首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang M  Li X  Lu Y  Fang X  Chen Q  Xing M  He J 《Mutation research》2011,720(1-2):62-66
The aim of the present study was to evaluate the genotoxic effects induced by native and active bentonite particles (BPs) on human B lymphoblast cells using comet assay and cytokinesis-block micronucleus (CBMN) assay in vitro. The cells were exposed to BPs at the concentrations of 30, 60, 120 and 240μg/ml for 24, 48 and 72h, respectively. The quartz contents of native and active BPs were 6.80±0.20 and 6.50±0.10%, respectively. Gypsum and DQ-12 quartz served as negative and positive controls. The results of comet assay showed that DNA damage induced by native and active BPs was significantly higher than that induced by gypsum control (P<0.05 or <0.01), and increased with exposure concentration and duration. When the cells were exposed to BPs at the doses of 120 and 240μg/ml for 72h, DNA damage induced by active BPs and native BPs was significantly higher than that induced by DQ-12 quartz (P<0.01), and DNA damage induced by active BPs enhanced significantly, as compared with native BPs (P<0.01). The results of CBMN assay demonstrated that both native BPs and active BPs could induce significant micronuclei, as compared with gypsum control (P<0.05 or <0.01). However, there was no significant difference of micronucleus frequency (MNF) among native BPs, active BPs and DQ-12 quartz. The water-soluble fractions from two kinds of BPs did not induce significant DNA damage and micronuclei. These findings indicated that the genotoxicity induced by active BPs and native BPs could be detected in comet assay and CBMN assay in vitro, the insoluble particle fractions from BPs may play a main role in the genotoxic effects induced by BPs.  相似文献   

2.
Lou J  He J  Zheng W  Jin L  Chen Z  Chen S  Lin Y  Xu S 《Mutation research》2007,617(1-2):104-110
The aim of present investigation was to study the genetic instability in peripheral lymphocytes of lung cancer patients. The micronucleus (MN) assay and comet assay were simultaneously used to detect the spontaneous genetic change and ionizing irradiation (IR) induced genetic damage in peripheral lymphocytes from 36 lung cancer patients and 30 controls. In MN assay, the results of both two indicators, micronucleated cell frequency (MCF) and micronucleus frequency (MNF), indicated that the average values of MCF, MNF and IR-induced MCF, MNF of lung cancer patients were 9.25+/-0.58, 10.17+/-0.72, 66.14+/-2.07 and 75.64+/-2.34 per thousand, respectively, which were significantly higher than those (6.10+/-0.65, 6.60+/-0.74, 60.50+/-1.71 and 67.60+/-2.13 per thousand) of controls (P<0.05 or 0.01). In comet assay, the results of mean tail moment (MTM) and IR-MTM showed 0.84+/-0.07 and 1.09+/-0.11, respectively, which were significantly higher than those (0.60+/-0.05 and 0.70+/-0.10) of controls (P<0.05). However, the difference between lung cancer group and control group for the mean tail length (MTL) and IR-MTL was not significant (P>0.05). The results of present investigation indicated that the genetic instability in peripheral lymphocytes of 36 lung cancer patients was significantly higher than that of controls.  相似文献   

3.
A study was conducted to evaluate the genotoxic effect of occupational exposure to formaldehyde on pathology and anatomy laboratory workers. The level of exposure to formaldehyde was determined by use of passive air-monitoring badges clipped near the breathing zone of 59 workers for a total sampling time of 15min or 8h. To estimate DNA damage, a chemiluminescence microplate assay was performed on 57 workers before and after a 1-day exposure. Assessment of chromosomal damage was carried out by use of the cytokinesis-blocked micronucleus assay (CBMN) in peripheral lymphocytes of 59 exposed subjects in comparison with 37 controls matched for gender, age, and smoking habits. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 18 exposed subjects and 18 control subjects randomized from the initial populations. Mean concentrations of formaldehyde were 2.0 (range <0.1-20.4ppm) and 0.1ppm (range <0.1-0.7ppm) for the sampling times of 15min and 8h, respectively. No increase in DNA damage was detected in lymphocytes after a one-workday exposure. However, the frequency of binucleated micronucleated cells was significantly higher in pathologists/anatomists than in controls (16.9 per thousand+/-9.3 versus 11.1 per thousand+/-6.0, P=0.001). The frequency of centromeric micronuclei was higher in exposed subjects than in controls (17.3 per thousand+/-11.5 versus 10.3 per thousand+/-7.1) but the difference was not significant. The frequency of monocentromeric micronuclei was significantly higher in exposed subjects than in controls (11.0 per thousand+/-6.2 versus 3.1 per thousand+/-2.4, P<0.001), while that of the acentromeric micronuclei was similar in exposed subjects and controls (3.7 per thousand+/-4.2 and 4.1 per thousand+/-2.7, respectively). The enhanced chromosomal damage (particularly chromosome loss) in peripheral lymphocytes of pathologists/anatomists emphasizes the need to develop safety programs.  相似文献   

4.
Johnson MK  Loo G 《Mutation research》2000,459(3):211-218
Phenolic phytochemicals are thought to promote optimal health, partly via their antioxidant effects in protecting cellular components against free radicals. The aims of this study were to assess the free radical-scavenging activities of several common phenolic phytochemicals, and then, the effects of the most potent phenolic phytochemicals on oxidative damage to DNA in cultured cells. Epigallocatechin gallate (EGCG) scavenged the stable free radical, alpha,alpha-diphenyl-beta-picrylhydrazyl (DPPH), most effectively, while quercetin was about half as effective. Genistein, daidzein, hesperetin, and naringenin did not scavenge DPPH appreciably. Jurkat T-lymphocytes that were pre-incubated with relatively low concentrations of either EGCG or quercetin were less susceptible to DNA damage induced by either a reactive oxygen species or a reactive nitrogen species, as evaluated by the comet assay. More specifically, control cells had a comet score of only 17+/-5, indicating minimal DNA damage. Cells challenged with 25 microM hydrogen peroxide (H(2)O(2)) or 100 microM 3-morpholinosydnonimine (SIN-1, a peroxynitrite generator) had comet scores of 188+/-6 and 125+/-12, respectively, indicating extensive DNA damage. The H(2)O(2)-induced DNA damage was inhibited with 10 microM of either EGCG (comet score: 113+/-23) or quercetin (comet score: 82+/-7). Similarly, the SIN-1-mediated DNA damage was inhibited with 10 microM of either EGCG (comet score: 79+/-13) or quercetin (comet score: 72+/-17). In contrast, noticeable DNA damage was induced in Jurkat T-lymphocytes by incubating with 10-fold higher concentrations (i.e., 100 microM) of either EGCG (comet score: 56+/-17) or quercetin (comet score: 64+/-13) by themselves. Collectively, these data suggest that low concentrations of EGCG and quercetin scavenged free radicals, thereby inhibiting oxidative damage to cellular DNA. But, high concentrations of either EGCG or quercetin alone induced cellular DNA damage.  相似文献   

5.
Increased micronucleated cell rates, dicentric chromosomes, and other chromosomal damages have been reported in lymphocytes of cancer patients prior to the initiation of chemotherapy, and/or radiotherapy. The cause of these chromosomal damages in these lymphocytes remains unclear. In the present work, we investigated whether these micronuclei mainly reflect structural or numerical chromosomal aberrations by applying the cytokinesis-blocked micronucleus (CBMN) assay in combination with fluorescent in situ hybridization (FISH) of a DNA centromeric probe on blood samples of 10 untreated cancer patients (UCPs), and 10 healthy subjects (HSs). Micronucleated binucleated lymphocyte rate was significantly increased in patients (mean+/-S.D.: 19.0 per thousand +/-14.1 versus 9.2 per thousand +/-4.6 in controls). Trinucleated cytokinesis-blocked cells were not significantly higher in patients than in controls. Acentromeric, centromeric, and multicentromeric micronucleus levels were two-fold higher in patients than in controls, but the difference was significant only with acentromeric micronuclei. The percentage of micronuclei containing one or more centromeres averaged 69.2, and 71.5% in patients, and controls, respectively. The percentage of micronuclei containing several centromeres was 44.7% in patients, and 54.6% in controls. Among centromere-positive micronuclei, the percentage of micronuclei containing several centromeres averaged 59.7% in patients, and 75.4% in controls. These results indicate that genetic instability in peripheral blood lymphocytes of UCPs occurs because of enhanced chromosome breakage. However, a substantial proportion of this genetic instability occurs because of defects in chromosome segregation.  相似文献   

6.
Industrial radiography is the process of using either gamma-emitting radionuclide sources or X-ray machines to examine the safety of industrial materials. Industrial radiographers are among the radiation workers who receive the highest individual occupational radiation doses. To assess occupationally induced chromosomal damage, we performed the cytokinesis-block micronucleus (CBMN) assay in peripheral lymphocytes of 29 male industrial radiographers, exposed to ionizing radiation for 12.8 years+/-11.2, in comparison with 24 gender-, age-, and smoking habits-matched controls. The CBMN assay was combined with fluorescent in situ hybridization with a pan-centromeric DNA probe in 17 exposed subjects and 17 controls randomized from the initial populations. The mean cumulative equivalent dose, recorded by film dosimeters, was 67.2 mSv+/-49.8 over the past 5 years. The mean micronucleated binucleated cell rate (MCR) was significantly higher in the industrial radiographers than in the controls (10.7 per thousand +/-5.2 versus 6.6 per thousand +/-3.1, P=0.009); this difference was due to a significantly higher frequency of centromere-negative micronuclei (C-MN) in exposed subjects than in controls (8.5 per thousand +/-4.9 versus 2.2 per thousand +/-1.6, P<0.001). The two populations did not significantly differ in centromere-positive micronuclei (C+MN) frequency. These findings demonstrate a clastogenic effect in lymphocytes of industrial radiographers. MCR significantly positively correlated with age in the two groups. After correction for the age effect, MCR did not correlate with duration of occupational exposure. No correlation between radiation doses and MCR, C-MN, and C+MN frequencies was observed. In addition to physical dosimetry records, the enhanced chromosomal damage in lymphocytes of industrial radiographers emphasizes the importance of radiation safety programs.  相似文献   

7.
He JL  Chen WL  Jin LF  Jin HY 《Mutation research》2000,469(2):223-231
The genotoxic effects of X-ray radiation on human lymphocytes were measured using the single cell gel electrophoresis (SCGE) assay (comet assay) and the cytokinesis-blocked micronucleus (CBMN) test; both were carried out in vitro on isolated human lymphocytes in order to compare the relationship and sensitivity of these two detecting methods. The radiation-doses were 0.00, 0.02, 0.05, 0.10, 0.25, 0.50, 1.00 and 2.00 Gy. In the comet assay, the average comet length (38.6+/-0.8 microm) of 0.05 Gy was significantly longer than that (29.4+/-1.1 microm) of 0 Gy (P<0.01), moreover, the average comet length increased with the dose of X-ray radiation. In the CBMN, both the average micronucleus rate (MN) and micronucleated cell rate (MNC) of 0.05 Gy were 11.5+/-4.5 per thousand, which showed no difference with that (7.5+/-0.5 per thousand) of 0 Gy (P>0.05). The lowest dose, which induced significant increase of average MN and MNC, was 0.25 Gy. The average MN and MNC rates increased with radiation-dose. The results showed that there was correlation between SCGE and CBMN, and the sensitivity of SCGE was significantly higher than that of CBMN.  相似文献   

8.
The in vitro micronucleus technique   总被引:46,自引:0,他引:46  
Fenech M 《Mutation research》2000,455(1-2):81-95
The study of DNA damage at the chromosome level is an essential part of genetic toxicology because chromosomal mutation is an important event in carcinogenesis. The micronucleus assays have emerged as one of the preferred methods for assessing chromosome damage because they enable both chromosome loss and chromosome breakage to be measured reliably. Because micronuclei can only be expressed in cells that complete nuclear division a special method was developed that identifies such cells by their binucleate appearance when blocked from performing cytokinesis by cytochalasin-B (Cyt-B), a microfilament-assembly inhibitor. The cytokinesis-block micronucleus (CBMN) assay allows better precision because the data obtained are not confounded by altered cell division kinetics caused by cytotoxicity of agents tested or sub-optimal cell culture conditions. The method is now applied to various cell types for population monitoring of genetic damage, screening of chemicals for genotoxic potential and for specific purposes such as the prediction of the radiosensitivity of tumours and the inter-individual variation in radiosensitivity. In its current basic form the CBMN assay can provide, using simple morphological criteria, the following measures of genotoxicity and cytotoxicity: chromosome breakage, chromosome loss, chromosome rearrangement (nucleoplasmic bridges), cell division inhibition, necrosis and apoptosis. The cytosine-arabinoside modification of the CBMN assay allows for measurement of excision repairable lesions. The use of molecular probes enables chromosome loss to be distinguished from chromosome breakage and importantly non-disjunction in non-micronucleated binucleated cells can be efficiently measured. The in vitro CBMN technique, therefore, provides multiple and complementary measures of genotoxicity and cytotoxicity which can be achieved with relative ease within one system. The basic principles and methods (including detailed scoring criteria for all the genotoxicity and cytotoxicity end-points) of the CBMN assay are described and areas for future development identified.  相似文献   

9.
To study the human genetic damage induced by vincristine (VCR), the cytogenetic effects in workers occupationally exposed to vincristine were studied with micronucleus (MN) test, comet assay, hypoxantinepho-guanine phosphoribosyl-transferase (hprt) gene mutation assay and T-cells receptor (TCR) gene mutation assay. Fresh peripheral blood samples were collected from the workers and controls. Fifteen workers from a plant producing antineoplastic drug (vincristine) and 15 controls were matched according to age, gender and smoking. The results of MN test showed that the mean micronuclei rate (MNR) and mean micronucleated cells rate (MCR) in 15 workers were 17.80+/-1.88 per thousand and 13.67+/-1.56 per thousand, respectively, which were significantly higher than those (3.73+/-0.80 per thousand and 3.13+/-0.59 per thousand) in controls (P<0.01). It was found in the comet assay that the mean tail length (MTL) of 15 workers and 15 controls were 1.72+/-0.15 microm and 0.71+/-0.01 microm, respectively, there was significant difference between workers and controls for MTL (P<0.05), but the difference between the mean tail moment (MTM, 0.29+/-0.03) of 15 workers and MTM (0.17+/-0.05) of 15 controls was not significant (P>0.05). The results of hprt gene mutation assay showed that the average mutation frequency of hprt (Mf-hprt) in workers was 1.03+/-0.02 per thousand, which was significantly higher than that (0.87+/-0.01 per thousand) in controls (P<0.05). Meanwhile, the results of TCR gene mutation assay indicated that Mfs-TCR of workers and controls were 2.52+/-0.34 x 10(-4) and 1.51+/-0.11 x 10(-4), respectively, there was a significant difference between workers and controls (P<0.01). It is found in the results of our study that the genetic damage is detectable in 15 workers occupationally exposed to vincristine.  相似文献   

10.
Human blood cultures were exposed to a 1.9 GHz continuous-wave (CW) radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) of 0.0, 0.1, 0.26, 0.92, 2.4 and 10 W/kg were achieved, and the temperature within the cultures during a 2-h exposure was maintained at 37.0 +/- 0.5 degrees C. Concurrent negative (incubator) and positive (1.5 Gy (137)Cs gamma radiation) control cultures were run for each experiment. DNA damage was quantified immediately after RF-field exposure using the alkaline comet assay, and four parameters (tail ratio, tail moment, comet length and tail length) were used to assess DNA damage for each comet. No evidence of increased primary DNA damage was detected by any parameter for RF-field-exposed cultures at any SAR tested. The formation of micronuclei in the RF-field-exposed blood cell cultures was assessed using the cytokinesis-block micronucleus assay. There was no significant difference in the binucleated cell frequency, incidence of micronucleated binucleated cells, or total incidence of micronuclei between any of the RF-field-exposed cultures and the sham-exposed controls at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz CW RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

11.
One of the risks of prolonged manned space flight is the exposure of astronauts to radiation from galactic cosmic rays, which contain heavy ions such as (56)Fe. To study the effects of such exposures, experiments were conducted at the Brookhaven National Laboratory by exposing Wistar rats to high-mass, high-Z, high-energy (HZE) particles using the Alternating Gradient Synchrotron (AGS). The biological effectiveness of (56)Fe ions (1000 MeV/nucleon) relative to low-LET gamma rays and high-LET alpha particles for the induction of chromosome damage and micronuclei was determined. The mitotic index and the frequency of chromosome aberrations were evaluated in bone marrow cells, and the frequency of micronuclei was measured in cells isolated from the trachea and the deep lung. A marked delay in the entry of cells into mitosis was induced in the bone marrow cells that decreased as a function of time after the exposure. The frequencies of chromatid aberrations and micronuclei increased as linear functions of dose. The frequency of chromosome aberrations induced by HZE particles was about 3.2 times higher than that observed after exposure to (60)Co gamma rays. The frequency of micronuclei in rat lung fibroblasts, lung epithelial cells, and tracheal epithelial cells increased linearly, with slopes of 7 x 10(-4), 12 x 10(-4), and 11 x 10(-4) micronuclei/binucleated cell cGy(-1), respectively. When genetic damage induced by radiation from (56)Fe ions was compared to that from exposure to (60)Co gamma rays, (56)Fe-ion radiation was between 0.9 and 3.3 times more effective than (60)Co gamma rays. However, the HZE-particle exposures were only 10-20% as effective as radon in producing micronuclei in either deep lung or tracheal epithelial cells. Using microdosimetric techniques, we estimated that 32 cells were hit by delta rays for each cell that was traversed by the primary HZE (56)Fe particle. These calculations and the observed low relative effectiveness of the exposure to HZE particles suggest that at least part of the cytogenetic damage measured was caused by the delta rays. Much of the energy deposited by the primary HZE particles may result in cell killing and may therefore be "wasted" as far as production of detectable micronuclei is concerned. The role of wasted energy in studies of cancer induction may be important in risk estimates for exposure to HZE particles.  相似文献   

12.
Blood cultures from human volunteers were exposed to an acute 1.9 GHz pulse-modulated radiofrequency (RF) field for 2 h using a series of six circularly polarized, cylindrical waveguides. Mean specific absorption rates (SARs) ranged from 0 to 10 W/kg, and the temperature within the cultures during the exposure was maintained at 37.0 +/- 0.5 degrees C. DNA damage was quantified in leukocytes by the alkaline comet assay and the cytokinesis-block micronucleus assay. When compared to the sham-treated controls, no evidence of increased primary DNA damage was detected by any parameter for any of the RF-field-exposed cultures when evaluated using the alkaline comet assay. Furthermore, no significant differences in the frequency of binucleated cells, incidence of micronucleated binucleated cells, or total incidence of micronuclei were detected between any of the RF-field-exposed cultures and the sham-treated control at any SAR tested. These results do not support the hypothesis that acute, nonthermalizing 1.9 GHz pulse-modulated RF-field exposure causes DNA damage in cultured human leukocytes.  相似文献   

13.
Ye X  Yan W  Xie H  Zhao M  Ying C 《Mutation research》2005,588(1):22-27
The evidence for genotoxic potential of formaldehyde (FA) in humans is insufficient and conflicting. We previously reported a higher frequency of micronuclei in nasal and oral exfoliative cells from students exposed to formaldehyde vapor for short-term. To further evaluate the genetic effects of long-term occupational exposure to FA and short-term exposure to FA of indoor sources, the frequencies of micronuclei (MN) in nasal mucosa cells, sister chromatid exchanges (SCEs) of peripheral lymphocytes, and the lymphocyte subsets were evaluated in 18 non-smoking workers (mean exposure duration was 8.6 years) in an FA factory and 16 non-smoking waiters exposed to FA for 12 weeks in a ballroom. A non-smoking student group without occupational exposure (n=23) to FA was used as control. The 8h time-weighted average (TWA) concentrations of formaldehyde was 0.985+/-0.286 mg/m3 with the ceiling exposure concentration of 1.694 mg/m3 in the workshop, and 0.107+/-0.067 mg/m3 in the ballroom (5 h TWA). Higher frequencies of micronuclei per thousand cells in nasal mucosa cells of workers versus control (2.70+/-1.50 versus 1.25+/-0.65, p<0.05) and higher frequency of SCEs in peripheral lymphocytes of workers group (8.24+/-0.89 versus 6.38+/-0.41, p<0.05) were observed. Increased frequency of micronuclei in nasal mucosa cells or SCE in peripheral lymphocytes was not found among waiters group. The results suggest that the genotoxic potential of high level FA exposure may have occupational risks in long-term exposure groups.  相似文献   

14.
Metformin (dimethyl-biguanide) is an insulin-sensitizing agent that lowers fasting plasma-insulin concentration, wherefore it's wide use for patients with a variety of insulin-resistant and prediabetic states, including impaired glucose tolerance. During pregnancy it is a further resource for reducing first-trimester pregnancy loss in women with the polycystic ovary syndrome. We tested metformin genotoxicity in cells of Chinese hamster ovary, CHO-K1 (chromosome aberrations; comet assays) and in mice (micronucleus assays). Concentrations of 114.4 μg/mL and 572 μg/mL were used in in vitro tests, and 95.4 mg/kg, 190.8 mg/kg and 333.9 mg/kg in assaying. Although the in vitro tests revealed no chromosome aberrations in metaphase cells, DNA damage was detected by comet assaying after 24 h of incubation at both concentrations. The frequency of DNA damage was higher at concentrations of 114.4 μg/mL. Furthermore, although mortality was not observed in in vitro tests, the highest dose of metformin suppressed bone marrow cells. However, no statistically significant differences were noted in micronuclei frequencies between treatments. In vitro results indicate that chronic metformin exposure may be potentially genotoxic. Thus, pregnant woman undergoing treatment with metformin should be properly evaluated beforehand, as regards vulnerability to DNA damage.  相似文献   

15.
We collected peripheral blood (PB) from 556 patients with various types of cancer who had undergone radiotherapy and from 81 healthy volunteers. We exposed whole PB and Epstein-Barr virus-transformed lymphoblastoid cell lines (EBLs) derived from the PB mononucleocytes to X-irradiation (5 Gy). Using the alkaline comet assay, we measured the immediate DNA damage and, at 15 min, the % residual damage. In PB, the immediate damage was similar in patients and healthy volunteers while the % residual damage (mean+/-S.D.) was significantly higher in patients with breast (54.3+/-A23.9), cervical (54.7+/-A23.9), head/neck (56.8+/-A24.4), lung (60.1+/-23.5), or esophageal cancers (59.5+/-A33.7) than in healthy donors (42.9+/-19.6) (P<0.05). We did not observe such differences in the EBV-transformed cell lines. Thus, radiation sensitivity of fresh PB cells measured by the alkaline comet assay was related to cancer status.  相似文献   

16.
Patients with chronic renal disease have an increased incidence of cancer. It is well known that long periods of hemodialysis treatment are linked to DNA damage due to oxidative stress. This genotoxic effect may cause the loss of chromosome fragments, or even entire chromosomes, which form micronuclei after cell division, and can be detected by the micronucleus test. In the present case-control study, we evaluated the genotoxic effect of hemodialysis treatment in 20 patients undergoing hemodialysis, and 20 subjected to peritoneal dialysis, matched for gender and age with 40 controls. Genetic damage was assessed by examining the frequency of micronuclei in 2000 exfoliated buccal cells per individual. Our results revealed that patients undergoing hemodialysis treatment have a significantly higher frequency of micronucleated cells (MNC; 5.60 +/- 5.31) compared to control subjects (1.50 +/- 2.01, p < 0.01). Interestingly, the same was not observed for the peritoneal dialysis patients who showed no significant differences in MNC (2.85 +/- 2.96) frequency compared to control individuals (3.25 +/- 3.85). In addition, we evaluated the possible association between creatine levels, smoking, alcohol intake, age, duration of treatment, and incomes of the individuals (separately analyzed according to their gender) and the frequency of micronuclei. The results reported here indicate that the duration of treatment is the only factor associated with increased MNC frequency among hemodialysis patients (Spearman coefficient of 0.414, p = 0.01). The number of MNC found in individuals with six years or less of treatment was significantly lower (2.91 +/- 2.74) compared to patients with seven or more years of treatment (8.89 +/- 5.96, p < 0.05). Overall, peritoneal dialysis may be a safer choice of treatment, but further studies need to be performed to investigate the risks and benefits of both treatments.  相似文献   

17.
Atrazine (2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine) is one of the most commonly used herbicides to control grasses and weeds. The widespread contamination and persistence of atrazine residues in the environment has resulted in human exposure. Vitamin E is a primary antioxidant that plays an important role in protecting cells against toxicity by inactivating free radicals generated following pesticides exposure. The present study was undertaken to investigate the protective effect of vitamin E against atrazine-induced genotoxicity. Three different methods: gel electrophoresis, comet assay and micronucleus test were used to assess the atrazine-induced genotoxicity and to evaluate the protective effects of vitamin E. Atrazine was administered to male rats at a dose of 300 mg/kg body weight for a period of 7, 14 and 21 days. There was a significant increase (P<0.001) in tail length of comets from blood and liver cells treated with atrazine as compared to controls. Co-administration of vitamin E (100 mg/kg body weight) along with atrazine resulted in decrease in tail length of comets as compared to the group treated with atrazine alone. Micronucleus assay revealed a significant increase (P<0.001) in the frequency of micronucleated cells (MNCs) following atrazine administration. In the animals administrated vitamin E along with atrazine there was a significant decrease in percentage of micronuclei as compared to atrazine treated rats. The increase in frequency of micronuclei in liver cells and tail length of comets confirm genotoxicity induced by atrazine in blood and liver cells. In addition, the findings clearly demonstrate protective effect of vitamin E in attenuating atrazine-induced DNA damage.  相似文献   

18.
A population study is reported in which the DNA damage induced by g-radiation (2 Gy) and the kinetics of the subsequent repair were estimated by the comet and micronucleus assays in isolated lymphocytes of 82 healthy donors and patients with head and neck cancer before radiotherapy. The parameters of background and radiation-induced DNA damage, rate of repair, and residual non-repaired damage were measured by comet assay, and the repair kinetics for every donor were computer-fitted to an exponential curve. The level of background DNA damage before irradiation measured by comet assay as well as the level of micronuclei were significantly higher in the head and neck cancer patient group than in the healthy donors, while the parameters of repair were widely scattered in both groups. Cancer patient group contained significantly more individuals, whose irradiated lymphocytes showed high DNA damage, low repair rate and high non-repaired DNA damage level. Lymphocytes of donors belonging to this subgroup showed significantly lower inhibition of cell cycle after irradiation.  相似文献   

19.
Ionising radiation has the ability to induce DNA damage. While the effects of high doses of radiation of short duration have been well documented, the biological effects of long-term exposure to low doses are poorly understood. This study evaluated the clastogenic effects of low dose ionising radiation on a population of bats (Chiroptera) residing in an abandoned monazite mine. Bats were sampled from two chambers in the mine, where external radiation levels measured around 20 microSv/h (low dose) and 100 microSv/h (higher dose), respectively. A control group of bats was sampled from a cave with no detectable radiation above normal background levels. The micronucleus assay was used to evaluate residual radiation damage in binucleated lymphocytes and showed that the micronucleus frequency per 500 binucleated lymphocytes was increased in the lower radiation-exposed group (17.7) and the higher radiation-exposed group (27.1) compared to the control group (5.3). This study also showed that bats exposed to radiation presented with an increased number of micronuclei per one thousand reticulocytes (2.88 and 10.75 in the lower and high radiation-exposed groups respectively) when compared to the control group (1.7). The single-cell gel electrophoresis (comet) assay was used as a means of evaluating clastogenecity of exposure to radiation at the level of individual cells. Bats exposed to radiation demonstrated increased DNA damage as shown by the length of the comet tails and showed an increase in cumulative damage. The results of the micronucleus and the comet assays indicated not only a statistically significant difference between test and control groups (P<0.001), but also a dose-dependent increase in DNA damage (P<0.001). These assays may thus be useful in evaluating the potential clastogenecity of exposure to continuous low doses of ionising radiation.  相似文献   

20.
Three different biomarkers: sister-chromatid exchanges (SCE), micronuclei (MN), and the Comet assay, were used to evaluate different kinds of genetic damage in peripheral blood lymphocytes from 34 male workers at Barcelona airport, exposed to low levels of hydrocarbons and jet fuel derivatives. The control group consisted of 11 unexposed men. We also investigated the ras p21 protein levels in plasma, in order to evaluate whether the ras gene could serve as a suitable potential marker of carcinogenic pollution in occupationally exposed cohorts. SCE and MN analyses failed to detect any statistically significant increase in the airport workers when compared with the controls, and in fact, the frequency of binucleated cells with MN in the exposed group was significantly lower than that obtained in the control. However, slight but significant differences in the mean comet length and genetic damage index were observed between the exposed and control groups when using the Comet assay. There were no statistically significant differences between both groups in p21 plasma levels. Smoking was shown to affect significantly both SCE and high frequency cells (HFC) in the exposed group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号