首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Black cherry ( Prunus serotina Ehrh.) plantlets were cultured in vitro, transferred to potting mixture and evaluated for 8 weeks for acclimatization to a varying, but controlled environment. Whole plantlet growth and water relations were monitored and compared to seedlings of comparable size of the same maternal genotype grown under different conditions, but given the same pretest environment. At one week ex vitro. gravimetrically determined leaf conductance of plantlets was high, but became closer to that of seedlings in both magnitude and diurnal pattern as acclimatization progressed. By 8 weeks, leaf conductance of plantlets was nearly identical to that of seedlings, but the xylem water potential of the plantlets was significantly less. Logarithmic regressions of shoot vs root dry weight indicated that seedlings were allocating twice as much dry matter to shoot than to root growth compared to 4- and 8-week plantlets. Over the same period, stomatal densities of both seedlings and plantlets decreased and stomatal pore lengths increased. Multiple adventitious roots of plantlets emerged from a single site just below the root collar whereas secondary or lateral roots of seedlings originated acropetally along the central root axis. Leaf conductance of plantlets at 8 weeks was similar to that of seedlings indicating satisfactory acclimatization. The larger relative root growth rate of plantlets compared to the shoot, however, was associated with lower stem xylem water potential. The anomaly may be a consequence of the method of in vitro root formation. Plantlet growth rates were lower than growth rates of seedlings and their leaf area was correspondingly less.  相似文献   

2.
Coffea arabica L. plantlets obtained ex vitro after sowing somatic embryos produced in a bioreactor in horticultural substrate were compared with those obtained in vitro from the same embryo population under conventional culturing conditions on semi-solid media. The intensity and quality of aerial and root system development were compared. Shoot emergence was more efficient in vitro but rooting frequencies were low. In contrast, all ex vitro-regenerated embryos rooted. The cotyledon area of mature embryos produced in a bioreactor positively affected plantlet development when regeneration was carried out ex vitro. Embryos with an intermediate cotyledon area (0.86 cm2) had the highest rates of plant conversion ex vitro (63%), and also resulted in vigorous plantlets. Mortality was higher in nursery conditions, but better plant development was obtained. The quality of plantlets produced under ex vitro conditions was reflected in better growth of the aerial and root systems, and also by similar morphological, mineral and water status characteristics to seedlings. Unlike roots formed on semi-solid media, those produced in soil were branched, fine (30-50% had a diameter of less than 0-5 mm) and they bore root hairs. Leaves of plantlets regenerated ex vitro had a histological structure similar to that of seedling leaves, and a lower stomatal density (100 vs. 233 mm-2). Moreover, they were more turgid, as indicated by higher pressure potential (psiP) (0.91 s. 0.30 MPa) and relative water content values (97 vs. 93%). Furthermore, under in vitro conditions, leaves had larger stomata which were abnormally round and raised. Direct sowing of germinated somatic embryos resulted in the rapid production of vigorous plantlets under ex vitro conditions, whilst removing the need for problematical and costly conventional acclimatization procedures.  相似文献   

3.
影响喜树组织培养苗离体生根的因素   总被引:13,自引:0,他引:13  
为了建立有效的喜树(Camptotheca acuminata)组培苗生根系统,提高其移栽成活率及适应性,用不同生长素种类及浓度、不同蔗糖浓度及不同培养基对喜树组培苗不定根形成影响以及移栽初期根系发育状况进行了研究.结果发现:1)生长素种类和浓度明显影响喜树组培苗不定根形成,在含有IBA0.5 mg·L-1培养基中取得了最佳生根效果,生根率达到了98%,外植体平均生根数为5.9条/株;2)不同浓度蔗糖对喜树组培苗生根也有一定影响,在10~30 g·L-1范围内,随着蔗糖浓度增加,生根百分率和生根数量都有增加,蔗糖浓度达到30 g·L-1时,生根百分率为95%,外植体平均生根数为5.4条/株;蔗糖浓度在40 g·L-1时,表现出对生根抑制作用;3)在基本培养基对喜树组培苗生根影响研究中发现,MS培养基对根形成表现出一定抑制作用;1/2MS和WPM培养基均适合喜树组培苗生根;4)根系发育正常的喜树组培苗移栽后成活率可达96%,但组培苗根系根毛系统发育较差.组培苗单位叶面积根尖数量显著低于对照实生苗,而且此参数与叶片气孔导度呈显著正相关.这种较差根系发育导致叶片气孔导度过低可能是组培苗叶片光合能力较低的重要原因.  相似文献   

4.
影响喜树组织培养苗离体生根的因素   总被引:1,自引:0,他引:1  
为了建立有效的喜树(Camptotheca acuminata)组培苗生根系统,提高其移栽成活率及适应性,用不同生长素种类及浓度、不同蔗糖浓度及不同培养基对喜树组培苗不定根形成影响以及移栽初期根系发育状况进行了研究。结果发现: 1)生长素种类和浓度明显影响喜树组培苗不定根形成,在含有IBA0.5 mg.L-1培养基中取得了最佳生根效果,生根率达到了98%,外植体平均生根数为5.9条/株; 2)不同浓度蔗糖对喜树组培苗生根也有一定影响,在10~30 g.L-1范围内,随着蔗糖浓度增加,生根百分率和生根数量都有增加,蔗糖浓度达到30 g.L-1时,生根百分率为95%,外植体平均生根数为5.4条/株; 蔗糖浓度在40 g.L-1时,表现出对生根抑制作用; 3)在基本培养基对喜树组培苗生根影响研究中发现,MS培养基对根形成表现出一定抑制作用;1/2MS和WPM培养基均适合喜树组培苗生根; 4)根系发育正常的喜树组培苗移栽后成活率可达96%,但组培苗根系根毛系统发育较差。组培苗单位叶面积根尖数量显著低于对照实生苗,而且此参数与叶片气孔导度呈显著正相关。这种较差根系发育导致叶片气孔导度过低可能是组培苗叶片光合能力较低的重要原因。  相似文献   

5.
Little is known about the role of arbuscular mycorrhiza fungi (AMF) on physiological changes of micropropagated plantlets during acclimatization and post-acclimatization. Using chile ancho pepper (Capsicum annuum L. cv. San Luis), measurements were made of water relations, gas exchange, abscisic acid (ABA), plantlet growth and AMF development. Plantlets had low photosynthetic rates (A) and poor initial growth during acclimatization. Relative water content (RWC) decreased during the first days after transfer from tissue culture containers to ex vitro conditions. Consequently, transpiration rates (E) and stomatal conductance (gs) declined, confirming that in vitro formed stomata were functional and able to respond ex vitro to partial desiccation--thus avoiding excessive leaf dehydration and plant death. Colonization by AMF occurred within 3 days after inoculation. Colonized plantlets had lower leaf ABA and higher RWC than noncolonized (NonAMF) plantlets during peak plant dehydration (6 days after plant transfer)--and a higher A and gs as early as days 5 and 7. During post-acclimatization [after day 8, when RWC increased and stabilized], A increased in all plantlets; however, more dramatic changes occurred with AMF plantlets. Within 48 days, 45% of the roots sampled of inoculated plantlets were colonized and had extensive arbuscule development. At this time, AMF plantlets also had greater E, A, leaf chlorophyll, leaf elemental N, P and K, leaf dry biomass and leaf area, fruit production and differences in carbon partitioning [lower root/shoot ratio and higher leaf area ratio] compared with NonAMF plantlets. Rapid AMF colonization enhanced physiological adjustments, which helped plantlets recover rapidly during acclimatization and obtain greater growth during post-acclimatization.  相似文献   

6.
In vitro mycorrhization of Hevea brasiliensis under autotrophic culture conditions is a promising methodology to produce plantlets adapted to overcome stresses during acclimatization. However, to succeed in the in vitro production of mycorrhizal plantlets, root production and subsequent colonization by the mycorrhizal fungus need to be optimized. Plantlets of H. brasiliensis clone PB 260 were grown in contact with the extraradical mycelium network of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Addition of activated charcoal to the medium and pruning of the taproot were evaluated for their effects on root growth and colonization. None of the treatments stimulated the early formation of new roots. However, total root length, total root colonization, and production of arbuscules and intraradical spores/vesicles were significantly higher in plantlets grown in the presence of activated charcoal (especially after 13 wk of culture). In contrast, total root colonization was significantly lower in the pruned plantlets, while total root length and arbuscule formation were not affected. None of the treatments affected activities of succinate dehydrogenase and alkaline phosphatase measured in the extraradical mycelium of the fungus. It appeared that the addition of activated charcoal to the culture medium favored root growth and mycorrhization of rubber plantlets under in vitro culture conditions, while taproot pruning did not favor these parameters.  相似文献   

7.
Plantlets of Alocasia amazonica were regenerated on the MS medium supplemented with different concentrations (0–9%) of sucrose. An absence of sucrose in the growth medium induced generation of leaves, however, it decreased multiplication. On contrary, sucrose supply of 6% or 9% enhanced multiplication but hampered photoautotrophic growth (generation of leaves). Increasing sucrose supply also increased sugars and starch content and number of stomata and decreased water potential and size of stomata during in vitro growth period. During ex vitro acclimatization, shoot length, root length, leaf number and root number of Alocasia plantlets grown with 3% sucrose, were found to be better among the other studied sucrose concentrations. Under ex vitro acclimatization, number of stomata, contents of various carbohydrates in the leaves were increased but size of stomata decreased with increasing sucrose supply during in vitro growth period. Moreover, water potential of leaves of plantlets, which have been grown with a sucrose concentration other than 3%, was decreased. During in vitro growth, net CO2 assimilation rate (PN), transpiration (E), stomatal conductance (gs) and variable fluorescence to maximum fluorescence ratio (Fv/Fm) were unaffected, however, during acclimatization these were changed and maximum PN, E, and gs were observed in the plantlets micropropagated with 3% sucrose. Fv/Fm was decreased severely in the plantlets micropropagated with 6% sucrose during acclimatization. Thus a sucrose concentration of 3% in the medium is appeared to be better among studied concentrations for both in vitro growth and ex vitro acclimatization of A. amazonica plantlets.  相似文献   

8.
Leafy or chlorophyllous explants of a number of plant species currently micropropagated have been found to have high photosynthetic ability. Their growth and development have been promoted on sugar-free medium rather than on sugar-containing medium, provided that the environmental factors, such as CO2 concentration, light intensity and relative humidity, are controlled for promoting photosynthesis and transpiration of explants/shoots/plantlets in vitro. Thus, environmental control is essential for promoting photosynthetic growth and development of in vitro plantlets. Several types of sugar-free (photoautotrophic) culture systems for large-scale micropropagation of plants have been developed. Advantages of sugar-free over conventional (heterotrophic or photomixotrophic) micropropagation systems are as follows: growth and development of plantlets in vitro are faster and more uniform, plantlets in vitro have less physiological and morphological disorders, biological contamination in vitro is less, plantlets have a higher percentage of survival during acclimatization ex vitro, and larger culture vessels could be used because of less biological contamination. Hence, production costs could be reduced and plant quality could be improved significantly with photoautotrophic micropropagation. Methods for the measurement and control of in vitro environments and the beneficial effects of environmental control on photosynthetic growth, development, and morphogenesis in large-scale production of micropropagated plantlets are presented. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The objective of the current investigation was to develop a reliable method to obtain vesicular arbuscular mycorrhizae (VAM) in micropropagated plantlets and to determine their influence on growth. An in vitro system for culturing the VA mycorrhizal fungus Glomus intraradices with Ri T-DNA-transformed carrot roots or nontransformed tomato roots was used in this study as a potential active source of inoculum for the colonization of micropropagated plantlets. After root induction, micropropagated plantlets grown on cellulose plugs (sorbarod) were placed in contact with the primary mycorrhizae in growth chambers enriched with 5000 ppm CO2 and fed with a minimal medium. After 20 days of tripartite culture, all plantlets placed in contact with the primary symbiosis were colonized by the VAM fungus. As inoculum source, 30-day-old VA mycorrhizal transformed carrot roots had a substantially higher infection potential than 5-, 10-or 20-day-old VAM. Colonized plantlets had more extensive root systems and better shoot growth than control plants. The VAM symbiosis reduced the plantlet osmotic potential. This response may be a useful pre-adaptation for plantlets during transfer to the acclimatization stage.  相似文献   

10.
Summary The anatomy of normal and hyperhydric in vitro shoots and leaves from micropropagated simmondsia chinensis (Link.) Schn. (jojoba) was compared with that of seedlings (control plants). In vitro normal plantlets displayed good development and survived during the acclimatization stage. In vitro hyperhydric plantlets presented numerous anatomical defects, such as hypertrophy of the mesophyll and of the stem cortex, malformed non-functional stomata, epidermal discontinuity, and xylem hypolignification; they did not survice acclimatization. The study of the anatomical features of in vitro jojoba shoots and leaves allowed determination of the structural condition of the plantlets and prediction of which plantlet would survive the critical acclimatization stage.  相似文献   

11.
A suitable bioreactor system for large scale embryo-to-plantlets conversion of Kalopanax septemlobus was established. In temporary immersion with net (TIN) bioreactor, 85% of embryos successfully produced plantlets whereas in continuous immersion with net (CIN) bioreactor, only conversion rate of 29.3% was obtained. Embryos cultured in TIN bioreactor produced more vigorous plantlets in terms of fresh weight, height, root length, roots and leaves quantity. In CIN bioreactor, Kalopanax plantlets showed high malondialdehyde (MDA) content and increased activities of reactive oxygen species (ROS)-processing enzymes, such as ascorbate peroxidase (APX) and glutathione reductase (GR) indicating the occurrence of oxidative stress. However, superoxide dismutase (SOD) and catalase (CAT) showed similar activities in plantlets grown in different bioreactors. Kalopanax plantlets grown in both TIN and CIN bioreactors were harvested and transferred to greenhouse for their acclimatization. Plantlets grown in CIN bioreactor exhibited low survival rate (75.8%) compared to those grown in TIN bioreactor (100%). MDA content decreased with progression of acclimatization indicating a decrease in oxidative stress. However, MDA level in CIN derived plantlets was higher than TIN derived plantlets. In TIN derived plantlets, an increase in SOD and GR activities were observed after 1 week and thereafter decreased. CAT activity decreased while APX activity started to increase after 1 week of acclimatization. The results indicated that Kalopanax plantlets were able to overcome oxidative stress mainly through SOD activity. However, levels of antioxidant enzyme activities were higher in CIN derived plantlets than TIN derived plantlets. Kalopanax plantlets obtained from TIN bioreactor performed better during the acclimatization phase and showed higher survival rate than material obtained on CIN bioreactor or conventional culture systems.  相似文献   

12.
In vitro propagation of a semi-dwarfing cherry rootstock   总被引:2,自引:0,他引:2  
A successful in vitro propagation system for the semi-dwarfing cherry rootstock Maxma-14 (Prunus avium L.) has been developed. Shoot tips and axillary buds were successfully established in vitro. Multiplication rate of about 6 was achieved over a 4-week period using Murashige and Skoog medium with 4.44 μM benzyladenine and 0.49 μM indole-3-butyric acid (IBA). Rooting occurred within 4 weeks on liquid and agar-gelled media containing 0.49 μM NAA or 0.49, 2.45 μM IBA. On liquid media, a maximum rooting efficiency of up to 100% was obtained. However, high concentrations of auxins delayed the time of root initiation for 3–5 days. Acclimatization was affected directly by rooting conditions. Survival was best when plantlets were transferred to pots after a short period of root emergence on rooting media. Multiplication medium was also important for successful acclimatization. Shoots transferred to rooting media from that with kinetin resulted in better acclimatization and survival than that derived from media with benzyladenine. Further, plantlets rooted on liquid media had better survival than that rooted on agar-gelled media. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
We found that different spectra, provided by light-emitting diodes or a fluorescent lamp, caused different photomorphological responses depending on tree seedling type (coniferous or broad-leaved), species, seedling development stage, and seedling fraction (shoot or root). For two conifers (Picea abies and Pinus sylvestris) soon after germination (≤40 days), more seedling growth was related to a lower ratio of red-to-far-red (R:FR) light. As growth continued to 120 days, spectra with a greater complement of blue light yielded more growth. Roots showed more plasticity to light spectra than shoots. In general for the evergreen broad-leaved Quercus ilex, spectra with additional R:FR than for conifers yielded more growth in the first 57 days. Subsequently as seedlings grew, shoot growth appeared to be influenced less by light source than roots, with root length showing the greatest responses. Our results suggest that manipulating light spectra to foster desired seedling traits may be another tool for use in the production of high-quality seedlings as defined through the Target Plant Concept. Such seedlings are needed for restoration of the two billion hectares of degraded forestland, especially on harsh sites such as those found in the Mediterranean region, and to sequester carbon to mitigate climate change.  相似文献   

14.
In vitro directly micropropagated plantlets from three selected five-year-old Eucalyptus grandis Hill ex. Maiden hybrids were compared to their related half-sib seedlings for growth and growth pattern parameters under greenhouse conditions used for operational seedling production. The oven dry weights were determined from stem, leaf, and root samples collected every 40 days for four times. Relative growth rate, net assimilation rates and shoot:root ratio were calculated. Survival was 98% and 95% for plantlets and seedlings, respectively. Significant differences were observed between parents in terms of shoot and root dry weights and their ratios with similar ranking among plantlets and seedlings, suggesting genetic control over these traits. Plantlets started with significantly higher root: shoot ratios and stem, leaf, root, and total dry weight. Although seedlings had higher relative growth and net assimilation rates, all the initial differences decreased sharply over time.  相似文献   

15.
Tissue-culture plantlets of Douglas-fir [ Pseudotsuga menziesii (Mirb.) Franco] were highly susceptible to detrimental water loss upon removal from culture in vitro. Control of net water loss was related to shoot and root morphology. Relative water content after 3 h of atmospheric water stress was positively correlated to root number, root surface area, and the length of the longest root, and was inversely correlated to the ratio of needle surface area/root surface area. High relative water content apparently was a result of a higher rate of water uptake among plantlets with beneficial morphological features. It is recommended that, to improve the ability of a plantlet to withstand water stress during acclimatization, beneficial root system features be focused upon during plantlet production.  相似文献   

16.
Improvement of potato has been accomplished using conventional and non-conventional approaches coupled with numerous tissue culture procedures. The aim of the present study was to assess the efficacy of gibberellic acid (GA3) on the morphogenesis of International Potato Center (CIP) potato explants and acclimatization of plantlets in the field. Nodal segments as an explant source (1–1.5 cm) were isolated from 31 CIP potato plantlets and were inoculated into Murashige and Skoog (MS) medium supplemented with 0.0 (control), 0.1, 0.5, or 1.0 mg L?1of GA3. The variation in growth parameters of the cultivars was then observed. The highest shoot induction occurred in MS medium containing 1.0 mg L?1 GA3 with an increase in the inter-nodal distance between nodes as compared to other treatments. Higher concentration (1.0 mg L?1) of GA3 significantly increased plant height and root length in the treated germplasm however; this concentration was inhibitory to the number of nodes and roots per plant. The number of leaves was significantly increased in plants receiving GA3 treatment at lower concentration (0.1 mg L?1). The 31 CIP genotypes were transplanted to the field and checked for yield quality traits. It was concluded from the results that GA3 had significant effects on morphogenesis and was effective in the acclimatization of CIP potato plantlets in field.  相似文献   

17.
The current work compared the physiological characteristics of plantain (Musa AAB) plantlets micropropagated in temporary immersion bioreactors (TIB) and on a gelled medium (GM). The plantlets were evaluated during in vitro growth (in the shoot elongation phase) and at the end of ex vitro acclimatization. TIB improved rooting and gave rise to longer shoots and higher dry mass. Respiration rate was the highest at the beginning of shoot elongation in both the TIB and GM plantlets. Photosynthetic rate in TIB was significantly higher than in GM from the midpoint of acclimatization, whereas a pyruvate kinase (PK) activity was lower. Starch accumulation was ca. two fold higher in corms than in leaves and always higher in the TIB than GM plantlets. The higher expression of genes coding for carbon metabolism enzymes PK and phosphoenolpyruvate carboxylase (PEPC) in TIB than in PM indicates a more important role of an autotrophic metabolism in the TIB plantlets when compared to the GM ones. The accumulated reserves were used during the first days of acclimatization leading to the higher survival rates and to the better plant quality of the TIB plantlets.  相似文献   

18.
槐树试管苗在移栽驯化过程中叶表面结构的扫描电镜观察   总被引:5,自引:1,他引:5  
用扫描电子显微镜观察了槐树试管试管苗在移栽驯化及大田生长过程中叶表面结构的变化。结果表明:随着移栽驯化及大田生长过程的延长,表皮细胞周缘突起增多,细胞之间相互嵌合,连结紧密;表皮蜡质结晶密度、长度及蜡质厚度逐渐增加,其结晶由“星”状转化为针状及棒状;气孔器密度及气孔开度由大到小,气孔器下陷程度增加。显示出试管苗在移栽驯化及田间生长过程中,叶表面结构对环境的适应性,其主要变化向着防止水分过度散失的方  相似文献   

19.
Summary A micropropagation protocol was developed using cacao somatic embryo-derived plant as a source for nodal and apical stem explants, and apical microcuttings. Microcuttings were efficiently rooted and developed into plantlets. Axillary meristems within the remaining decapitated plantlets subsequently developed and were used for production of additional microcuttings, with an average 2.4 growing shoots per decapitated stem. The remaining plantelts were maintained as microcutting stock plants. When nodal stem explants were cultured on thidiazuron medium, axillary buds proliferated and developed into shoots, which were excised and rooted. However, the efficiency of this method is lower than rooting of apical microcuttings harvested directly from stock plants. During root induction, short treatment with indole-3-butyric acid (IBA) increased the total percentage of rooted microcuttings up to 89%. Longer exposures to IBA increased the average number of roots per microcutting (from 1.7 to 5.2). Plant acclimatization after rooting was achieved with an average success of 87%. During several months of growth in the greenhouse, the micropropagated plants developed functional taproots. Currently, cocoa plants produced by this micropropagation method have been successfully acclimated to field conditions in Ivory Coast, Ghana, and Saint Lucia.  相似文献   

20.
Summary Photomixotrophic (Pm) micropropagation systems (ones that use a sugar-containing medium) have been used by many rescarchers for transplant production of St. John's wort. However, these methods have not yet been adopted for commercial applications, probably due to the low percentage of regeneration in vitro, and a low growth rate after transplanting ex vitro. In contrast, it is well known that the use of a photoautotrophic (Pa) micropropagation system (one that uses sugar-free medium) can promote the growth and improve the quality of plantlets in vitro, and enhance the growth during acclimatization for many plant species. In the current study, leafy nodal cuttings were cultured under Pa conditions and the growth and quality were compared with those cultured under Pm conditions. After 21d of culture, Pa conditions enhanced the growth and quality of St. John's wort plantlets in vitro, and these plantlets showed faster growth after transplantaing ex vitro compared with those cultured under Pm conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号