首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant vacuolar H(+)-ATPase takes part in acidifying compartments of the endomembrane system including the secretory pathway and the vacuoles. The structural variability of the V-ATPase complex as well as its presence in different compartments and tissues involves multiple isoforms of V-ATPase subunits. Furthermore, a versatile regulation is essential to allow for organelle- and tissue-specific fine tuning. In this study, results from V-ATPase complex disassembly with a chaotropic reagent, immunodetection and in vivo fluorescence resonance energy transfer (FRET) analyses point to a regulatory mechanism in plants, which depends on energization and involves the stability of the peripheral stalks as well. Lowering of cellular ATP by feeding 2-deoxyglucose resulted in structural alterations within the V-ATPase, as monitored by changes in FRET efficiency between subunits VHA-E and VHA-C. Potassium iodide-mediated disassembly revealed a reduced stability of V-ATPase after 2-deoxyglucose treatment of the cells, but neither the complete V(1)-sector nor VHA-C was released from the membrane in response to 2-deoxyglucose treatment, precluding a reversible dissociation mechanism like in yeast. These data suggest the existence of a regulatory mechanism of plant V-ATPase by modification of the peripheral stator structure that is linked to the cellular energization state. This mechanism is distinct from reversible dissociation as reported for the yeast V-ATPase, but might represent an evolutionary precursor of reversible dissociation.  相似文献   

2.
The proton-translocating plant vacuolar H(+)-ATPase (VHA) is of prime importance for acidification of intracellular compartments and is essential for processes such as secondary activated transport, maintenance of ion homeostasis, and adaptation to environmental stress. Twelve genes have been identified that encode subunits of the functional V-ATPase complex. In this study, subunits c and a of the V-ATPase from the plant Mesembryanthemum crystallinum were fused to cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP), respectively, and were transiently coexpressed in protoplasts. Two-colour scanning confocal fluorescence microscopy demonstrates that the fusion proteins VHA-c-CFP and VHA-a-YFP are colocalized at the tonoplast, the plasmamembrane, and at endoplasmic membrane structures indicating expression in cytoplasmic vesicles. Furthermore, fluorescence resonance energy transfer (FRET) was used to visualize the interaction of VHA-c and VHA-a in vivo on the nanometer length scale. Excitation of CFP as donor fluorophore caused increased emission of YFP-fluorescence in protoplasts due to FRET. Our results give strong evidence for physical interaction of subunits c and a in living plant cells.  相似文献   

3.
4.
The vacuolar (H+)-ATPase (or V-ATPase) is a membrane protein complex that is structurally related to F1 and F0 ATP synthases. The V-ATPase is composed of an integral domain (V0) and a peripheral domain (V1) connected by a central stalk and up to three peripheral stalks. The number of peripheral stalks and the proteins that comprise them remain controversial. We have expressed subunits E and G in Escherichia coli as maltose binding protein fusion proteins and detected a specific interaction between these two subunits. This interaction was specific for subunits E and G and was confirmed by co-expression of the subunits from a bicistronic vector. The EG complex was characterized using size exclusion chromatography, cross-linking with short length chemical cross-linkers, circular dichroism spectroscopy, and electron microscopy. The results indicate a tight interaction between subunits E and G and revealed interacting helices in the EG complex with a length of about 220 angstroms. We propose that the V-ATPase EG complex forms one of the peripheral stators similar to the one formed by the two copies of subunit b in F-ATPase.  相似文献   

5.
X Li  R T Su  H T Hsu    H Sze 《The Plant cell》1998,10(1):119-130
Acidification of endomembrane compartments by the vacuolar-type H(+)-ATPase (V-ATPase) is central to many cellular processes in eukaryotes, including osmoregulation and protein sorting. The V-ATPase complex consists of a peripheral sector (V1) and a membrane integral sector (V0); however, it is unclear how the multimeric enzyme is assembled. A 64-kD polypeptide that had copurified with oat V-ATPase subunits has been identified as calnexin, an integral protein on the endoplasmic reticulum. To determine whether calnexin interacted physically with the V-ATPase, microsomal membranes were Triton X-100 solubilized, and the protein-protein interaction was analyzed by coimmunoprecipitation. Monoclonal antibodies against calnexin precipitated both calnexin and V-ATPase subunits, including A and B and those of 44, 42, 36, 16, and 13 kD. A monoclonal antibody against subunit A precipitated the entire V-ATPase complex as well as calnexin and BiP, an endoplasmic reticulum lumen chaperone. The results support our hypothesis that both calnexin and BiP act as molecular chaperones in the folding and assembly of newly synthesized V1V0-ATPases at the endoplasmic reticulum.  相似文献   

6.
The yeast vacuolar proton-translocating ATPase (V-ATPase) is a multisubunit complex comprised of peripheral membrane subunits involved in ATP hydrolysis and integral membrane subunits involved in proton pumping. The yeast vma21 mutant was isolated from a screen to identify mutants defective in V-ATPase function. vma21 mutants fail to assemble the V-ATPase complex onto the vacuolar membrane: peripheral subunits accumulate in the cytosol and the 100-kDa integral membrane subunit is rapidly degraded. The product of the VMA21 gene (Vma21p) is an 8.5-kDa integral membrane protein that is not a subunit of the purified V-ATPase complex but instead resides in the endoplasmic reticulum. Vma21p contains a dilysine motif at the carboxy terminus, and mutation of these lysine residues abolishes retention in the endoplasmic reticulum and results in delivery of Vma21p to the vacuole, the default compartment for yeast membrane proteins. Our findings suggest that Vma21p is required for assembly of the integral membrane sector of the V-ATPase in the endoplasmic reticulum and that the unassembled 100-kDa integral membrane subunit present in delta vma21 cells is rapidly degraded by nonvacuolar proteases.  相似文献   

7.
The vacuolar (H+)-ATPase: subunit arrangement and in vivo regulation   总被引:1,自引:0,他引:1  
The V-ATPases are responsible for acidification of intracellular compartments and proton transport across the plasma membrane. They play an important role in both normal processes, such as membrane traffic, protein degradation, urinary acidification, and bone resorption, as well as various disease processes, such as viral infection, toxin killing, osteoporosis, and tumor metastasis. V-ATPases contain a peripheral domain (V1) that carries out ATP hydrolysis and an integral domain (V0) responsible for proton transport. V-ATPases operate by a rotary mechanism involving both a central rotary stalk and a peripheral stalk that serves as a stator. Cysteine-mediated cross-linking has been used to localize subunits within the V-ATPase complex and to investigate the helical interactions between subunits within the integral V0 domain. An essential property of the V-ATPases is the ability to regulate their activity in vivo. An important mechanism of regulating V-ATPase activity is reversible dissociation of the complex into its component V1 and V0 domains. The dependence of reversible dissociation on subunit isoforms and cellular environment has been investigated. Qi and Wang contributed equally to this work.  相似文献   

8.
The vacuolar H(+)-ATPase (V-ATPase) is responsible for acidifying endomembrane compartments in eukaryotic cells. Although a 100 kDa subunit is common to many V-ATPases, it is not detected in a purified and active pump from oat (Ward J.M. and Sze H. (1992) Plant Physiol. 99, 925-931). A 100 kDa subunit of the yeast V-ATPase is encoded by VPH1. Immunostaining revealed a Vph1p-related polypeptide in oat membranes, thus the role of this polypeptide was investigated. Membrane proteins were detergent-solubilized and size-fractionated, and V-ATPase subunits were identified by immunostaining. A 100 kDa polypeptide was not associated with the fully assembled ATPase; however, it was part of an approximately 250 kDa V0 complex including subunits of 36 and 16 kDa. Immunostaining with an affinity-purified antibody against the oat 100 kDa protein confirmed that the polypeptide was part of a 250 kDa complex and that it had not degraded in the approximately 670 kDa holoenzyme. Co-immunoprecipitation with a monoclonal antibody against A subunit indicated that peripheral subunits exist as assembled V1 subcomplexes in the cytosol. The free V1 subcomplex became attached to the detergent-solubilized V0 sector after mixing, as subunits of both sectors were co-precipitated by an antibody against subunit A. The absence of this polypeptide from the active enzyme suggests that, unlike the yeast Vph1p, the 100 kDa polypeptide in oat is not required for activity. Its association with the free Vo subcomplex would support a role of this protein in V-ATPase assembly and perhaps in sorting.  相似文献   

9.
10.
The V-ATPases are ATP-dependent proton pumps present in both intracellular compartments and the plasma membrane. They function in such processes as membrane traffic, protein degradation, renal acidification, bone resorption and tumor metastasis. The V-ATPases are composed of a peripheral V1 domain responsible for ATP hydrolysis and an integral V0 domain that carries out proton transport. Our recent work has focused on structural analysis of the V-ATPase complex using both cysteine-mediated cross-linking and electron microscopy. For cross-linking studies, unique cysteine residues were introduced into structurally defined sites within the B and C subunits and used as points of attachment for the photoactivated cross-linking reagent MBP. Disulfide mediated cross-linking has also been used to define helical contact surfaces between subunits within the integral V0 domain. With respect to regulation of V-ATPase activity, we have investigated the role that intracellular environment, luminal pH and a unique domain of the catalytic A subunit play in controlling reversible dissociation in vivo.  相似文献   

11.
The vacuolar (H+)-ATPases (V-ATPases) are multisubunit complexes responsible for ATP-dependent proton transport across both intracellular and plasma membranes. The V-ATPases are composed of a peripheral domain (V1) that hydrolyzes ATP and an integral domain (V0) that conducts protons. Dissociation of V1 and V0 is an important mechanism of controlling V-ATPase activity in vivo. The crystal structure of subunit C of the V-ATPase reveals two globular domains connected by a flexible linker (Drory, O., Frolow, F., and Nelson, N. (2004) EMBO Rep. 5, 1-5). Subunit C is unique in being released from both V1 and V0 upon in vivo dissociation. To localize subunit C within the V-ATPase complex, unique cysteine residues were introduced into 25 structurally defined sites within the yeast C subunit and used as sites of attachment of the photoactivated sulfhydryl reagent 4-(N-maleimido)benzophenone (MBP). Analysis of photocross-linked products by Western blot reveals that subunit E (part of V1) is in close proximity to both the head domain (residues 166-263) and foot domain (residues 1-151 and 287-392) of subunit C. By contrast, subunit G (also part of V1) shows cross-linking to only the head domain whereas subunit a (part of V0) shows cross-linking to only the foot domain. The localization of subunit C to the interface of the V1 and V0 domains is consistent with a role for this subunit in controlling assembly of the V-ATPase complex.  相似文献   

12.
V-ATPases are membrane protein complexes that pump protons in the lumen of various subcellular compartments at the expense of ATP. Proton pumping is done by a rotary mechanism that requires a static connection between the membrane pumping domain (V(0)) and the extrinsic catalytic head (V(1)). This static connection is composed of several known subunits of the V-ATPase, but their location and topological relationships are still a matter of controversy. Here, we propose a model for the V-ATPase of Neurospora crassa on the basis of single-particle analysis by electron microscopy. Comparison of the resulting map to that of the A-ATPase from Thermus thermophilus allows the positioning of two subunits in the static connecting region that are unique to eukaryotic V-ATPases (C and H). These two subunits seem to be located on opposite sides of a semicircular arrangement of the peripheral connecting elements, suggesting a role in stabilizing the stator in V-ATPases.  相似文献   

13.
The subunit architecture of the yeast vacuolar ATPase (V-ATPase) was analyzed by single particle transmission electron microscopy and electrospray ionization (ESI) tandem mass spectrometry. A three-dimensional model of the intact V-ATPase was calculated from two-dimensional projections of the complex at a resolution of 25 angstroms. Images of yeast V-ATPase decorated with monoclonal antibodies against subunits A, E, and G position subunit A within the pseudo-hexagonal arrangement in the V1, the N terminus of subunit G in the V1-V0 interface, and the C terminus of subunit E at the top of the V1 domain. ESI tandem mass spectrometry of yeast V1-ATPase showed that subunits E and G are most easily lost in collision-induced dissociation, consistent with a peripheral location of the subunits. An atomic model of the yeast V-ATPase was generated by fitting of the available x-ray crystal structures into the electron microscopy-derived electron density map. The resulting atomic model of the yeast vacuolar ATPase serves as a framework to help understand the role the peripheral stalk subunits are playing in the regulation of the ATP hydrolysis driven proton pumping activity of the vacuolar ATPase.  相似文献   

14.
The plant vacuole is acidified by a complex multimeric enzyme, the vacuole-type H+-ATPase (V-ATPase). The initial association of ATPase subunits on membranes was studied using an in vitro assembly assay. The V-ATPase assembled onto microsomes when V-ATPase subunits were supplied. However, when the A or B subunit or the proteolipid were supplied individually, only the proteolipid associated with membranes. By using poly(A+) RNA depleted in the B subunit and proteolipid subunit mRNA, we demonstrated A subunit association with membranes at substoichiometric amounts of the B subunit or the 16-kD proteolipid. These data suggest that poly(A+) RNA-encoded proteins are required to catalyze the A subunit membrane assembly. Initial events were further studied by in vivo protein labeling. Consistent with a temporal ordering of V-ATPase assembly, membranes contained only the A subunit at early times; at later times both the A and B subunits were found on the membranes. A large-mass ATPase complex was not efficiently formed in the absence of membranes. Together, these data support a model whereby the A subunit is first assembled onto the membrane, followed by the B subunit.  相似文献   

15.
The vacuolar ATPase (V-ATPase) is composed of a soluble catalytic domain and an integral membrane domain connected by a central stalk and a few peripheral stalks. The number and arrangement of the peripheral stalk subunits remain controversial. The peripheral stalk of Na+-translocating V-ATPase from Enterococcus hirae is likely to be composed of NtpE and NtpF (corresponding to subunit G of eukaryotic V-ATPase) subunits together with the N-terminal hydrophilic domain of NtpI (corresponding to subunit a of eukaryotic V-ATPase). Here we purified NtpE, NtpF, and the N-terminal hydrophilic domain of NtpI (NtpI(Nterm)) as separate recombinant His-tagged proteins and examined interactions between these three subunits by pulldown assay using one tagged subunit, CD spectroscopy, surface plasmon resonance, and analytical ultracentrifugation. NtpI(Nterm) directly bound NtpF, but not NtpE. NtpE bound NtpF tightly. NtpI(Nterm) bound the NtpE-F complex stronger than NtpF only, suggesting that NtpE increases the binding affinity between NtpI(Nterm) and NtpF. Purified NtpE-F-I(Nterm) complex appeared to be monodisperse, and the molecular masses estimated from analytical ultracentrifugation and small-angle x-ray scattering (SAXS) indicated that the ternary complex is formed with a 1:1:1 stoichiometry. A low resolution structure model of the complex produced from the SAXS data showed an elongated "L" shape.  相似文献   

16.
The Saccharomyces cerevisiae vacuolar proton-translocating ATPase (V-ATPase) is composed of 14 subunits distributed between a peripheral V1 subcomplex and an integral membrane V0 subcomplex. Genome-wide screens have led to the identification of the newest yeast V-ATPase subunit, Vma9p. Vma9p (subunit e) is a small hydrophobic protein that is conserved from fungi to animals. We demonstrate that disruption of yeast VMA9 results in the failure of V1 and V0 V-ATPase subunits to assemble onto the vacuole and in decreased levels of the subunit a isoforms Vph1p and Stv1p. We also show that Vma9p is an integral membrane protein, synthesized and inserted into the endoplasmic reticulum (ER), which then localizes to the limiting membrane of the vacuole. All V0 subunits and V-ATPase assembly factors are required for Vma9p to efficiently exit the ER. In the ER, Vma9p and the V0 subunits interact with the V-ATPase assembly factor Vma21p. Interestingly, the association of Vma9p with the V0-Vma21p assembly complex is disrupted with the loss of any single V0 subunit. Similarly, Vma9p is required for V0 subunits Vph1p and Vma6p to associate with the V0-Vma21p complex. In contrast, the proteolipids associate with Vma21p even in the absence of Vma9p. These results demonstrate that Vma9p is an integral membrane subunit of the yeast V-ATPase V0 subcomplex and suggest a model for the arrangement of polypeptides within the V0 subcomplex.  相似文献   

17.
18.
Vacuolar H(+)-ATPases (V-ATPases) are highly conserved proton pumps that couple hydrolysis of cytosolic ATP to proton transport out of the cytosol. Although it is generally believed that V-ATPases transport protons by a rotary catalytic mechanism analogous to that used by F(1)F(0)-ATPases, the structure and subunit composition of the central or peripheral stalk of the multisubunit complex are not well understood. We searched for proteins that bind to the E subunit of V-ATPase using the yeast two-hybrid assay and identified the H subunit as an interacting partner. Physical association between the E and H subunits of V-ATPase was confirmed in vitro by precipitation assays. Deletion mapping analysis revealed that a 78-amino acid fragment at the amino terminus of the E subunit was sufficient for binding to the H subunit. Expression of the amino-terminal fragments of the E subunits from human and yeast as dominant-negative mutants resulted in dramatic decreases in bafilomycin A(1)-sensitive ATP hydrolysis and proton transport activities of V-ATPase. Our data demonstrate the physiological significance of the interaction between the E and H subunits of V-ATPase and extend previous studies on the arrangement of subunits on the peripheral stalk of V-ATPase.  相似文献   

19.
The vacuolar-type H(+)-ATPase (V-ATPase) proton pump is a macromolecular complex composed of at least 14 subunits organized into two functional domains, V(1) and V(0). The complex is located on the ruffled border plasma membrane of bone-resorbing osteoclasts, mediating extracellular acidification for bone demineralization during bone resorption. Genetic studies from mice to man implicate a critical role for V-ATPase subunits in osteoclast-related diseases including osteopetrosis and osteoporosis. Thus, the V-ATPase complex is a potential molecular target for the development of novel anti-resorptive agents useful for the treatment of osteolytic diseases. Here, we review the current structure and function of V-ATPase subunits, emphasizing their exquisite roles in osteoclastic function. In addition, we compare several distinct classes of V-ATPase inhibitors with specific inhibitory effects on osteoclasts. Understanding the structure-function relationship of the osteoclast V-ATPase may lead to the development of osteoclast-specific V-ATPase inhibitors that may serve as alternative therapies for the treatment of osteolytic diseases.  相似文献   

20.
V-ATPase是多亚基复合蛋白,其c亚基负责V-ATPase的组装及质子通道的形成。本研究拟分析盐胁迫下过表达ThVHAc1基因拟南芥V-ATPase各亚基的表达,探讨过表达外源c亚基对拟南芥V-ATPase全酶响应盐胁迫表达模式的影响。实时荧光定量PCR结果显示,盐胁迫下,过表达外源ThVHAc1拟南芥V-ATPase 28个亚基的表达发生了明显改变,且拟南芥5个c亚基的表达均不同程度的被抑制。表明外源ThVHAc1基因能影响拟南芥V-ATPase各亚基的表达以调节V-ATPase全酶的活性,但各亚基的表达模式与V-ATPase活性非简单对应关系,各亚基互相协调决定V-ATPase活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号