substitution of a conserved amino acid. The longest set of identical amino acids without any gap was H-103-GGLIG-108 in LGT from these four microorganisms. In E. coli lgt mutant SK634, Gly-104 in this region was mutated to Ser, and the mutant organism was temperature sensitive in growth and exhibited low LGT activity in vitro. Diethylpyrocarbonate inactivated the E. coli LGT with a second-order rate constant of 18.6 M-1S-1, and the inactivation of LGT activity was reversed by hydroxylamine at pH 7. The inactivation kinetics were consistent with the modification of a single residue, His or Tyr, essential for LGT activity.  相似文献   

16.
17.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

18.
The nucleotide sequence of the Escherichia coli envM gene was determined. It codes for a protein of 262 amino acids. The sequences of the E. coli and Salmonella typhimurium EnvM proteins are 98% identical. Gene envM is preceded in E. coli by a 43-nucleotide-long structural element, termed 'box c', which occurs in several E. coli operons between structural genes. This sequence element is totally absent in S. typhimurium. Gene envM was mapped at coordinate position 1366.8 kb of the physical map of Kohara et al. (Cell, 1987, 50, 495-508). As in S. typhimurium, a Gly for Ser exchange at position 93 of the amino acid sequence leads to a diazaborine-resistant E. coli phenotype. A Ser for Phe exchange at position 241 of the EnvM protein results in a temperature-sensitive growth phenotype. Comparison of the EnvM amino acid sequence with sequences available in databases showed significant homology with the family of short-chain alcohol dehydrogenases.  相似文献   

19.
20.
The chromosomally encoded galactose utilization (gal) operons of Salmonella typhimurium and S. typhi were each cloned on similar 5.5-kilobase HindIII fragments into pBR322 and were identified by complementation of Gal- Escherichia coli strains. Restriction endonuclease analyses indicated that these Salmonellae operons share considerable homology, but some heterogeneities in restriction sites were observed. Subcloning and exonuclease mapping experiments showed that both operons have the same genetic organization as that established for the E. coli gal operon (i.e., 5' end, promoter, epimerase, transferase, kinase, and 3' end). Two gal operator regions (oE and oI) of S. typhimurium, identified by repressor titration in an E. coli superrepressor [galR(Sup)] mutant, were sequenced and found to flank the promoter region. This promoter region is identical to the -10 and -35 regions of the E. coli gal operon. Minicell studies demonstrated that the three gal structural genes of S. typhimurium encode separate polypeptides of 39 kilodaltons (kDa) (epimerase, 337 amino acids [aa's]), 41 kDa (transferase, 348 aa's), and 43 kDa (kinase, 380 aa's). Despite functional and organizational similarities, DNA sequence analysis revealed that the S. typhimurium gal genes show less than 70% homology to the E. coli gal operon. Because of codon degeneracy, the deduced amino acid sequences of these polypeptides are highly conserved (greater than 90% homology) as compared with those of the E. coli gal enzymes. These studies have defined basic genetic parameters of the gal genes of two medically important Salmonella species, and our findings support the hypothesized divergent evolution of E. coli and Salmonella spp. from a common ancestral parent bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号