首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
D A Thorley-Lawson 《Cell》1979,16(1):33-42
A rabbit antiserum has been prepared against the B95-8 transforming strain of EBV. The antiserum has a high virus neutralizing titer (approximately 1:1000) against both the marmoset B95-8 EBV and the human P3HR-1 EBV. The neutralizing antibodies may be absorbed completely with EBV producer cell lines, but not with nonproducer cell lines or producer cell lines treated with phosphonoacetic acid (PAA) so as to be nonproducer. After repeated absorption with PAA-treated B95-8, the serum remains reactive with the membranes of producer cell lines as judged by immunofluorescence or the 125I--Staphylococcal protein A radioimmunoassay. Thus the neutralizing antigens are expressed on the membranes of producer cell lines and may be purified from this source using the serum and 125I--Staph A binding as an assay. The ability of the serum to differentiate between producer and nonproducer cells by means of cell surface determinants has been exploited to achieve a separation of these two populations from the same culture. Immunoprecipitation by the protein A technique shows that the serum recognizes two polypeptides from producer cells of approximate molecular weights 150,000 and 75,000.  相似文献   

2.
The Epstein-Barr virus (EBV)-associated membrane antigen polypeptides (350,000, 220,000, 140,000, and 85,000 daltons) are recognized by a rabbit anti-EBV serum and are present on the plasma membranes of producer cell lines, as we demonstrated previously. In this report, we show that these polypeptides are present on intact virus particles. Subcellular fractionation revealed that these antigens are distributed throughout the cell, except for the 85,000-dalton protein, which was poorly represented in the nuclear fraction. In addition, an EBV-associated protein of 160,000 daltons, which comigrates with a major component of the viral capsid, was detected in the cytoplasmic and nuclear fractions. The immunoprecipitation patterns of 13 different EBV isolates were similar, with two exceptions. First, the 350,000- and 220,000-dalton polypeptides from marmoset cell lines had slightly larger molecular sizes than the corresponding polypeptides from human cell lines. Second, B95-8 virus and B95-8-derived human and marmoset cell lines contained little of the 220,000-dalton protein; however, 883L, the human parent line of B95-8, has a normal amount of the 220,000-dalton protein. Thus, the B95-8 strain of EBV appears to be a structurally defective variant. We have not observed any variation in protein patterns associated with different EBV disease states. The 350,000-, 220,000-, and 85,000-dalton polypeptides were shown to be glycoproteins by incorporation of [3H]mannose and [3H]glucosamine and to contain N-asparagine-linked glycosyl groups by their sensitivity to tunicamycin. To simplify future work, the following nomenclature for these EBV-associated polypeptides is suggested: 350,000 (gp350), 220,000 (gp220), 160,000 (p160), 140,000 (p140), and 85,000 (gp85).  相似文献   

3.
We compared the expressions of class I and class II major histocompatibility antigen complex (MHC) on the surface of Jijoye and P3HR-1 cells of Burkitt's lymphoma sublines. Jijoye cells had a large amount of class I and class II MHC antigens, whereas these antigens were less expressed on P3HR-1 cells. On a subline of P3HR-1 K cells the expression of class I antigen markedly diminished and class II antigen was undetectable. On the other hand, Jijoye, P3HR-1, and P3HR-1 K cell lines were confirmed to be Epstein-Barr virus (EBV) nonproducer, low producer, and high producer, respectively. The chemical activation of EBV genome by treating P3HR-1 cells with 12-O-tetradecanoyl phorbol-13 acetate (TPA) and n-butyrate resulted in inhibition of the expression of class I and II antigens, while the addition of retinoic acid, an inhibitor of virus replication, blocked the decrease in the MHC antigen expression. These findings suggested that there might be an inverse correlation between the virus production and the expression of class I and II MHC antigens.  相似文献   

4.
Epstein-Barr virus (EBV) was purified from the extracellular fluid of HR-1 and B95-8 cell lines. The preparations of purified virus consisted of enveloped particles and had EBV-specific antigneic reactivity. Comparison of the amount of labeled protein in preparations of virus purified from cultures incubated in [35S]methionine with the amount of labeled protein in preparations obtained following a mixture of unlabeled virus with [35S]methionine-labeled cellular proteins indicated that less than 2% of the labeled protein in the purified virus preparation could be attributed to contamination with labeled cellular proteins. No extraneous membranous material was seen in thin sections of the purified virus preparations. Analysis of the polypeptides of purified enveloped EBV indicated the following. (i) Eighteen polypeptides could be resolved in Coomassie brilliant blue-stained electropherograms of extracellular virus purified from HR-1 and B95-8 cultures. (ii) Thirty-three polypeptides could be resolved in fluorograms of labeled EBV purified from B95-8 cultures and subjected to electrophoresis in acrylamide gels cross-linked with diallyltartardiamide. The molecular weight of the EBV polypeptides was estimated by co-electrophoresis with the polypeptides of purified herpes simplex virus and purified polypeptides of known molecular weight to range from 28 x 10(3) to approximately 290 x 10(3) (iii) The polypeptides of EBV could be grouped by their relative molar abundancy into three classes: VP6, 7, and 27 present in high abundance; VP1, 12, 20, 23, and 29 present in moderate abundance; and a third class of less abundant polypeptides, VP4, 5, 8, 9, 10, 11, 15, 16, 21, and 22. The remainder of the polypeptides could not be precisely quantitated. (iv) The polypeptides of purified EBV, although similar in number and in range of molecular weight to the polypeptides of purified herpes simplex virus, differ sufficiently from those of herpes simplex virus so as to preclude comparison of individual polypeptide components.  相似文献   

5.
Monoclonal hybridoma cell lines secreting antibodies against the (+)-PN 200-110 and the (-)-demethoxyverapamil binding components of the voltage-dependent calcium channel from rabbit transverse-tubule membranes have been isolated. The specificity of these monoclonal antibodies was established by their ability to coimmunoprecipitate (+)-[3H]PN 200-110 and (-)-[3H]demethoxyverapamil receptors. Monoclonal antibodies described in this work cross-reacted with rat, mouse, chicken, and frog skeletal muscle Ca2+ channels but not with crayfish muscle Ca2+ channels. Cross-reactivity was also detected with membranes prepared from rabbit heart, brain, and intestinal smooth muscle. These antibodies were used in immunoprecipitation experiments with 125I-labeled detergent [3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) and digitonin] solubilized membranes. They revealed a single immunoprecipitating component of molecular weight (Mr) 170,000 in nonreducing conditions. After disulfide bridge reduction the CHAPS-solubilized (+)-PN 200-110-(-)-demethoxyverapamil binding component gave rise to a large peptide of Mr 140,000 and to smaller polypeptides of Mr 30,000 and 26,000 whereas the digitonin-solubilized receptor appeared with subunits at Mr 170,000, 140,000, 30,000, and 26,000. All these results taken together are interpreted as showing that both the 1,4-dihydropyridine and the phenylalkylamine receptors are part of a single polypeptide chain of Mr 170,000.  相似文献   

6.
SGP140 glycoprotein, a major cell surface sialoglycoprotein with an apparent m.w. of 140,000, was detected on the human T lymphoblastoid cell line P12/Ichikawa by labeling with periodate-tritiated sodium borohydride, followed by urea-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Then SGP140 was purified from P12/Ichikawa cells for study of its biochemical character and its distribution in various cell lines. The purification was performed by 0.2% Triton X-100 solubilization from crude membranes, DEAE-Sephacel column chromatography, WGA-agarose column chromatography, Blue-Sepharose 6MB column chromatography, and Sephadex G-150 gel filtration. Antiserum raised against SGP140 was then prepared, and immunoprecipitation and membrane immunofluorescence assay were performed on various cell lines. SGP140 was detected on P12/Ichikawa, Raji, P3HR-1, Daudi, Namalva, BALL-1, MOLT-4B, TALL-1, NALL-1, and K562 cells, but was not detected on HL-60 cells. When HL-60 cells were treated with dimethyl sulfoxide, retinoic acid, or 12-O-tetradecanoylphorbol-13-acetate, SGP140 was detected on cell surfaces. We discuss the possibility that SGP140 may be a differentiation antigen.  相似文献   

7.
A monoclonal antibody designated V3 was produced against a late protein associated with the Epstein-Barr virus-induced viral capsid antigen complex. The antibody reacted with discrete patches in the nuclei of infected cells as well as with virus particles, as shown by immunofluorescence and ultrastructural immunoperoxidase staining. The molecular weight of the protein precipitated by this monoclonal antibody was ca. 160,000. All anti-viral capsid antigen antibody-positive sera tested in an enzyme-linked immunosorbent assay reacted with this purified protein. The synthesis of the antigen was inhibited by phosphonoacetic acid but was not affected by tunicamycin, indicating that this was a late nonglycosylated viral protein. No differences were noted between the protein isolated from the P3HR-1 and B-95-8 cell lines as determined by immunoprecipitation and peptide mapping. By isoelectric focusing, this protein had a pI on the basic side ranging from 7.5 to 9.0.  相似文献   

8.
We report the use of monoclonal antibody against the early antigen diffuse component (anti-EA-D) of Epstein-Barr virus (EBV) to analyze, both qualitatively and quantitatively, the expression of EA-D in various human lymphoblastoid cell lines activated by chemical inducers. The kinetics of synthesis of EA-D in P3HR-1, B95-8, and Ramos/AW cells were similar in that they all reached the peak of synthesis on day 5 after induction. Surprisingly, no expression of EA-D was found in induced BJAB/GC, an EBV-genome-containing cell line. EBV-negative cell lines, BJAB and Ramos, were negative for EA-D. Raji cells had no detectable EA-D but responded rapidly to induction, reaching a peak on day 3. Superinfection of Raji cells also resulted in marked induction of EA-D, which reached a plateau between 8 to 12 h postinfection. Western blotting coupled with the enzyme-linked immunosorbent assay was employed to identify polypeptides representing EA-D. A family of four polypeptides with molecular weights of 46,000 (46K protein), 49,000, 52,000, and 55,000 were identified to be reactive with monoclonal anti-EA-D antiserum. The pattern of EA-D polypeptides expressed in each cell line was different. Of particular interest was the expression of a large quantity of 46K protein both in induced Raji and P3HR-1 cells, but not in superinfected Raji cells. A 49K doublet was expressed in activated p3HR-1, B95-8, and Ramos/AW cells and in superinfected Raji cells. In addition, two distinct 52K and 55K polypeptides were expressed in induced Ramos/AW and superinfected Raji cells. However, none of these EA-D polypeptides was detectable in BJAB/GC, BJAB, Ramos, and mock-infected Raji cells. To approximate relative concentrations of EA-D in cell extracts, we employed the enzyme-linked immunosorbent assay and immunoblot dot methods by using one of the purified EA-D components to construct a standard curve. Depending upon the cell lines, it was estimated that ca. 1 to 3% (determined by the enzyme-linked immunosorbent assay) and 0.8 to 1.6% (determined by immunoblot dot) of total proteins from maximally induced cells were EA-D. These results suggest that differential expression of EA-D polypeptides could be of importance in the diagnosis of state of EBV infection.  相似文献   

9.
Polypeptides of the synaptic membrane antigens D1, D2, and D3   总被引:1,自引:0,他引:1  
The rat brain synaptic membrane antigens D1, D2, and D3 were labelled by 125I and precipitated by antibodies in a crossed immunoelectrophoresis. The precipitates were stained, scraped off, reduced, and analysed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate. The D1 antigen was composed of two polypeptide chains, apparent molecular weights 50 300 and 116 000 D2 of only one polypeptide chain, apparent molecular weight 139 000, and D3 of three polypeptides, apparent molecular weights 14 100, 23 500, and 34 400. Higher apparent molecular weight polypeptides were present in variable amounts in the D3 precipitate, except when the synaptic membrane extracts had been pre-treated with phospholipase D.  相似文献   

10.
By means of the protein immunoblot technique, the Epstein-Barr virus (EBV) nuclear antigen (EBNA) could be identified in a variety of EBV-transformed cell lines with anti-EBNA-positive sera from normal donors. The molecular weight of EBNA expressed in each of the cell lines varied between 70,000 and 75,000 and was dependent upon the strain of infecting virus. In contrast, 15 of 21 sera from patients with rheumatoid arthritis identified antigens in addition to EBNA. The most prominent of these antigens had molecular weights of 110,000 to 115,000 and 92,000. All of the EBV genome-positive cell lines except for QIMR-GOR and cell lines containing the P3HR-1 virus expressed these antigens. The antigens were not present in the EBV genome-negative Ramos and BJAB cell lines, nor were they identified with EBV seronegative sera, indicating that they were EBV related. There was no direct correlation between the presence of antibodies in sera to EBNA, viral capsid antigen or early antigen, and reaction with the 92,000-molecular-weight antigen in immunoblots, indicating that this antigen was distinct from previously described EBV-related antigens.  相似文献   

11.
Common herpesvirus (HV) antigens in infectious bovine rhinotracheitis (IBR), Marek's disease (MDV), and Burkitt's lymphoma (EBV) were found. Immunodiffusion tests in 0.7% agarose demonstrated a line of identity with the HV preparations by using specific antisera prepared against, IBR, MDV, and EBV. These common antigens were found to consist of multiple components: i.e., at least two MDV antigens were identical to IBR and EBV components when subjected to immunoelectrophoresis in 0.7% agarose. Indirect immunofluorescence testing of EBV strain P(3)HR-1 and IBR-infected embryonic bovine kidney cells, with antisera prepared against partially purified IBR, MDV, and EBV antigens, revealed identical activity of the three antisera as demonstrated by brilliant nuclear fluorescence (perinuclear clumping) in P(3)HR-1 cells and evenly distributed cytoplasmic activity in 18-hr IBR-infected bovine kidney cell cultures. Initial physical-chemical studies of the partially purified antigens were carried out by differential centrifugation cycles (6,000, 25,000 and 100,000 x g), rate zonal centrifugation in 5 to 20% sucrose density gradients, and analysis by disc electrophoresis in 5 and 7% polyacrylamide gels. These studies revealed similar molecular weight (>1,000,000) and size characteristics and similar electrophoretic mobilities among the three partially purified HV antigens.  相似文献   

12.
Using anti-human B cell monoclonal antibodies prepared against B1 (CD20), B2 (CD21), B4 (CD19), and BB-1 (B lymphoblast antigen-1), we compared the expression of B cell differentiation antigens on a Jijoye-P3HR-1 cell line family of Burkitt's lymphomas. The expression of BB-1 and B2 antigens was faint on P3HR-1 K cell line which is an Epstein-Barr virus (EBV) high producer. On the other hand, B1 and B4 antigens were strongly expressed on it. It was also found that BB-1 expression decreased on P3HR-1 cells after activation of intracellular EBV genes by treating chemically with tumor-promoting agent (TPA) and n-butyrate, or on Raji cells on superinfection with EBV. This decrease of BB-1 was blocked by the additional treatment with retinoic acid, an inhibitor of virus replication. Dual immunofluorescence staining analysis showed that the individual cell expressing EBV-associated antigens expressed BB-1 antigen only marginally. The relationship between the change in phenotypes of host B cells and the activation of the EBV genome is discussed.  相似文献   

13.
The possible presence of Paul-Bunnell (PB) antigen on Epstein-Barr virus (EBV)-transformed lymphocytes were investigated. Of 23 EBV genome-positive lymphoblastoid cell lines tested all but one absorbed PB type antibody from the serum of an infectious mononucleosis patient. The one EBV-negative B cell line tested did not absorb the heterophile antibody. PB antibody, purified by an immunoadsorbent procedure using beef cell antigen, reacted with the EBV producer P3HR-1 cell line in an indirect membrane immunofluorescence test and was shown to be IgM antibody. Titers of heterophile agglutinin and reactivity with the cell surface were reduced to the same degree by absorption with beef cell antigen but not with guinea pig kidney antigen. PB antibody was distinct from IgM antibody against the EBV-determined membrane antigen, since the latter was not absorbed by beef cell antigen. PB antibody was also reactive with other EBV-positive B cell lines (QIMR-WIL, NC-37, and Raji) which were free of surface IgM. No reaction occurred with the nonproducer P3HR-1 line, a null cell line, and two T cell lines. The results suggest the presence of PB antigen on most EBV-transformed B lymphocytes, and its appearance in each of the transformed lymphocytes of patients with acute infectious mononucleosis.  相似文献   

14.
Purification of Epstein-Barr virus DNA polymerase from P3HR-1 cells.   总被引:17,自引:12,他引:5       下载免费PDF全文
The Epstein-Barr virus DNA polymerase was purified from extracts of P3HR-1 cells treated with n-butyrate for induction of the viral cycle. Sequential chromatography on DNA cellulose, phosphocellulose, and blue Sepharose yielded an enzyme preparation purified more than 1,300-fold. The purified enzyme was distinct from cellular enzymes but resembled the viral DNA polymerase in cells infected with herpes simplex virus type 1 or 2. The active enzyme had an apparent molecular weight of 185,000 as estimated by gel filtration on Sephacryl S-300. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a major polypeptide corresponding to a molecular weight of ca. 110,000. This polypeptide correlated with the catalytic function of the purified enzyme, whereas the other, less abundant polypeptides did not. By immunoblotting, the 110,000-molecular-weight polypeptide could be identified as a viral polypeptide. It could not be determined whether the native enzyme was composed of more than one polypeptide.  相似文献   

15.
The antigens on the surface of human cytomegalovirus (HCMV)-infected fibroblasts which are recognized by human HCMV antibody-positive sera were characterized. Three HCMV-induced polypeptides, with apparent molecular masses of 53 to 63, 94, and 94 to 120 kilodaltons, were precipitated from 125I-surface-labeled cell extracts with different sera obtained from healthy individuals. Renal transplant recipients who were suffering from active HCMV infections recognized the same set of antigens. By the use of monoclonal antibodies, these antigens were identified as polypeptides belonging to the gcI and gcIII families of HCMV glycoproteins.  相似文献   

16.
Lysosome-associated membrane protein (LAMP)-1, a major glycoprotein of mouse embryo 3T3 cells and specifically associated with the lysosomal membrane, has been identified in P388 macrophage cells and compared with the homologous glycoprotein of NIH 3T3 cells. Immunofluorescence microscopy with anit-LAMP-1 monoclonal antibodies shows that the antigen was distributed throughout P388 cells including the ruffled edges or pseudopodia, identical to the pattern of acridine orange accumulation. LAMP-1 was purified from P388 cells by affinity chromatography with 1D4B monoclonal antibody, yielding a homogeneous glycoprotein comprising 0.1% of the total detergent-extracted cell protein. The apparent mass of P388 LAMP-1 was 130,000 to 150,000 compared to the 3T3 glycoprotein of 105,000 to 115,000. Analysis of tryptic peptides indicated that the two purified glycoproteins were highly homologous. Protein synthesis was analyzed in a variety of cell lines by pulse-chase labeling with [35S]methionine; in every case, LAMP-1 was synthesized as a precursor of apparent Mr 92,000, and then converted to heterogeneous mature forms differing in average Mr from 110,000 to 140,000. The basis for these apparent differences in mass was examined by studies of the biosynthesis and oligosaccharide composition of the glycoprotein. Core polypeptides of 45,000 Da were obtained from both HaNIH and P388 cells by treating immunoprecipitates of [35S]methionine pulse-labeled molecules with endoglycosidase H. Cells treated with monensin contained heterogeneous molecules of 80,000 to 85,000 Da. Isoelectric heterogeneity of mature LAMP-1 was markedly reduced by treatment with neuraminidase whereas there was little effect on the apparent molecular weight of the molecules or the differences between the various cell lines. beta-D-Xyloside inhibition of glycosaminoglycan synthesis had little effect on the apparent mass of LAMP-1.  相似文献   

17.
We have studied the polypeptides associated with the expression of the transforming region of the Ad5 genome by immunoprecipitating antigens (using the double antibody and protein A-Sepharose techniques) from cells infected with wild-type (wt) Ad5 or transformation-defective host range (hr) mutants and from cells transformed by Ad5. Three different antisera were used: P antiserum specific for early viral products (Russell et al., 1967) and two different hamster tumor antisera. Immunoprecipitation of antigens from wt-infected KB cells followed by SDS-polyacrylamide gel electrophoresis of precipitated proteins revealed that a major polypeptide having a molecular weight of approximately 58,000 was detected with all three antisera and with both the double antibody and the protein A-Sepharose techniques, while P antiserum also precipitated polypeptides of molecular weights 72,000, 67,000 and 44,000, which probably represent the DNA binding protein and related polypeptides, respectively. With the double antibody technique, in addition to the proteins mentioned above, P antiserum and the hamster tumor antisera precipitated a 10,500 dalton polypeptide which was not detected when the protein A-Sepharose procedure was used. Using either the double antibody or the protein A-Sepharose technique, we found that hr mutants from complementation group II failed to induce the synthesis of the 58,000 dalton protein, whereas mutants from complementation group I produced normal or near normal amounts. Using the double antibody technique, we found that the 10,500 dalton protein was absent or made in reduced amounts by group I mutants. A 58,000 dalton protein was detected in a number of different Ad5-transformed cell lines, including the 293 human line, the 14b hamster line and several transformed rat cell lines. This observation and the fact that transformation negative group II mutants fail to induce the synthesis of a 58,000 dalton polypeptide suggest that this protein is one of the Ad5-specific products necessary for cell transformation.  相似文献   

18.
The MT3 antigen is defined serologically as a DR supertypic specificity and is strongly associated with DR4, DR7, and DRw9. To determine whether the MT3 molecule is distinct from the DR molecule, DR4 and MT3 antigens were immunoprecipitated from 125I-labeled plasma membrane glycoproteins of a DR4-homozygous, MT3-homozygous B lymphoid cell line, Wa, and compared by two-dimensional (2-D) gel electrophoresis. The precipitates with two different anti-DR4 alloantisera and with three different mouse antibodies against human Ia monomorphic determinants gave the same 2-D gel pattern consisting of one heavy chain with a molecular weight of 34 000 and a set of light chains with a molecular weight of 30 000, indicating that these polypeptides are the components of the DR4 molecule. On the other hand, all three anti-MT3 alloantisera used precipitated an identical set of anti-MT3 alloantisera specific light chains with a molecular weight of 30 000, and one heavy chain with a molecular weight of 34 000. The pI of the MT3 light chain was more acidic than that of the DR4 light chain. The amount of MT3 light chains was much smaller than that of DR4 light chains in unlabeled plasma membrane glycoproteins. Thus, we have demonstrated directly using 2-D gel electrophoresis and anti-MT3 alloantisera that the MT3 antigen is a new human Ia molecule distinct from DR4.  相似文献   

19.
Cell surface polypeptides of mouse pachytene spermatocytes and round spermatids (steps 1–8) have been iodinated using 1,2,3,6,tetracholoro-3α, 6α-diphenylglycouril (IODOGEN). Labeled proteins have been assayed using two-dimensional polyacrylamide electrophoresis and radioautography. Purified plasma membranes, prepared from both spermatocytes and spermatids after the iodination of intact cells, exhibit 25–30 polypeptides which label reproducibly. No significant qualitative differences are noted in the labeled polypeptide map obtained from each of the purified cell types. Iodinated proteins range in molecular weight from greater than 100k daltons to approximately 40k daltons. The isoelectric points of labeled constituents range from pI 5.7 to 7.2. Three polypeptides represent the major iodinated species: p 94/5.8, p 75/5.9, and p 53/7.1. Comparison with total plasma membrane constituents assayed using Coomassie brilliant blue indicates that many of the radioactively labeled proteins are not present in quantities sufficient to allow ready detection without isotopic techniques. As a result, many of the proteins identified autoradiographically represent newly described surface components of mouse pachytene spermatocytes and round spermatids. The preparation of purified plasma membrane fractions prior to electrophoresis ensures that all iodinated species are in fact cell surface components. Furthermore, experiments designed to assess the vectorial nature of the IODOGEN-catalyzed labeling procedure suggest that most, if not all, of the iodinated species are exposed on the external side of the cell plasma membrane. Therefore, these studies have (1) identified hitherto unrecognized plasma membrane components of mouse pachytene spermatocytes and round spermatids and (2) provided the first available biochemical data concerning the molecular orientation of particular proteins in the surface membranes of developing mouse spermatogenic cells.  相似文献   

20.
Sodium butyrate induces the Epstein-Barr virus cycle in latently infected P3HR-1 cells with a high efficiency. This fact was utilized for the metabolic labeling of the Epstein-Barr virus antigens. Nonproducer Raji cells, lacking both early antigen and viral capsid antigen, were used as controls. Immunoprecipitation patterns were compared with 13 anti-Epstein-Barr virus (viral capsid antigen) - positive and 3 negative sera. Sixteen polypeptides were identified as being associated with the lytic Epstein-Barr virus cycle. Their molecular weights ranged from 31,000 (31K) to 275K on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Two polypeptides, 158K and 165K, could be classified as late viral products on the basis of their sensitivity to cytosine arabinoside. Six of the polypeptides, i.e., 90K, 95K, 134K, 165K, 236K, and 275K, were detected by [(3)H]glucosamine labeling. Among the early, cytosine arabinoside-insensitive polypeptides detected by [(35)S]methionine labeling, a 152K component appears to be a major constituent of early antigen. This polypeptide was precipitated by all anti-Epstein-Barr virus-positive sera tested. As a rule, together with the 103K and 134K polypeptides, the 152K component is precipitated by anti-early antigen, R (restricted) antibodies. In addition, anti-early antigen D (diffuse) antibodies precipitate 31K, 51K, 65K, and 90K components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号