首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignin is both the most abundant aromatic (phenolic) polymer and the second most abundant raw material.It is degraded and modified by bacteria in the natural world,and bacteria seem to play a leading role in decomposing lignin in aquatic ecosystems.Lignin-degrading bacteria approach the polymer by mechanisms such as tunneling,erosion,and cavitation.With the advantages of immense environmental adaptability and biochemical versatility,bacteria deserve to be studied for their ligninolytic potential.  相似文献   

2.
3.
为了研究漆酶/介体处理过程中,黄麻纤维木质素结构的变化,采用二氧六环水溶液抽提制取了黄麻纤维木质素,再用漆酶/介体对其处理,通过GPC、元素分析、酚羟基含量测定、红外光谱以及核磁共振氢谱分析了漆酶/介体处理后,黄麻纤维木质素结构的变化。结果表明:经漆酶/介体处理后,黄麻纤维木质素重均分子量和数均分子量减小,酚羟基、醇羟基以及甲氧基含量降低,羰基含量增加。  相似文献   

4.
The protoplast fusion technique was applied to construct a more efficient engineering microbial strain to degrade lignin by fusing two strains, Pseudomonas putida and Gordonia sp. At an initial lignin concentration of 900?mg/L, COD, BOD, TOC removal efficiencies increased from 69–76%, 69–72%, and 70–72% by the parent stains to 83%, 83%, and 83% of the fused strain, respectively. IR and HPLC analyses of the treated solution suggested that the fused strains were more capable of breaking the Cα–Cβ bonds of the benzene ring in lignin compared to its parent strains, yielding syringyls as the main product. GC–MS analysis was used to identify the release of three-types of lower molecular intermediates: ring-opening, monomer, and dipolymer products. The phenolic hydroxyl group in lignin was oxidized to carbonyls, followed by further degradation to acids and esters. The carboxyl group on the ether linkage that maintains the macromolecular structure of lignin was oxidized to acyls, which further led to depolymerization and the opening of benzene ring.  相似文献   

5.
Aims: The aim was to obtain evidences for lignin degradation by unicellular bacterium Comamonas sp. B‐9. Methods and Results: Comamonas sp. B‐9 was inoculated into kraft lignin‐mineral salt medium (KL‐MSM) at pH 7·0 and 30°C for 7 days of incubation. The bacterial growth, chemical oxygen demand (COD) reduction, secretion of ligninolytic enzymes and productions of low‐molecular‐weight compounds revealed that Comamonas sp. B‐9 was able to degrade kraft lignin (KL). COD in KL‐MSM reduced by 32% after 7 days of incubation. The maximum activities of manganese peroxidase (MnP) of 2903·2 U l?1 and laccase (Lac) of 1250 U l?1 were observed at 4th and 6th day, respectively. The low‐molecular‐weight compounds such as ethanediol, 3, 5‐dimethyl‐benzaldehyde and phenethyl alcohol were formed in the degradation of KL by Comamonas sp. B‐9 based on GC‐MS analysis. Conclusions: This study confirmed that Comamonas sp. B‐9 could utilize KL as a sole carbon source and degrade KL to low‐molecular‐weight compounds. Significance and Impact of the Study: Comamonas sp. B‐9 may be useful in the utilization and bioconversion of lignin and lignin‐derived aromatic compounds in biotechnological applications. Meanwhile, using Comamonas sp. B‐9 in treatment of wastewater in pulp and paper industry is a meaningful work.  相似文献   

6.
7.
8.
Abstract Laccase activity in ligninolytic cultures of Coriolus versicolor was inhibited by the addition of antibodies. The degree and rate of lignin degradation was unaffected by this inhibition in comparison with cultures which had normal laccase activity. Although experiments in vitro showed that milled wood lignin was depolymerised by laccase in the presence of hydrogen peroxide, and that this reaction was inhibited by antibody, it is concluded that this degradative reaction was not the function of laccase in vivo.  相似文献   

9.
Laccase, widely distributed in bacteria, fungi, and plants, catalyzes the oxidation of wide range of compounds. With regards to one of the important physiological functions, plant laccases are considered to catalyze lignin biosynthesis while fungal laccases are considered for lignin degradation. The present study was undertaken to explain this dual function of laccases using in-silico molecular docking and dynamics simulation approaches. Modeling and superimposition analyses of one each representative of plant and fungal laccases, namely, Populus trichocarpa and Trametes versicolor, respectively, revealed low level of similarity in the folding of two laccases at 3D levels. Docking analyses revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards from the active site of plant laccase. Stability of these complexes was further analyzed on the basis of binding energy which revealed significantly higher stability of fungal laccase with tetrameric compound than that of plant. The overall data suggested a situation favorable for the degradation of lignin polymer by fungal laccase while its synthesis by plant laccase.  相似文献   

10.
Kraft lignins (KL), bleached kraft lignins (BKL), and lignin sulfonates (LS) were prepared from synthetic 14C-lignins labeled in the aromatic nuclei or in the propyl side chains. These and control lignins (CL) were incubated with the lignin-decomposing white-rot fungus, Phanerochaete chrysosporium Burds., in a defined culture medium containing cellulose as growth substrate. Decomposition was monitored by measuring the 14CO2 evolved. Average percentages of the [ring-14C]- and [side chain-14C]-lignins, respectively, recovered as 14CO2 at the cessation of 14CO2 evolution were: KL, 41 and 31; BKL, 42 and 26; LS, 28 and 21; and CL, 26 and 24. Gel permeation chromatography of radiolabeled materials extracted from spent cultures showed that substantial degradation to nonvolatile products had occurred. The polymeric components in the extracts were further degraded in fresh cultures. These results indicate that industrial lignins are significantly bioalterable, and that under favorable conditions industrial lignins are substantially biodegradable.  相似文献   

11.
12.
13.
The biodegradation of anthracene-9, 10-diethanol by the ligninolytic fungus Phanerochaete chrysosporium, previously though to involve singlet oxygen, is shown to be catalyzed by lignin peroxidases. Veratryl alcohol stimulated the enzymatic degradation of anthracenediethanol, and anthracenediethanol inhibited enzymatic oxidation of veratryl alcohol. Competition for oxidation by lignin peroxidase is suggested as the mechanism of the inhibition of lignin biodegradation by anthracenediethanol and related anthracene derivatives.Abbreviations ADE anthracene-9,10-diethanol - AES anthracene-9,10-bisethanesulfonic acid - DHP dehydrogenative polymerizate - DMF N,N-dimethylformamide - EPX 9,10-endoperoxide of ADE - PMR proton magnetic resonance  相似文献   

14.
Several aromatic compounds increased initial lignin degradation rates in cultures of Phanerochaete chrysosporium. This activation was connected to increased H2O2 production and glucose oxidation rates. Veratryl alcohol, a natural secondary metabolite of P. chrysosporium, also activated the lignin-degrading system. In the presence of added veratryl alcohol the ligninolytic system appeared 6–8 h earlier than in reference cultures. This effect was only seen when lignin was added after the primary growth was completed because lignin itself also caused earlier appearance of the degradative system. In cultures which received no added lignin or veratryl alcohol the ligninolytic activity only appeared once the alcohol started to accumulate. The degradation patterns of veratryl alcohol and lignin were similar. The activity levels of lignin degradation and glucose oxidation could be regulated by veratryl alcohol concentration. It is suggested that either veratryl alcohol itself or a metabolite derived from it is actually responsible for the low levels of ligninolytic activity in glucose grown cultures.  相似文献   

15.
Mistletoe lignin was a typical angiosperm one based on the spectral (UV, IR, 13C-NMR) and functional group analyses, and on degradation products (nitrobenzene oxidation and acidolysis), the analytical results of which were compared with those of the host lignin. l-Phenylalanine-[U-14C] was efficiently incorporated into mistletoe lignin. Phenylalanine ammonia-lyase and cinnamate-4-hydroxylase were detected by incubation of the tissue slices under illumination. It was also found that O-methyltransferase activity of the crude homogenate catalysed the methylation of 5-hydroxyferulic but not the methylation of caffeic acid. However, the latter methylation activity could be recovered by purification. These results indicate that mistletoe lignin is synthesized independently from that of its host.  相似文献   

16.
综述了基因重组、原生质体融合、外源基因、降解酶和固相反应器等基因工程技术在降解农药中的研究及应用进展,提出了几种高效降解农药的基因工程菌的构建策略和构建手段。  相似文献   

17.
A number of 4-hydroxybenzylphenyl ethers and their acetates were synthesized as models for hardwood lignin and used as substrates in acid hydrolysis and enzymatic oxidation reactions. Under hydrolytic conditions, the acetates underwent ether cleavage at a slower rate than the free phenols. Evidence for carbonium ion intermediates is presented. Cleavage of the ether substrates by peroxidase—peroxide oxidation was much faster than by acid hydrolysis for all substrates except the acetates which did not react. Subsequent oxidation of the component parts of the ether substrates was selective: the syringyl moieties were oxidized in preference to the guaiacyl moieties. Electron spin resonance studies of the oxidation reaction showed that removal of the phenolic hydrogen atom was the first step, followed by quinone—methide formation. A mechanism is proposed to account for the oxidative degradation of the lignin models.  相似文献   

18.
刘瑞  郭琪  曹颖  徐刚  张丽  孙鹏  胡尚连  赵博 《微生物学通报》2024,51(6):2170-2181
【背景】竹子纤维素含量高,被认为是优质的生物精炼资源。然而,竹子中的木质素与纤维素结合紧密,降解木质素成为有效利用竹子纤维素的关键。【目的】筛选专一降解竹木质素的细菌,并探究其酶活活性及木质素降解效果。【方法】以木质素为唯一碳源的培养基进行初筛,苯胺蓝、刚果红培养基进行复筛,通过测定酶活性评估其木质素降解能力。通过扫描电镜、傅里叶变换红外光谱和X射线衍射分析竹子降解前后的形貌以及结构变化。【结果】从竹林中筛选分离出一株细菌XKG6,为食油假单胞菌(Pseudomonas oleovorans)。菌株XKG6分泌的漆酶、木质素过氧化物酶、锰过氧化物酶、滤纸酶和木聚糖酶活性最高分别为1 543.21、6 229.32、826.41、2 602.1和1 889.25 U/L。菌株XKG6降解碱木质素7 d后的降解率为14.04%。通过傅里叶变换红外光谱和扫描电镜发现竹木质素经菌株XKG6处理后结构有明显变化。【结论】本研究筛选获得了一株具有较强木质素降解能力的细菌,该菌株在降解竹木质素过程中保留了较多的纤维素,为纤维素资源的工业生产提供了潜在的替代菌株。  相似文献   

19.
20.
Summary The laccase activities of Penicillium simplicissimum H5 during solid-state fermentation with rice straw were studied. Degradation of lignocellulose was also followed. Results showed that all supplemental carbon sources inhibited the laccase activity in different degrees, while suitable concentrations of supplemental nitrogen sources remarkably enhanced the laccase activity. The enhancement of activity by the ordinary laccase inducers 2, 2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and xylidine was not observed in this study. Lignocellulose degradation was improved when laccase activity was relatively low, suggesting a polymerizing function of laccase in lignin degradation by P. simplicissimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号