首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropomodulins (Tmods) are F-actin pointed end capping proteins that interact with tropomyosins (TMs) and cap TM-coated filaments with higher affinity than TM-free filaments. Here, we tested whether differences in recognition of TM or actin isoforms by Tmod1 and Tmod3 contribute to the distinct cellular functions of these Tmods. We found that Tmod3 bound ∼5-fold more weakly than Tmod1 to α/βTM, TM5b, and TM5NM1. However, surprisingly, Tmod3 was as effective as Tmod1 at capping pointed ends of skeletal muscle α-actin (αsk-actin) filaments coated with α/βTM, TM5b, or TM5NM1. Tmod3 only capped TM-coated αsk-actin filaments more weakly than Tmod1 in the presence of recombinant αTM2, which is unacetylated at its NH2 terminus, binds F-actin weakly, and has a disabled Tmod-binding site. Moreover, both Tmod1 and Tmod3 were similarly effective at capping pointed ends of platelet β/cytoplasmic γ (γcyto)-actin filaments coated with TM5NM1. In the absence of TMs, both Tmod1 and Tmod3 had similarly weak abilities to nucleate β/γcyto-actin filament assembly, but only Tmod3 could sequester cytoplasmic β- and γcyto-actin (but not αsk-actin) monomers and prevent polymerization under physiological conditions. Thus, differences in TM binding by Tmod1 and Tmod3 do not appear to regulate the abilities of these Tmods to cap TM-αsk-actin or TM-β/γcyto-actin pointed ends and, thus, are unlikely to determine selective co-assembly of Tmod, TM, and actin isoforms in different cell types and cytoskeletal structures. The ability of Tmod3 to sequester β- and γcyto-actin (but not αsk-actin) monomers in the absence of TMs suggests a novel function for Tmod3 in regulating actin remodeling or turnover in cells.  相似文献   

2.
Human fibroblasts generate at least eight tropomyosin (TM) isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsm alpha) from four distinct genes, and we have previously demonstrated that bacterially produced chimera hTM5/3 exhibits an unusually high affinity for actin filaments and a loss of the salt dependence typical for TM-actin binding (Novy, R.E., J. R. Sellers, L.-F. Liu, and J.J.-C. Lin, 1993. Cell Motil. & Cytoskeleton. 26: 248-261). To examine the functional consequences of expressing this mutant TM isoform in vivo, we have transfected CHO cells with the full-length cDNA for hTM5/3 and compared them to cells transfected with hTM3 and hTM5. Immunofluorescence microscopy reveals that stably transfected CHO cells incorporate force- expressed hTM3 and hTM5 into stress fibers with no significant effect on general cell morphology, microfilament organization or cytokinesis. In stable lines expressing hTM5/3, however, cell division is slow and sometimes incomplete. The doubling time and the incidence of multinucleate cells in the stable hTM5/3 lines roughly parallel expression levels. A closely related chimeric isoform hTM5/2, which differs only in the internal, alternatively spliced exon also produces defects in cytokinesis, suggesting that normal TM function may involve coordination between the amino and carboxy terminal regions. This coordination may be prevented in the chimeric mutants. As bacterially produced hTM5/3 and hTM5/2 can displace hTM3 and hTM5 from actin filaments in vitro, it is likely that CHO-expressed hTM5/3 and hTM5/2 can displace endogenous TMs to act dominantly in vivo. These results support a role for nonmuscle TM isoforms in the fine tuning of microfilament organization during cytokinesis. Additionally, we find that overexpression of TM does not stabilize endogenous microfilaments, rather, the hTM-expressing cells are actually more sensitive to cytochalasin B. This suggests that regulation of microfilament integrity in vivo requires stabilizing factors other than, or in addition to, TM.  相似文献   

3.
Previous results from our laboratory have shown that 1) cultured rat cells contain two classes of tropomyosin (TM), one (high Mr TMs) with higher Mr values and greater affinity for actin than the other (low Mr TMs); 2) presaturation of F-actin with high Mr TMs, but not with low Mr TMs, inhibits both actin-severing and actin binding activities of gelsolin; and 3) nonmuscle caldesmon not only enhances the inhibitory effects of high Mr TMs but also makes low Mr TMs capable of inhibiting the severing activity of gelsolin (Ishikawa, R., Yamashiro, S., and Matsumura, F. (1989) J. Biol. Chem. 264, 7490-7497). These results suggest that gelsolin has much lower affinity for F-actin-TM-caldesmon complexes than for pure F-actin. We have therefore examined whether addition of TM and/or caldesmon to gelsolin-severed actin filaments can make gelsolin dissociate from barbed ends of actin filaments, resulting in annealing of short actin filaments into long ones. Flow birefringence and electron microscopic studies have suggested that high Mr TMs slowly and partially anneal gelsolin-severed actin fragments in 3 h, whereas low Mr TMs have no effects. Nonmuscle caldesmon greatly potentiates the effects of high Mr TMs and accelerates the process to 20 min, whereas nonmuscle caldesmon alone shows no effects. Furthermore, nonmuscle caldesmon makes low Mr TMs capable of reversing gelsolin-severing action. Actin binding assay has shown that gelsolin (or a gelsolin-actin complex) is dissociated from these annealed actin filaments. Smooth muscle TM and smooth muscle caldesmon also appear to anneal gelsolin-severed actin fragments as do high Mr TMs and nonmuscle caldesmon. Calmodulin decreases the potentiation effects of caldesmon as calmodulin inhibits actin binding of caldesmon. These results suggest that tropomyosin and caldesmon may regulate both capping and severing activities of gelsolin.  相似文献   

4.
Tropomyosins (TMs) are a family of actin filament-binding proteins. They consist of nearly 100% alpha-helix and assemble into parallel coiled-coil dimers. In vertebrates, TMs are encoded by four genes that give rise to at least 17 distinct isoforms through the use of alternative RNA splicing and alternative promoters. We have studied various aspects of the coiled-coil interactions among muscle and nonmuscle isoforms by the use of transfection of epitope-tagged constructs, followed by immunoprecipitation, SDS-PAGE, and Western blot analyses. For coiled-coil interactions between high-molecular-weight isoforms (284 amino acids), the information for homo- versus heterodimerization is contained in large part within the alternatively spliced exons of nonmuscle and muscle (skeletal and smooth) isoforms. Furthermore, sequences located in alternatively spliced exons encoding amino acids 39-80 (exons 2a/2b), amino acids 189-213 (exons 6a/6b), and amino acids 258-284 (exons 9a/9d) are critical for the selective formation of homo- versus heterodimers. Among low-molecular-weight isoforms (248 amino acids), TM-4 and TM-5 can form either homodimers or heterodimers. The trigger sequence (amino acids 190-202) is required for homodimerization of TM-4, but not heterodimerization of TM-4 with TM-5. How the dimeric state of TMs might play a role in their cellular localization and function is discussed.  相似文献   

5.
This paper shows that high-molecular-weight tropomyosins (TMs), as well as shorter isoforms of this protein, are present in significant amounts in lamellipodia and filopodia of spreading normal and transformed cells. The presence of TM in these locales was ascertained by staining of cells with antibodies reacting with endogenous TMs and through the expression of hemaglutinin- and green fluorescent protein-tagged TM isoforms. The observations are contrary to recent reports suggesting the absence of TMs in regions,where polymerization of actin takes place, and indicate that the view of the role of TM in the formation of actin filaments needs to be significantly revised.  相似文献   

6.
Multiple isoforms of tropomyosin (TM) of rat cultured cells show differential effects on actin-severing activity of gelsolin. Flow birefringence measurements have revealed that tropomyosin isoforms with high Mr values (high Mr TMs) partially protect actin filaments from fragmentation by gelsolin, while tropomyosins with low Mr values (low Mr TMs) have no significant protection even when the actin filaments have been fully saturated with low Mr TMs. We have also examined effect of nonmuscle caldesmon on the severing activity of gelsolin because 83-kDa nonmuscle caldesmon stimulates actin binding of rat cell TMs (Yamashiro-Matsumura, S., and Matsumura, F. (1988) J. Cell Biol. 106, 1973-1983). While nonmuscle caldesmon alone or low Mr TMs alone show no significant protection against fragmentation by gelsolin, the low Mr TMs coupled with 83-kDa protein are able to protect actin filaments. Further, high Mr TMs together with 83-kDa protein appear to block the severing activity completely. Electron microscopic analyses of length distribution of actin filaments have confirmed the results. The average length of control actin filaments is measured as 1.46 +/- microns, and gelsolin shortens the average length to 0.084 +/- 0.039 micron. Similar short average lengths are obtained when gelsolin severs actin complexed with low Mr TMs (0.080 +/- 0.045 micron) or with nonmuscle caldesmon (0.11 +/- 0.072 micron) while longer average length (0.22 +/- 0.18 micron) is measured in the presence of high Mr TMs. The simultaneous addition of nonmuscle caldesmon makes the average length considerably longer, i.e. 0.61 +/- 0.37 micron in the presence of low Mr TMs and 1.57 +/- 0.97 micron in the presence of high Mr TMs. Furthermore, the actin binding of gelsolin is strongly inhibited by co-addition of high Mr TMs and nonmuscle caldesmon. These results suggest that TM and gelsolin share the same binding site on actin molecules and that the differences in the actin affinities between TMs are related to their abilities of protection against gelsolin.  相似文献   

7.
Fibroblast caldesmon is a protein postulated to participate in the modulation of the actin cytoskeleton and the regulation of actin-based motility. The cDNAs encoding the NH2-terminal (aa.1-243, CaD40) and COOH-terminal (aa.244-538, CaD39) fragments of human caldesmon were subcloned into expression vectors and we previously reported that bacterially produced CaD39 protein retains its actin-binding properties as well as its ability to enhance low M(r) tropomyosin (TM) binding to actin and to inhibit TM-actin-activated HMM ATPase activity in vitro (Novy, R. E., J. R. Sellers, L.-F. Liu, and J. J.-C. Lin. 1993. Cell Motil. Cytoskeleton. 26:248-261). Bacterially produced CaD40 does not bind actin. To study the in vivo effects of CaD39 expression on the stability of actin filaments in CHO cells, we isolated and characterized stable CHO transfectants which express varying amounts of CaD39. We found that expression of CaD39 in CHO cells stabilized microfilament bundles as well as endogenous TM. CaD39-expressing clones displayed an increased resistance to cytochalasin B and Triton X-100 treatments and yielded increased amounts of TM-containing actin filaments in microfilament isolation procedures. In addition, analysis of these clones with immunoblotting and indirect immunofluorescence microscopy with anti-TM antibody revealed that stabilized endogenous TM and enhanced TM-containing microfilament bundles parallel increased amounts of CaD39 expression. The increased TM observed corresponded to a decrease in TM turnover rate and did not appear to be due to increased synthesis of endogenous TM. Additionally, the phenomenon of stabilized TM did not occur in stable CHO clones expressing CaD40. Therefore, it is likely that CaD39 can enhance TM's binding to F-actin in vivo, thus reducing TM's rate of turnover and stabilizing actin microfilament bundles.  相似文献   

8.
Structural and functional properties of the non-muscle tropomyosins   总被引:10,自引:0,他引:10  
Summary The non-muscle tropomyosins (TMs), isolated from such tissues as platelets, brain and thyroid, are structurally very similar to the muscle TMs, being composed of two highly -helical subunits wound around each other to form a rod-like molecule. The non-muscle TMs are shorter than the muscle TMs; sequence analysis demonstrates that each subunit of equine platelet TM consists of 247 amino acids, 37 fewer than for skeletal muscle TM. The major differences in sequence between platelet and skeletal muscle TM are found near the amino and carboxyl terminal ends of the proteins. Probably as the result of such alterations, the non-muscle TMs aggregate in a linear end-to-end manner much more weakly than do the muscle TMs. Since end-to-end interactions are responsible for the highly cooperative manner in which TM binds to actin, the non-muscle TMs have a lower affinity for actin filaments than do the muscle TMs. However, the attachment of other proteins to actin (e.g. the Tn-I subunit of skeletal muscle troponin or the S-1 subfragment of skeletal muscle myosin) can increase the affinity of actin filaments for non-muscle TM. The non-muscle TMs interact functionally with the Tn-I component of skeletal muscle troponin to inhibit the ATPase activity of muscle actomyosin and with whole troponin to regulate the muscle actomyosin ATPase in a Ca++-dependent manner, even though one of the binding sites for troponin on skeletal TM is missing in non-muscle TM. A novel actomyosin regulatory system can be produced using Tn-I, calmodulin and non-muscle TM; in this case inhibition is released when the non-muscle TM detaches from the actin filament in the presence of Ca++. Although it has not yet been demonstrated that the non-muscle TMs participate in a Ca++-dependent contractile regulatory system in vivo it does appear that they are associated with actin filaments in vivo.  相似文献   

9.
The myristoylated form of c-Abl protein, as well as the P210bcr/abl protein, have been shown by indirect immunofluorescence to associate with F-actin stress fibers in fibroblasts. Analysis of deletion mutants of c-Abl stably expressed in fibroblasts maps the domain responsible for this interaction to the extreme COOH-terminus of Abl. This domain mediates the association of a heterologous protein with F-actin filaments after microinjection into NIH 3T3 cells, and directly binds to F-actin in a cosedimentation assay. Microinjection and cosedimentation assays localize the actin-binding domain to a 58 amino acid region, including a charged motif at the extreme COOH-terminus that is important for efficient binding. F-actin binding by Abl is calcium independent, and Abl competes with gelsolin for binding to F- actin. In addition to the F-actin binding domain, the COOH-terminus of Abl contains a proline-rich region that mediates binding and sequestration of G-actin, and the Abl F- and G-actin binding domains cooperate to bundle F-actin filaments in vitro. The COOH terminus of Abl thus confers several novel localizing functions upon the protein, including actin binding, nuclear localization, and DNA binding. Abl may modify and receive signals from the F-actin cytoskeleton in vivo, and is an ideal candidate to mediate signal transduction from the cell surface and cytoskeleton to the nucleus.  相似文献   

10.
The nonmuscle actin cytoskeleton consists of multiple networks of actin microfilaments. Many of these filament systems are bound by the actin-binding protein tropomyosin (Tm). We investigated whether Tm isoforms could be cell cycle regulated during G0 and G1 phases of the cell cycle in synchronised NIH 3T3 fibroblasts. Using Tm isoform-specific antibodies, we investigated protein expression levels of specific Tms in G0 and G1 phases and whether co-expressed isoforms could be sorted into different compartments. Protein levels of Tms 1, 2, 5a, 6, from the alpha Tm(fast) and beta-Tm genes increased approximately 2-fold during mid-late G1. Tm 3 levels did not change appreciably during G1 progression. In contrast, Tm 5NM gene isoform levels (Tm 5NM-1-11) increased 2-fold at 5 h into G1 and this increase was maintained for the following 3 h. However, Tm 5NM-1 and -2 levels decreased by a factor of three during this time. Comparison of the staining of the antibodies CG3 (detects all Tm 5NM gene products), WS5/9d (detects only two Tms from the Tm 5NM gene, Tm 5NM-1 and -2) and alpha(f)9d (detects specific Tms from the alpha Tm(fast) and beta-Tm genes) antibodies revealed 3 spatially distinct microfilament systems. Tm isoforms detected by alpha(f)9d were dramatically sorted from isoforms from the Tm 5NM gene detected by CG3. Tm 5NM-1 and Tm 5NM-2 were not incorporated into stress fibres, unlike other Tm 5NM isoforms, and marked a discrete, punctate, and highly polarised compartment in NIH 3T3 fibroblasts. All microfilament systems, excluding that detected by the WS5/9d antibody, were observed to coalign into parallel stress fibres at 8 h into G1. However, Tms detected by the CG3 and alpha(f)9d antibodies were incorporated into filaments at different times indicating distinct temporal control mechanisms. Microfilaments in NIH 3T3 cells containing Tm 5NM isoforms were more resistant to cytochalasin D-mediated actin depolymerisation than filaments containing isoforms from the alpha Tm(fast) and beta-Tm genes. This suggests that Tm 5NM isoforms may be in different microfilaments to alpha Tm(fast) and beta-Tm isoforms even when present in the same stress fibre. Staining of primary mouse fibroblasts showed identical Tm sorting patterns to those seen in cultured NIH 3T3 cells. Furthermore, we demonstrate that sorting of Tms is not restricted to cultured cells and can be observed in human columnar epithelial cells in vivo. We conclude that the expression and localisation of Tm isoforms are differentially regulated in G0 and G1 phase of the cell cycle. Tms mark multiple microfilament compartments with restricted tropomyosin composition. The creation of distinct microfilament compartments by differential sorting of Tm isoforms is observable in primary fibroblasts, cultured 3T3 cells and epithelial cells in vivo.  相似文献   

11.
cDNA clones encoding rat fibroblast tropomyosin 4 (TM-4) were isolated and characterized. DNA sequence analysis was carried out to determine the sequence of the protein. The derived amino acid sequence revealed that rat fibroblast TM-4 was found to contain 248 amino acids. The amino acid sequence of rat fibroblast TM-4 was compared with two other low molecular weight TM isoforms, equine platelet beta-TM and a human fibroblast TM. Rat TM-4 exhibited 98% sequence identity with the equine platelet TM but only 75% identity with the human fibroblast TM isoform. The high degree of conservation between the rat and equine proteins indicates that they belong to the same isotype of TM. Comparison of the amino acid sequences of the three low molecular TM isoforms along the length of the proteins reveals regions that are strongly conserved and regions that have considerably diverged. In the regions from amino acid residues 1 to 148 and 176 to 221, amino acid substitutes are moderate. The most variant regions in the sequence are in the middle part of the proteins from amino acids 149 to 175 and at the carboxyl-terminal region of the proteins from amino acids 222 to 248. The differences in the sequence of the rat and platelet TMs compared to the human TM may define distinct functional domains among the low molecular weight TMs. In addition, expression of tropomyosin was studied in a variety of tissues and transformed cells. We also demonstrate that at least three separate genes encode tropomyosins expressed in rat fibroblasts.  相似文献   

12.
We have previously shown that chicken embryo fibroblast (CEF) cells and human bladder carcinoma (EJ) cells contain multiple isoforms of tropomyosin, identified as a, b, 1, 2, and 3 in CEF cells and 1, 2, 3, 4, and 5 in human EJ cells by one-dimensional SDS-PAGE (Lin, J. J.-C., D. M. Helfman, S. H. Hughes, and C.-S. Chou. 1985. J. Cell Biol. 100: 692-703; and Lin, J. J.-C., S. Yamashiro-Matsumura, and F. Matsumura. 1984. Cancer Cells 1:57-65). Both isoform 3 (TM-3) of CEF and isoforms 4,5 (TM-4,-5) of human EJ cells are the minor isoforms found respectively in normal chicken and human cells. They have a lower apparent molecular mass and show a weaker affinity to actin filaments when compared to the higher molecular mass isoforms. Using individual tropomyosin isoforms immobilized on nitrocellulose papers and sequential absorption of polyclonal antiserum on these papers, we have prepared antibodies specific to CEF TM-3 and to CEF TM-1,-2. In addition, two of our antitropomyosin mAbs, CG beta 6 and CG3, have now been demonstrated by Western blots, immunoprecipitation, and two-dimensional gel analysis to have specificities to human EJ TM-3 and TM-5, respectively. By using these isoform-specific reagents, we are able to compare the intracellular localizations of the lower and higher molecular mass isoforms in both CEF and human EJ cells. We have found that both lower and higher molecular mass isoforms of tropomyosin are localized along stress fibers of cells, as one would expect. However, the lower molecular mass isoforms are also distributed in regions near ruffling membranes. Further evidence for this different localization of different tropomyosin isoforms comes from double-label immunofluorescence microscopy on the same CEF cells with affinity-purified antibody against TM-3, and monoclonal CG beta 6 antibody against TM-a, -b, -1, and -2 of CEF tropomyosin. The presence of the lower molecular mass isoform of tropomyosin in ruffling membranes may indicate a novel way for the nonmuscle cell to control the stability and organization of microfilaments, and to regulate the cell motility.  相似文献   

13.
cDNA clones encoding four rat tropomyosin isoforms, termed TM-2, TM-3, TM-5a, and TM-5b, were isolated and characterized. All are derived from the alpha-tropomyosin gene via alternative RNA processing and the use of two alternate promoters. The cDNA sequences predict that TM-2 and TM-3 both contain 284 amino acids and differ from each other only at an internal region of the protein from amino acids 189 through 213, due to alternative splicing of exons 6a and 6b. TM-5a and TM-5b both contain 248 amino acids and differ from each other only at an internal exon encoding amino acids 153 through 177, also due to alternative splicing of exons 6a and 6b. The differences in the amino acid sequence encoded by these alternate exons affects the theoretical actin-binding pattern of the tropomyosins, such that TM-5b is expected to bind actin with greater affinity than TM-5a. TM-2 and TM-3 are transcribed from the upstream promoter, and TM-5a and TM-5b are transcribed from an internal promoter. In addition, all four isoforms contain the identical COOH-terminal coding region. RNA protection analyses revealed that the mRNA for each isoform is expressed in a number of different tissues and cell types, although the expression of some isoforms is restricted to particular cell types. Furthermore, the expression of mRNA encoding these isoforms was found to be altered in a number of different virally transformed cell lines. The changes in the expression of tropomyosin mRNAs in transformed cells reflect changes in the relative use of the two promoters, as well as the relative use of alternatively spliced exons 6a and 6b.  相似文献   

14.
Hexagonal packing geometry is a hallmark of close-packed epithelial cells in metazoans. Here, we used fiber cells of the vertebrate eye lens as a model system to determine how the membrane skeleton controls hexagonal packing of post-mitotic cells. The membrane skeleton consists of spectrin tetramers linked to actin filaments (F-actin), which are capped by tropomodulin1 (Tmod1) and stabilized by tropomyosin (TM). In mouse lenses lacking Tmod1, initial fiber cell morphogenesis is normal, but fiber cell hexagonal shapes and packing geometry are not maintained as fiber cells mature. Absence of Tmod1 leads to decreased γTM levels, loss of F-actin from membranes, and disrupted distribution of β2-spectrin along fiber cell membranes. Regular interlocking membrane protrusions on fiber cells are replaced by irregularly spaced and misshapen protrusions. We conclude that Tmod1 and γTM regulation of F-actin stability on fiber cell membranes is critical for the long-range connectivity of the spectrin–actin network, which functions to maintain regular fiber cell hexagonal morphology and packing geometry.  相似文献   

15.
Four distinct genes encode tropomyosin (Tm) proteins, integral components of the actin microfilament system. In non-muscle cells, over 40 Tm isoforms are derived using alternative splicing. Distinct populations of actin filaments characterized by the composition of these Tm isoforms are found differentially sorted within cells (Gunning et al. 1998b). We hypothesized that these distinct intracellular compartments defined by the association of Tm isoforms may allow for independent regulation of microfilament function. Consequently, to understand the molecular mechanisms that give rise to these different microfilaments and their regulation, a cohort of fully characterized isoform-specific Tm antibodies was required. The characterization protocol initially involved testing the specificity of the antibodies on bacterially produced Tm proteins. We then confirmed that these Tm antibodies can be used to probe the expression and subcellular localization of different Tm isoforms by Western blot analysis, immunofluorescence staining of cells in culture, and immunohistochemistry of paraffin wax-embedded mouse tissues. These Tm antibodies, therefore, have the capacity to monitor specific actin filament populations in a range of experimental systems.  相似文献   

16.
17.
ATFIM1 is a widely expressed gene in Arabidopsis thaliana that encodes a putative actin filament-crosslinking protein, AtFim1, belonging to the fimbrin/plastin class of actin-binding proteins. In this report we have used bacterially expressed AtFim1 and actin isolated from Zea mays pollen to demonstrate that AtFim1 functions as an actin filament-crosslinking protein. AtFim1 binds pollen actin filaments (F-actin) in a calcium-independent manner, with an average dissociation constant (Kd) of 0.55+/-0.21 microM and with a stoichiometry at saturation of 1:4 (mol AtFim1 : mol actin monomer). AtFim1 also crosslinks pollen F-actin by a calcium-independent mechanism, in contrast to crosslinking of plant actin by human T-plastin, a known calcium-sensitive actin-crosslinking protein. When micro-injected at high concentration into living Tradescantia virginiana stamen hair cells, AtFim1 caused cessation of both cytoplasmic streaming and transvacuolar strand dynamics within 2-4 min. Using the 'nuclear displacement assay' as a measure of the integrity of the actin cytoskeleton in living stamen hair cells, we demonstrated that AtFim1 protects actin filaments in these cells from Z. mays profilin (ZmPRO5)-induced depolymerization, in a dose-dependent manner. The apparent ability of AtFim1 to protect actin filaments in vivo from profilin-mediated depolymerization was confirmed by in vitro sedimentation assays. Our results indicate that AtFim1 is a calcium-independent, actin filament-crosslinking protein that interacts with the actin cytoskeleton in living plant cells.  相似文献   

18.
The levels of high molecular weight isoforms of tropomyosin (TM) are markedly reduced in ras-transformed cells. Previous studies have demonstrated that the forced expression of tropomyosin-1 (TM-1) induces reversion of the transformed phenotype of ras-transformed fibroblasts. The effects of the related isoform TM-2 on transformation are less clear. To assess the effects of forced expression of the TM-2 protein on ras-induced tumorigenicity, we introduced a TM-2 cDNA lacking the 3' untranslated region riboregulator into ras-transformed NIH 3T3 fibroblasts. TM-2 expression resulted in a flatter cell morphology and restoration of stress fibers. TM-2 expression also significantly reduced growth rates in low serum, soft agar, and nude mice. The reduced growth rates were associated with a prolongation of G0-G1. To identify the mechanism of TM-2-induced growth inhibition, we analyzed the effects of TM-2 reexpression of ERK and c-jun N-terminal kinase (JNK) activities. Levels of ERK phosphorylation and activity in TM-2-transfected tumor cells were comparable to those in mock-transfected tumor cells. JNK activity was only modestly increased in ras-transformed cells relative to untransformed NIH 3T3 cells and only slightly reduced as result of forced TM-2 expression. We conclude that the partially restored expression of the TM-2 protein induces growth inhibition of ras-transformed NIH 3T3 cells without influencing ERK or JNK activities. Furthermore, the 3' untranslated region riboregulator of the alpha-tropomyosin gene is not needed for the inhibition of ras-induced growth.  相似文献   

19.
Polycystin-2 (PC2) is the product of the second cloned gene (PKD2) responsible for autosomal dominant polycystic kidney disease and has recently been shown to be a calcium-permeable cation channel. PC2 has been shown to connect indirectly with the actin microfilament. Here, we report a direct association between PC2 and the actin microfilament. Using a yeast two-hybrid screen, we identified a specific interaction between the PC2 cytoplasmic C-terminal domain and tropomyosin-1 (TM-1), a component of the actin microfilament complex. Tropomyosins constitute a protein family of more than 20 isoforms arising mainly from alternative splicing and are present in muscle as well as non-muscle cells. We identified a new TM-1 splicing isoform in kidney and heart (TM-1a) that differs from TM-1 in the C terminus and interacted with PC2. In vitro biochemical methods, including GST pull-down, blot overlay and microtiter binding assays, confirmed the interaction between PC2 and the two TM-1 isoforms. Further experiments targeted the interacting domains to G821-R878 of PC2 and A152-E196, a common segment of TM-1 and TM-1a. Indirect double immunofluorescence experiments showed partial co-localization of PC2 and TM-1 in transfected mouse fibroblast NIH 3T3 cells. Co-immunoprecipitation (co-IP) studies using 3T3 cells and Xenopus oocytes co-expressing PC2 and TM-1 (or TM-1a) revealed in vivo association between the protein pairs. Furthermore, the in vivo interaction between the endogenous PC2 and TM-1 was demonstrated also by reciprocal co-IP using native human embryonic kidney cells and human adult kidney. Considering previous reports that TM-1 acts as a suppressor of neoplastic growth of transformed cells, it is possible that TM-1 contributes to cyst formation/growth when the anchorage of PC2 to the actin microfilament via TM-1 is altered.  相似文献   

20.
In Philadelphia chromosome-positive human leukemias, which include chronic myelogenous leukemia and some acute lymphocytic leukemias, the c-abl proto-oncogene on chromosome 9 becomes fused to the bcr gene on chromosome 22, and Bcr-Abl fusion proteins are produced. The Bcr sequences activate the Abl tyrosine kinase which is required for the transforming function of Bcr-Abl. The Bcr sequences also enhance an F-actin-binding activity associated with c-Abl. Here, we show that binding of c-Abl and Bcr-Abl proteins to actin filaments in vivo and in vitro is mediated by an evolutionarily conserved domain at the C-terminal end of c-Abl. The c-Abl F-actin-binding domain contains a consensus motif found in several other actin-crosslinking proteins. Mutations in the consensus motif are shown to abolish binding to F-actin. Bcr-Abl proteins unable to associate with F-actin have a reduced ability to transform Rat-1 fibroblasts and to abrogate the requirement for interleukin-3 in the lymphoblastoid cell line Ba/F3. In transformed cells, Bcr-Abl induces a redistribution of F-actin into punctate, juxtanuclear aggregates. The binding to actin filaments has important implications for the pathogenic and physiological functions of the Bcr-Abl and c-Abl proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号