首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachis correntina (Burkart) Krapov. & W.C. Gregory is a herbaceous perennial leguminous plant growing in the Northeast of the Province Corrientes, Argentina. It is important as forage. The development of new A. correntina cultivars with improved traits could be facilitated through the application of biotechnological strategies. The purpose of this study was to investigate the plant regeneration potential of mature leaves of A. correntina in tissue culture. Buds were induced from both petiole and laminae on 0.7% agar-solidified medium containing 3% sucrose, salts and vitamins from Murashige and Skoog (MS) supplemented with 0.5–25 M thidiazuron (TDZ). Shoot induction was achieved by transference of calli with buds to MS supplemented with 5 M TDZ. Fifty-four percent of the regenerated shoot rooted on MS + 5 M naphthaleneacetic acid. Histological studies revealed that shoots regenerated via organogenesis.  相似文献   

2.
An in vitro regeneration system with a 100% efficiency rate was developed in peppermint [Mentha x piperita] using 5- to 7-mm-long second internode stem segments of 3-wk-old stock plants. Shoots developed at sites of excision on stem fragments either directly from the cells or via primary calluses. The optimal medium for maximum shoot initiation and regeneration contained Murashige and Skoog (MS) salts, B5 vitamins, thidiazuron (TDZ, 11.35 μM), ZT (4.54 μM), 10% coconut water (CW), 20 g l−1 sucrose, 0.75% agar, adjusted to pH 5.8. A frequency of 100% shoot initiation was achieved, with an average of 39 shoots per explant. This regeneration system is highly reproducible. The regenerated plants developed normally and were phenotypically similar to Black Mitcham parents.  相似文献   

3.
In vitro rooting of oil palm shoots derived from somatic embryos was achieved through a single-phase protocol in which three shoots are cultured in the same culture tube on an α-naphtaleacetic acid-enriched culture medium. Rooting performance was dependent on both the genetic origin and initial size of the shoot explants. All shoots from a given tube showed a tendency to give roots of the same type, independent of the original size of the explant. Whatever the clonal line, longer-size shoots (L-type: >9 cm) showed higher rooting rates than medium-size (M-type: 7–9 cm) and short-size ones (S-type: 5–7 cm). When groups of three shoots from the same clonal line were rooted together in the same culture tube, the combination of plant size within the group impacted overall quality of rooting. Within triplets of shoots containing more than one short individual, the probability of obtaining adequate rooting was low. Similarly, when more than one long shoot was included in the triplet rooting, quality was also poor. By avoiding such combinations, the rate of well-rooted plantlets increased by 25%, with a maximum of 66% when triplets of S/M/L combination were used. Smaller shoots, which usually showed poor rooting performance, were therefore found to benefit from the presence of their neighbors. This interaction between the sizes of individuals in a given tube was found to be associated with a within-tube correlation effect, a phenomenon previously described as “event coupling,” which was estimated using a distorted binomial-type distribution of probabilities. The resulting calculation of a coupling factor (average r = 0.60) explains the behavior of shoots within the same culture tube and their average rooting performance. Modeling of the interactions that occurred during in vitro rooting is described here and is recommended for improvement of this critical step in micropropagation.  相似文献   

4.
This study investigated the factors affecting in vitro flowering of Perilla frutescens. The shoots regenerated from cotyledonary and hypocotyl explants cultured on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) and indole-3-acetic acid, each at 0.5 mg l−1, were excised and transferred to MS medium containing 30 g l−1 of sucrose, 8.25 g l−1 of ammonium nitrate, and 1.0 mg l−1 of BA. After 40 d of culture, 86.2% of shoots flowered and most of which self-fertilized in vitro and produced mature fruits with viable seeds. These seeds were germinated and plants were grown to maturity and flowered in soil under greenhouse conditions. The in vitro flowering system reported in this study may facilitate rapid breeding of P. frutescens and offers a model system for studying the physiological mechanism of flowering.  相似文献   

5.
Somatic embryogenesis was induced from seed explants of Arachis archeri, A. porphyrocalix (Section Erectoides) and A. appressipila (Section Procumbentes) in response to 6-benzylaminopurine (BAP). Embryo axes first developed into single shoots in response to 4.4 μM BAP. Friable embryogenic calluses were produced from the hypocotyl region of these explants in response to different BAP concentrations. Embryonic leaflets also gave rise to friable calluses, but somatic embryos were only observed in explants of A. archeri and A. appressipila. Histological analyses revealed the presence of heart-shaped, torpedo and cotyledonary stages embryos, both as isolated and fused structures. A low frequency of embryo-to-plant conversion was achieved by inducing shoot development on medium solidified with 0.5% phytagel and supplemented with 1.5% or 3% sucrose. Rooting was induced on MS supplemented with indole-3-acetic acid (IAA).  相似文献   

6.
Leaves of Solanum virginianum plants were used for protoplast isolation. To support cell wall formation and cell division, protoplasts were cultured in thin alginate layers floated in liquid medium. When protoplasts were plated at a density of 1.0 × 106/ml in Kao and Michyaluk (KMp8) medium supplemented with 0.5 mg/l zeatin, 1.0 mg/l 2,4-dichlorophenoxyacetic acid, and 1.0 mg/l α-naphthaleneacetic acid, 42.3% of the dividing cells developed microcalli in 3–4 weeks. Shoot formation via organogenesis of protoplast-derived calli was achieved for 28% of calli transferred to solidified KMp8 medium supplemented with 2.0 g/l zeatin and 0.1 mg/l 3-indol acetic acid in about 2 weeks. Further shoot development was observed in Murashige and Skoog (MS) medium without growth regulators and roots were induced after transfer to MS medium containing 1.0 mg/l 3-indol butyric acid. Regenerated plants have normal morphology.  相似文献   

7.
Experiments have been carried out on seedling and primary leaf explants of Gentiana kurroo Royle. Morphogenic capacities of cotyledons, hypocotyls and roots were investigated using MS (1962) medium supplemented with 4.64 μM kinetin and 2.26, 4.52 or 9.04 μM 2,4-D. Percentage of callusing explants for each combination was inversely proportional to numbers of obtained embryos. Cotyledons showed the highest morphogenic capabilities. To assess the morphogenic potential of leaf explants, 189 combinations of auxin (NAA, dicamba and 2,4-D) and cytokinin (kinetin, BAP, zeatin, CPPU and TDZ) in different concentrations were tested. The presence of NAA with BAP and dicamba with zeatin produced the greatest number of differentiated somatic embryos. Microscopic analysis of responsive explants led to identifying rhizogenic centers, non-embryogenic and embryogenic cells. The best embryo conversion into germlings was obtained on MS medium containing 4.46 μM kinetin, 1.44 μM GA3 and 2.68 μM NAA or ½ MS. Both media were supplemented with 4.0% sucrose and 8.0% agar. Depending on explant origin and conversion medium, 55.8–71.0% of somatic embryos developed into germlings and plants.  相似文献   

8.
In vitro propagation of Rhododendron ponticum L. subsp. baeticum, an endangered species present in limited and vulnerable populations as a Tertiary relict in the southern Iberian Peninsula, was attained. Several cytokinin:IAA ratios and a range of zeatin concentrations were evaluated for their effect on shoot multiplication from apical shoots and nodal segments. The type of cytokinin and the origin of the explant were the most important factors affecting shoot multiplication. The highest shoot multiplication rate was obtained from single-nodal explants on medium supplemented with zeatin. Increasing zeatin concentration promotes shoot multiplication independently of explant type, although this effect tends to decrease with higher zeatin concentration. Shoot growth was higher in apical shoots and it was not stimulated by the presence of auxin. A number of experiments were conducted to identify suitable procedures for rooting of in vitro produced shoots. The best results in terms of in vitro rooting were obtained with Andersons modified medium with macrosalts reduced to one-half, regardless of the auxin or its concentration in the medium. Although rooting frequency rose to 97% by basal immersion of shoots in auxin concentrated solution followed by in vitro culture on an auxin-free medium, the survival of the plants after 6 months of acclimatization was poor (50%). Best results (100% rooting and survival) were observed for ex vitro rooting. The micropropagated plants from this study were successfully reintroduced into their natural habitat (87% of survival after 8 months).  相似文献   

9.
Seol E  Jung Y  Lee J  Cho C  Kim T  Rhee Y  Lee S 《Plant cell reports》2008,27(7):1197-1206
Notocactus scopa cv. Soonjung was subjected to in planta Agrobacterium tumefaciens-mediated transformation with vacuum infiltration, pin-pricking, and a combination of the two methods. The pin-pricking combined with vacuum infiltration (20-30 cmHg for 15 min) resulted in a transformation efficiency of 67-100%, and the expression of the uidA and nptII genes was detected in transformed cactus. The established in planta transformation technique generated a transgenic cactus with higher transformation efficiency, shortened selection process, and stable gene expression via asexual reproduction. All of the results showed that the in planta transformation method utilized in the current study provided an efficient and time-saving procedure for the delivery of genes into the cactus genome, and that this technique can be applied to other asexually reproducing succulent plant species.  相似文献   

10.
We have developed a new procedure for Agrobacterium-mediated transformation of plants in the genus Beta using shoot-base as the material for Agrobacterium infection. The frequency of regeneration from shoot bases was analyzed in seven accessions of sugarbeet (Beta vulgaris) and two accessions of B. maritima to select materials suitable for obtaining transformed plants. The frequency of transformation of the chosen accessions using Agrobacterium strain LBA4404 and selection on 150-mg/l kanamycin was found to be higher than that in previously published methods. Genomic DNA analysis and -glucuronidase reporter assays showed that the transgene was inherited and expressed in subsequent generations. In our method, shoot bases are prepared by a simple procedure, and transformation does not involve the callus phase, thus minimizing the occurrence of somaclonal variations.  相似文献   

11.
Agrobacterium-mediated transformation for poinsettia (Euphorbia pulcherrima Willd. Ex Klotzsch) is reported here for the first time. Internode stem explants of poinsettia cv. Millenium were transformed by Agrobacterium tumefaciens, strain LBA 4404, harbouring virus-derived hairpin (hp) RNA gene constructs to induce RNA silencing-mediated resistance to Poinsettia mosaic virus (PnMV). Prior to transformation, an efficient somatic embryogenesis system was developed for poinsettia cv. Millenium in which about 75% of the explants produced somatic embryos. In 5 experiments utilizing 868 explants, 18 independent transgenic lines were generated. An average transformation frequency of 2.1% (range 1.2-3.5%) was revealed. Stable integration of transgenes into the poinsettia nuclear genome was confirmed by PCR and Southern blot analysis. Both single- and multiple-copy transgene integration into the poinsettia genome were found among transformants. Transgenic poinsettia plants showing resistance to mechanical inoculation of PnMV were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA). Northern blot analysis of low molecular weight RNA revealed that transgene-derived small interfering (si) RNA molecules were detected among the poinsettia transformants prior to inoculation. The Agrobacterium-mediated transformation methodology developed in the current study should facilitate improvement of this ornamental plant with enhanced disease resistance, quality improvement and desirable colour alteration. Because poinsettia is a non-food, non-feed plant and is not propagated through sexual reproduction, this is likely to be more acceptable even in areas where genetically modified crops are currently not cultivated.  相似文献   

12.
The organogenic competence of leaf explants of eleven Carthamus species including C. tinctorius on Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) + α-naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) + NAA was investigated. Highly prolific adventitious shoot regeneration was observed in C. tinctorius and C. arborescens on both growth regulator combinations and the shoot regeneration frequency was higher on medium supplemented with TDZ + NAA. Nodal culture of nine Carthamus species on media supplemented with BA and kinetin (KIN) individually revealed the superiority of media supplemented with BA over that of KIN in facilitating a higher shoot proliferation index. Proliferating shoots from axillary buds and leaf explants were transferred to medium supplemented with 1.0 mg dm−3 KIN or 0.5 mg dm−3 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium supplemented with 1.0 mg dm−3 each of indole-butyric acid (IBA) and phloroglucinol. The plantlets thus obtained were hardened and transferred to soil.  相似文献   

13.
Multiple shoots were induced on stem segments of an 8-y-old plant of Metrosideros excelsa Sol ex Gaertn. “Parnel”. Axillary shoots produced on uncontaminated explants were excised, segmented, and recultured in the same medium to increase the stock of shoot cultures. The Murashige and Skoog (MS) medium, augmented with different concentrations of 2- isopenthenyladenine (2iP) and indole-3-acetic acid (IAA), either singly or in combinations, as potential medium for shoot multiplication by nodal segments was tested. In the following experiment, equal molar concentrations of four cytokinins [2iP, kinetin, zeatin, and N 6-benzyladenine (BA)] in combination with equal molar concentrations of three auxins [IAA, α-naphthaleneacetic acid (NAA), and indole-3-butyric acid (IBA)] were tested for ability to induce axillary shoot development from single-node stem segments. The highest rate of axillary shoot proliferation was induced on MS agar medium supplemented with 1.96μM 2iP and 1.14μM IAA after 6 wk in culture. Different auxins (IAA, IBA, and NAA) were tested to determine the optimum conditions for in vitro rooting of microshoots. The best results were accomplished with IAA at 5.71μM (89% rooting) and with IBA at 2.85 or 5.71μM (86% and 86% rooting, respectively). Seventy and 90 percent of the microshoots were rooted ex vitro in bottom-heated bench (22 ± 2°C) after 2 and 4 wk, respectively. In vitro and ex vitro rooted plantlets were successfully established in soil.  相似文献   

14.
An efficient genotype independent, in vitro regeneration system was developed for nine popular Indian wheat cultivars, three each of Triticum aestivum L. viz., CPAN1676, HD2329 and PBW343, Triticum durum Desf. viz., PDW215, PDW233 and WH896, and Triticum dicoccum Schrank. Schubl. viz., DDK1001, DDK1025 and DDK1029, by manipulating the concentration and time of exposure to the growth regulator, thidiazuron (TDZ). A total of 18 (for immature inflorescence and embryo explant) and six (for mature embryo explant) different combinations of growth regulators were tried for callusing and regeneration, respectively. Media combination with low concentration of TDZ (2.2 μM) in combination to auxin and/or cytokinin (depending upon culture stage), was found to be effective for immature and mature explants. Compact, nodular and highly embryogenic calli were obtained by using immature embryo, immature inflorescence and mature embryo explants, and regeneration frequency up to 25 shoots/explant with an overall 80% regeneration was achieved. Comparable regeneration frequency was achieved for mature embryo explants. No separate hormone combination for rooting was required and plantlets ready to transfer to soil could be obtained in a short period of 8–10 weeks. This protocol can be used for raising transgenic plants for functional genomics analysis of agronomically important traits in the three species of wheat.  相似文献   

15.
Sporulation in Bacillus megaterium var phosphaticum (PB — 1) was induced using modified nutrient media. This modified medium induced sporulation within 36 h. After spore induction the spores were kept under refrigerated (5°C) and room temperature (32°C) for five months and survival of spores was studied at 15 days intervals by plating them in nutrient agar medium. It was observed that there was not much variation in the storage temperature (5°C & 32°C). The spore cells of Bacillus megaterium var phosphaticum (PB — 1) were observed up to five months of storage under refrigerated (5°C) and room temperature (32°C). Regeneration of spore cells into vegetative cells was studied in tap water, rice gruel, nutrient broth, sterile lignite and sterile water at different concentrations of spore inoculum. The multiplication of sporulated Bacillus megaterium var phosphaticum culture was fast and reached its maximum (29.5 × 108 cfu ml−1) in nutrient broth containing 5 per cent inoculum level.  相似文献   

16.
Summary Plantlets of Capsicum annuum L. ev. Sweet Banana regenerated via somatic embryogenesis from immature zygotic embryos were capable of producing flower, fruit, and seed when cultured in small tissue culture containers. In vitro floral buds were first formed on plantlets that grew on plantlet development medium [agar-gelled Murashige and Skoog (MS) basal medium containing 1 mgl−1 (5.3 μM) α-naphthaleneacetic acid (NAA)] in a growth room at 22°C and continuous illumination. However, floral buds rarely developed further into mature flowers. This problem was overcome using the vented autoclavable plant tissue culture containers. In vitro fruit formation and ripening was observed when liquid half-strength MS basal medium supplemented with 5 μg ml−1 silver thiosulfate, 1 mg l−1 (5.3 μM) NAA, and 3% sucrose was added to the surface of the plantlet development medium. Hand-pollination improved fruit set. Further research in needed to determine why the pepper seeds formed in vitro failed to germinate.  相似文献   

17.
Hou SW  Jia JF 《Plant cell reports》2004,22(10):741-746
An efficient and reproducible protocol is described for the regeneration of Astragalus melilotoides protoplasts isolated from hypocotyl-derived embryogenic calli. Maximum protoplast yield (11.74±0.6×105/g FW) and viability (87.07±2.8%) were achieved using a mixture of 2% (w/v) Cellulase Onozuka R10, 0.5% (w/v) Cellulase Onozuka RS, 0.5% (w/v) Macerozyme R10, 0.5% (w/v) Hemicellulase, and 1% (w/v) Pectinase, all dissolved in a cell protoplast wash (CPW) salt solution with 13% (w/v) sorbitol. First divisions occurred 3–7 days following culture initiation. The highest division frequency (9.86±0.68%) and plating efficiency (1.68±0.05%) were obtained in solid-liquid medium (KM8P) supplemented with 1.0 mg/l 2,4-dichlorophenoxyacetic acid, 0.5 mg/l 6-benzylaminopurine (BA), 0.2 mg/l kinetin, 0.2 M glucose, 0.3 M mannitol and 500 mg/l casein hydrolysate. Upon transfer to MS medium with 0.5 mg/l -naphthaleneacetic acid and 1-2 mg/l BA, the protoplast-derived calli produced plantlets via somatic embryogenesis (56.3±4.1%) and organogenesis (21.6±0.6%). Somatic embryos or adventitious shoots developed into well-rooted plantlets on MS medium without any plant growth regulators or supplemented with 3.0 mg/l indole-3-butyric acid, respectively. About 81% of the regenerants survived in soil, and all were normal with respect to morphology and growth characters.Abbreviations BA: 6-Benzylaminopurine - CH: Casein hydrolysate - CPW: Cell protoplast wash - 2,4-D: 2,4-Dichlorophenoxyacetic acid - FDA: Fluorescein diacetate - IBA: Indole-3-butyric acid - KIN: Kinetin - MES: 2-(N-morpholino) Ethanesulphonic acid - NAA: -Naphthaleneacetic acidCommunicated by A. Altman  相似文献   

18.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

19.
20.
The small group of resurrection plants is a unique model which could help us in further understanding of abiotic stress tolerance. The most frequently used approach for investigations on gene functions in plant systems is genetic transformation. In this respect, the establishment of in vitro systems for regeneration and micro propagation is necessary. On the other hand, in vitro cultures of such rare plants could preserve their natural populations. Here, we present our procedure for in vitro regeneration and propagation of Haberlea rhodopensis – a resurrection plant species, endemic for the Balkan region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号