首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The existence of a new inactivating enzyme for NAD-dependent enzymes was recognized in small intestine of niacin-deficient rats. The increase of the enzyme activity was in parallel with the degree of niacin deficiency. The enzyme splits apo-NAD dependent enzymes to smaller molecular compounds. The inactivating reaction is prevented by the presence of NAD.  相似文献   

2.
A nitrate reductase inactivating enzyme from the maize root   总被引:12,自引:12,他引:0       下载免费PDF全文
Wallace W 《Plant physiology》1973,52(3):197-201
The nitrate reductase in the mature root extract of 3-day maize (Zea mays) seedlings was relatively labile in vitro. Insoluble polyvinylpyrrolidone used in the extraction medium produced only a slight increase in the stability of the enzyme. Mixing the mature root extract with that of the root tip promoted the inactivation of nitrate reductase in the latter. The inactivating factor in the mature root was separated from nitrate reductase by (NH4)2SO4 precipitation. Nitrate reductase was found in the 40% (NH4)2SO4 precipitate, while the inactivating factor was largely precipitated by 40 to 55% (NH4)2SO4. The latter fraction of the mature root inactivated the nitrate reductase isolated from the root tip, mature root, and scutellum. The inactivating factor, which has a Q10 15 to 25 C of 2.2, was heat labile, and hence has been designated as a nitrate reductase inactivating enzyme. The reduced flavin mononucleotide nitrate reductase was also inactivated, while an NADH cytochrome c reductase in nitrate-grown seedlings was inactivated but at a slower rate. The inactivating enzyme had no influence on the activity of nitrite reductase, glutamate dehydrogenase, xanthine oxidase, and isocitrate lyase. The activity of the nitrate reductase inactivating enzyme was not influenced by nitrate and was also found in the mature root of minus nitrate-grown seedlings.  相似文献   

3.
M. Benuck  M.J. Berg  N. Marks 《Life sciences》1981,28(23):2643-2650
Peptidyl dipeptidase activity distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane fractions of rabbit kidney and lung. The enzyme cleaved Leu-enkephalin at the Gly-Phe bond, releasing Tyr-Gly-Gly and Phe-Leu, and also acted on bradykinin releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this peptidyl dipeptidase did not act on angiotensin I, or on hippuryl His-Leu, nor was it inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for the kidney enzyme of 80 μM with Leu-enkephalin as a substrate. Our findings indicate that more than one enzyme is present in membrane preparations of lung and kidney inactivating enkephalin, and suggest a role for these enzymes in the peripheral actions of opiate and related peptides.  相似文献   

4.
The mechanism of chloramphenicol resistance in several multiple-resistant Staphylococcus epidermidis strains has been studied and shown to be due to the presence of the enzyme, chloramphenicol acetyltransferase. As with S. aureus, the inactivating enzyme in S. epidermidis appears to be the product of a structural gene on the chloramphenicol plasmid because resistance and enzyme activity are concurcurrently lost after growth in acridine orange or at elevated temperatures. The synthesis of chloramphenicol acetyltransferase in S. epidermidis has been compared with the function of a similar enzyme in chloramphenicol-resistant S. aureus with the conclusion that the kinetics of induction, products of the reaction, and general properties of the enzymes are identical. The chloramphenicol acetylating enzyme from S. epidermidis has been purified to a state of homogeneity and compared with the analogous purified S. aureus enzyme. Both purified preparations consist of native enzymes with molecular weights of 80,000, and evidence is presented that is consistent with their being made up of four identical subunits of 20,000 each. The two staphylococcal enzymes are identical with respect to pH optimum, apparent affinity (Km) for chloramphenicol, heat denaturation, and immunological reactivity, but they differ in electrophoretic mobility, chromatographic behavior, substrate specificity, and sensitivity to inhibition by mercuric ion.  相似文献   

5.
A significant inactivation of red blood cell glutathione peroxidase (25% less than the physiological value) was observed after exposure of intact erythrocytes to 2 mM divicine (an autoxidizable aminophenol from Vicia faba seeds) and 2 mM ascorbate for 3 h at 37°C. Addition of catalase and conversion of Hb to the carbomonoxy derivative resulted in protection against enzyme inactivation. Oxidation of Hb was a concurrent phenomenon, and augmented the inactivating effect. In hemolysates, much stronger effects were observed at shorter times (2 h); divicine was effective also without ascorbate, and the presence of reductants (ascorbate or glutathione or NADPH) enhanced its inactivating power. Of the other antioxidant enzymes, superoxide dismutase was unaffected under the same experimental conditions. Catalase was found to be much less sensitive to the inactivation; it was almost unaffected in experiments with intact erythrocytes and specifically protected by NADPH in experiments with hemolysates. This specific damage of glutathione peroxidase, apparently involving interaction of H2O2 and HbO2, may be related to the pathogenesis of hemolysis in favism.  相似文献   

6.
ADPglucose pyrophosphorylase (EC 2.7.7.27) has been purified from two cyanobacteria: the filamentous, heterocystic, Anabaena PCC 7120 and the unicellular Synechocystis PCC 6803. The purification procedure gave highly purified enzymes from both cynobacteria with specific activities of 134 (Synechocystis) and 111 (Anabaena) units per milligram protein. The purified enzymes migrated as a single protein band in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with molecular mass corresponding to 53 (Synechocystis) and 50 (Anabaena) kilodaltons. Tetrameric structures were determined for the native enzymes by analysis of gel filtrations. Kinetic and regulatory properties were characterized for the cyanobacterial ADPglucose pyrophosphorylases. Inorganic phosphate and 3-phosphoglycerate were the most potent inhibitor and activator, respectively. The Synechocystis enzyme was activated 126-fold by 3-phosphoglycerate, with saturation curves exhibiting sigmoidicity (A0.5 = 0.81 millimolar; nH = 2.0). Activation by 3-phosphoglycerate of the enzyme from Anabaena demonstrated hyperbolic kinetics (A0.5 = 0.12 millimolar; nH = 1.0), having a maximal stimulation of 17-fold. I0.5 values of 95 and 44 micromolar were calculated for the inhibition by inorganic phosphate of the Synechocystis and Anabaena enzyme, respectively. Pyridoxal-phosphate behaved as an activator of the cyanobacterial enzyme. It activated the enzyme from Synechocystis nearly 10-fold with high apparent affinity (A0.5 = 10 micromolar; nH = 1.8). Phenylglyoxal modified the cyanobacterial enzyme by inactivating the activity in the presence of 3-phosphoglycerate. Antibody neutralization experiments showed that anti-spinach leaf (but not anti-Escherichia coli) ADPglucose pyrophosphorylase serum inactivated the enzyme from cyanobacteria. When the cyanobacterial enzymes were resolved on sodium dodecyl sulfate- and two-dimensional polyacrylamide gel electrophoresis and probed with Western blots, only one protein band was recognized by the anti-spinach leaf serum. The same polypeptide strongly reacted with antiserum prepared against the smaller spinach leaf 51 kilodalton subunit, whereas the anti-54 kilodalton antibody raised against the spinach subunit reacted weakly to the cyanobacterial subunit. Regulatory and immunological properties of the cyanobacterial enzyme are more related to the higher plant than the bacterial enzyme. Despite this, results suggest that the ADPglucose pyrophosphorylase from cyanobacteria is homotetrameric in structure, in contrast to the reported heterotetrameric structures of the higher plant ADPglucose pyrophosphorylase.  相似文献   

7.
Retinol dehydrogenase from bovine rod outer segments was solubilized in detergent and partially purified 25-fold through a combination of hydroxyapatite and retinyl-Sepharose chromatography. Alltrans retinol solubilized in protein solutions of bovine serum albumin or β-lactalbumin was a better substrate for the enzyme than retinol solubilized in detergents or suspended in buffer. Retinol dehydrogenase was sensitive to the carbonyl reagent pyridoxal-5′-phosphate but was not inhibited by retinal followed by reduction with NaBH4. The solubilized enzyme requires phospholipids to maintain enzymatic activity, as was evidenced by the inactivating effect of phospholipase A2 on the partially purified enzyme.  相似文献   

8.
High pressure enhancement of enzymes: A review   总被引:1,自引:0,他引:1  
While most current applications of high pressure (HP) are for inactivating deleterious enzymes, there is evidence that high pressure can induce stabilization and activation of some enzymes. Various other strategies have been employed to enhance enzyme stability, including; genetic engineering, immobilization, and operating in non-aqueous media. While each of these strategies has provided varying degrees of stability or activity enhancement, the application of high pressure may be a complementary, synergistic, or an additive enzyme enhancement technique. Over 25 enzymes that have exhibited high pressure stabilization and/or activation were compiled. Each enzyme discussed responds differently to high pressure depending on the pressure range, temperature, source, solvent or media, and substrate. Possible mechanisms for pressure-induced stabilization and activation are discussed and compared with current enzyme enhancement techniques. The compiled evidence of high pressure enzyme enhancement in this review indicates that pressure is an effective reaction parameter with potential for greater utilization in enzyme catalysis.  相似文献   

9.
Engineered extremely thermostable variants of the thermolysin-like protease from Bacillus stearothermophilus possessing an introduced disulfide bond G8C/N60C (double mutant, DM) and six additional amino acid substitutions in the exposed loop region 56-69 (Boilysin, BLN) have been probed with respect to stability toward water-miscible organic solvents and detergents. The solvent concentrations where 50% of enzyme activity were irreversibly lost (C(50)) decreased in the order methanol > 2-propanol > dimethylsulfoxide > dioxane > acetonitrile > dimethylformamide > acetone. The C(50) values were remarkably higher for the thermostable variants than for the wild-type enzymes. Therefore, the stabilization of this loop region also protects the molecule from irreversible inactivation by solvents, and inactivation seems to follow principally the same mechanism as thermal inactivation. However, in contrast to thermal inactivation where the corresponding T(50) values of DM and BLN differed by 10 K, the differences of the C(50) values of DM and BLN were not significant. Detergents had great effects on proteolytic activities which were dependent on the individual detergent and its concentration, but mostly without significant differences between the enzyme variants. These effects were inactivating (SDS, sulfobetaine) or strongly activating (CTAB, CHAPS). Triton X-100 and Tween 20 were activating or inactivating at low and high concentrations, respectively. In all detergents, stabilities of the enzymes were strongly decreased. However, the more thermostable variants were affected by the detergents to the same extent as the wild-type enzymes suggesting that the mechanism of detergent inactivation is different from that of thermal inactivation.  相似文献   

10.
A variety of peptides chemically unrelated to enkephalins are relatively good inhibitors (IC50 in the micromoLar range) of “enkephalinase” activity i.e. of the peptidase releasing Tyr-Gly-Gly from Leu-enkephalin. Its specificity has been also reinvestigated with a series of Met-enkephalin analogues. The poor recognition of several analogues by this inactivating enzyme might account for their enhanced biological activity.  相似文献   

11.
Antipolarity in the ilv operon of Escherichia coli K-12   总被引:9,自引:7,他引:2       下载免费PDF全文
The genes governing three of the enzymes of the isoleucine-valine biosynthetic pathway form the operon: operator-ilvA-ilvD-ilvE. The enzymes are: ilvA, l-threonine deaminase; ilvD, dihydroxy acid dehydrase; and ilvE, transaminase B. A nonsense mutation in the ilvD gene (D-ochre) and a nonsense mutation in the ilvE gene (E-amber) affect the properties of the proximal gene product, l-threonine deaminase (TD), in addition to inactivating the enzymes produced by the genes in which the mutations have occurred. The D-ochre mutation causes TD to move in diffusion and gel filtration experiments as though it were 30% smaller than the wild-type enzyme. The E-amber mutation causes TD to move in similar experiments as though it were much larger than the wild-type enzyme. Both mutations completely abolish the sensitivity of TD to l-isoleucine, the normal feedback inhibitor of the wild-type enzyme. The effects of the nonsense mutations on TD can be reversed in three ways: by genetic reversion of the D-ochre mutation; by treatment of the altered enzymes with 3.0 m urea; and by forming a heterozygous diploid, containing the wild-type allele as well as the mutant allele of ilvD or ilvE. The results suggest that the subunits of TD undergo abnormal aggregation in the presence of the partial polypeptides produced by the mutant alleles of ilvD or ilvE; multi-enzyme aggregates in extracts of wild type, however, could not be detected.  相似文献   

12.
The bacteriolytic enzymes produced by Myxococcus virescens and previously concentrated and separated from most of the non-bacteriolytic proteins have been further separated and purified. The bacteriolytic enzyme solution was concentrated by lyo-philization. When applied to a Sephadex G-100 column, three peaks of bacteriolytic activity were eluted. Polyacrylamide gel electrophoresis showed that all the three enzyme fractions were contaminated with at least four non-bacteriolytic proteins. In the first enzyme fraction the bacteriolytic enzymes could be freed from the contaminating proteolytic activity by adsorption on a hydroxylapatite column. The bacteriolytic enzymes could then be adsorbed on a CM-cellulose column. The remaining contaminating proteins passed the column un-adsorbed while the bacteriolytic enzymes could be eluted with a gradient of 0.02–0.10 M ammonium hydrogen carbonate solution. The second enzyme fraction was adsorbed on a CM-cellulose column and then eluted with 0.03–0.15 M NH4 HCO3. After rechromatography on a new column under the same conditions, all of the contaminating proteins had disappeared. For purification of the third enzyme fraction chro-matography on one single CM-cellulose column was sufficient. The elution of the adsorbed enzymes was performed with a gradient of 0.15–0.30 M NH4HCO3. The recovery of activity for each of the ion-exchange chromatography separations was at least 90%. The purity of the enzymes was tested by polyacrylamid gel electrophoresis. Each of the purified enzymes gave only one coloured band which coincided with the enzyme activity assayed in sliced gels. The molecular weights of the enzymes were determined by electrophoresis on acryl-amide gels containing sodiumdodecylsulphate. The molecular weights determined in this way (about 40,000, 30,000 and 20,000, respectively) were about 10,000 daltons higher than those obtained by gel chromatography on Sephadex G-100. This discrepancy seems to depend on interactions between the enzymes and the dextran molecules probably caused by the strongly basic nature of the enzymes or by formation of enzyme-substrate complexes.  相似文献   

13.
DNA enzymes are RNA-cleaving single stranded DNA molecules. The structure and the catalytic domain of a DNA enzyme were determined by Santro et al. in 1997. In this study, we have designed several types of DNA enzymes (PB2Dz) targeted to the PB2 mRNA translation initiation region of influenza A virus, and examined their cleavage kinetics, nuclease resistance, and a luciferase gene reporter assay. Using a synthetic substrate, these DNA enzymes were shown to have cleavage activity that is dependent on the length of the substrate recognition domain. To confer serum nuclease resistance to the DNA enzymes, we designed a new type of DNA enzyme that has the N3'-P5' phosphoramidate modification (PB2Dz-N) at each terminal. We examined the activity of this DNA enzyme in vivo. The DNA enzymes used in this study inhibited the expression of the PB2-luciferase gene in COS cells. These results suggest that DNA enzymes are potentially useful as gene inactivating agents of influenza A virus.  相似文献   

14.
The peptidolytic enzyme THIMET-oligopeptidase (TOP) is able to act as a reducing agent in the peroxidase cycle of myoglobin (Mb) and horseradish peroxidase (HRP). The TOP-promoted recycling of the high valence states of the peroxidases to the respective resting form was accompanied by a significant decrease in the thiol content of the peptidolytic enzyme. EPR (electron paramagnetic resonance) analysis using DBNBS spin trapping revealed that TOP also prevented the formation of tryptophanyl radical in Mb challenged by H2O2. The oxidation of TOP thiol groups by peroxidases did not promote the inactivating oligomerization observed in the oxidation promoted by the enzyme aging. These findings are discussed towards a possible occurrence of these reactions in cells.  相似文献   

15.
为了检测血红素加氧酶系分子间的相互作用和共固定化酶系的反应动力学,利用2′,5′-ADP-Sepharose4B柱对血红素加氧酶、NADPH-细胞色素c还原酶和胆绿素还原酶进行非膜重组,再以纤维素为载体,用重氮化法固定此重组的酶复合物和共固定非重组的3种酶,发现固定化的重组酶系比非重组酶系能更好地发挥协同作用,在室温条件下可催化血红素一步合成胆红素.共固定化酶的最适pH为7.2,最适温度为38℃,Km值为0.93μmol/L.巯基试剂和金属卟淋对固定化酶有抑制作用,共固定化酶比游离酶系稳定性提高,38℃下的操作半寿期可延长至420h,在0~4℃保存两个月其酶活力无明显变化.  相似文献   

16.
A dipeptidyl carboxypeptidase distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane preparations of rabbit brain. The enzyme cleaved enkephalin at the Gly-Phe bond, releasing either Phe-Leu from Leu-enkephalin or Phe-Met from Met-enkephalin, and also acted on bradykinin, releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this dipeptidyl carboxypeptidase did not act on angiotensin-1, and it did not degrade hippuryl-His-Leu. Chloride ions did not affect its activity, but the enzyme was inhibited by metal chelating agents. The enzyme was not inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for this enzyme of 0.14 mM with Leu-enkephalin and 0.12 mM with bradykinin as substrates. Present data indicate that more than one enzyme is present in brain membrane fractions acting as dipeptidyl carboxypeptidases inactivating enkephalin; these data suggest multiple roles for such enzymes in the regulation of peptide metabolism.  相似文献   

17.
We have compared the solubility, kinetic, immunological, and electrophoretic properties of erythrocyte pyruvate kinase from normal dogs and Basenji dogs with congenital hemolytic anemia due to pyruvate kinase deficiency. Differences can be detected between the two enzymes by all methods. The enzyme from the affected animals has a greater solubility in ammonium sulfate. It has a lower K m for phosphoenolpyruvate, while the K m for ADP is increased. This enzyme is not inhibited by ATP or activated by fructose 1,6-diphosphate. The enzyme from the affected animals has none of the allosteric properties characteristic of the normal canine enzyme. No difference can be detected by enzyme inactivation with rabbit antiserum against the human erythrocyte enzyme, but a slight spur is observed on comparison of the two enzymes by Ouchterlony immunodiffusion. The enzymes also differ in their electrophoretic mobilities on starch gel electrophoresis.  相似文献   

18.
The distribution in rat brain of angiotensin converting enzyme (EC3.4.15.1) using hippuryl-His-Leu as substrate was identical to a dipeptidyl carboxypeptidase present in membranes assayed with Met-enkephalin as substrate. Highest activity occurred in pituitary, followed by cerebellum, corpus striatum, midbrain, pons-medulla, hypothalamus, cerebral cortex and spinal cord. The ratio of products His-Leu/Tyr-Gly-Gly was identical for all regions but differed from His-Leu/Tyr. Angiotensin converting enzyme purified by immunoaffinity chromatography gave a Km for hippuryl-His-Leu of 0.5mM and for Met-enkephalin of 0.1 mM. In the presence of the specific inhibitor of angiotensin converting enzyme, SQ 14,225, the Ki value was 10?7M. Present data point to the co-identity of brain angiotensin converting enzyme with the dipeptidyl carboxypeptidase inactivating enkephalin.  相似文献   

19.
Two enzymes, one NADPH-dependent and another NADH-dependent which catalyze the reduction of methylglyoxal to acetol have been isolated and substantially purified from crude extracts of Escherichia coli K12 cells. Substrate specificity and formation of acetol as the reaction product by both the enzymes, reversibility of NADH-dependent enzyme with alcohols as substrates and inhibitor study with NADPH-dependent enzyme indicate that NADPH-dependent and NADH-dependent enzymes are identical with an aldehyde reductase (EC 1.1.1.2) and alcohol dehydrogenase (EC 1.1.1.1) respectively. The Km for methylglyoxal have been determined to be 0.77 mM for NADPH-dependent and 3.8 mM for NADH-dependent enzyme. Stoichiometrically equimolar amount of acetol is formed from methylglyoxal by both NADPH- and NADH-dependent enzymes. In phosphate buffer, both the enzymes are active in the pH range of 5.8–6.6 with no sharp pH optimum. Molecular weight of both the enzymes were found to be 100,000 ± 3,000 by gel filtration on a Sephacryl S-200 column. Both NADPH- and NADH-dependent enzymes are sensitive to sulfhydryl group reagents.  相似文献   

20.
Ten strains of Pseudomonas aeruginosa were disrupted and centrifuged. The supernatant fluids from centrifugation at 105,000 x g contained enzymes inactivating kanamycin, neomycin, and streptomycin in the presence of adenosine triphosphate. Kanamycin-inactivating enzyme was precipitated with ammonium sulfate at 66% of saturated concentration, and the inactivated kanamycin was shown to be kanamycin-3'-phosphate in which the C-3 hydroxyl group of 6-amino-6-deoxy-d-glucose moiety was phosphorylated. This is identical with kanamycin inactivated by Escherichia coli carrying R factor. Streptomycin-inactivating enzyme was precipitated with ammonium sulfate at 33% of saturated concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号