首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three artificial electron acceptors of different Eo and charge,hexacyanoferrate (III) (K3Fe(CN)6), hexachloroiridate (IV) (K2IrCl6),and hexabromoiridate (IV) (K2IrBr6), were compared with respectto their rate of reduction by roots of Zea mays L., the concomitantproton secretion, and to the effect on plasmalemma depolarization. It has been shown that these plasma membrane impermeable electronacceptors were reduced by a plasmalemma reductase activity.At low concentrations proton secretion was slightly inhibited,at higher concentrations, however, the rate of proton secretionwas stimulated. The root cell plasmalemma showed a transientdepolarization after addition of all three electron acceptors.The depolarization was concentration-dependent for the iridatecomplexes but not for hexacyanoferrate (III). For both iridatecomplexes maximum depolarization was reached at 50 µmoldm–3. A hypothetical model as an explanation of the redox dependentproton secretion will be given. Key words: Hexachloroiridate (IV), hexabromoiridate (IV), hexacyanoferrate (III), plasmalemma redox, membrane potential, Zea mays  相似文献   

2.
Summary We investigated changes of thiols (GSH, GSSG, and cysteine) induced by transplasma membrane electron transport after addition of artificial electron acceptors and the influence of the thiol level on redox activity. GSH, GSSG, and cysteine content of maize (Zea mays L. cv. Golden Bantam) roots and coleoptile segments was determined by high performance liquid chromatography with a fluorescence detector. GSSG increased after treatment with 0.8 mM diamide, an SH-group oxidizer. GSH level of roots increased after treatment with diamide, while GSH levels of coleoptiles decreased. Incubation of roots with the GSH biosynthesis inhibitor buthionine-D,L-sulfoximine for 6 days lowered the glutathione level up to 80%. However, the GSH/GSSG ratio of maize roots remained constant after treatment with both effectors. The GSH/GSSG ratio and the glutathione level were changed by addition of artificial electron acceptors like hexacyanoferrate (III) or hexabromoiridate (IV), which do not permeate the plasma membrane. Hexacyanoferrate (III) reduction was inhibited up to 25% after the cellular glutathione level was lowered by treatment with diamide or buthionine-D,L-sulfoximine. Proton secretion induced by reduction of the electron acceptors was not affected by both modulators. The change in glutathione level is different for roots and coleoptiles. Our data are discussed with regard to the role of GSH in electron donation for a plasma membrane bound electron transport system.Abbreviations Buthionine-D,L-sulfoximine s-n-butyl-homocysteine sulfoximine - cys cysteine - diamide 1,1-azobis (N,N-dimethyl-formamide) - DTE dithioerythritol - EDTA ethylenediaminetetraacetic acid - GSH reduced glutathione - GSSG oxidizied glutathione, glutathione disulfide - HBI IV hexabromoiridate (IV) (K2[IrBr6]) - HCF III hexacyanoferrate (III) (K3[Fe(CN)6] - NEM N-ethylmaleimide - PM plasma membrane - Tris Tris(hydroxymethyl)aminomethane  相似文献   

3.
The correlation of the effects of vitamin K3 and dicumarol (ananti-vitamin K in pharmaceutical applications) on the transplasmamembrane electrical potential difference of maize roots withthe reduction of the artificial electron acceptors hexacyanoferrate(III) or hexabromoiridate (IV) and the concomitant enhancementof acidification of the incubation medium was investigated. Vitamin K3 depolarized the plasma membrane of Zea mays L. roots,while dicumarol had no significant effect on the membrane potential.Plants treated with vitamin K3 for 30 min followed by intenserinsing showed higher reduction of hexabromoiridate (IV) thanhexacyanoferrate (III), as well as a stimulated acidificationof the incubation medium. Depolarization of the plasma membraneby hexacyanoferrate (III) or hexabromoiridate (IV) decreasedafter an incubation with vitamin K3. Pretreatment with dicumarolcaused an inhibition of hexacyanoferrate (III) reduction andmedium acidification as well as depolarization by K3. The reductionof hexabromoiridate (IV) was not affected by dicumarol pretreatment.The proton secretion associated with the reduction was slightlylowered. According to our results, it seems possible that vitaminK3 acts as an electron acceptor for the plasmalemma electrontransport system of maize roots whereas dicumarol appears toinhibit electron and proton transport. Key words: Vitamin K3, dicumarol, plasmalemma redox system, Zea mays L., membrane potential  相似文献   

4.
A computer-based video digitizer system is described which allows automated tracking of markers placed on a plant surface. The system uses customized software to calculate relative growth rates at selected positions along the plant surface and to determine rates of gravitropic curvature based on the changing pattern of distribution of the surface markers. The system was used to study the time course of gravitropic curvature and changes in relative growth rate along the upper and lower surface of horizontally-oriented roots of maize (Zea mays L.). The growing region of the root was found to extend from about 1 mm behind the tip to approximately 6 mm behind the tip. In vertically-oriented roots the relative growth rate was maximal at about 2.5 mm behind the tip and declined smoothly on either side of the maximum. Curvature was initiated approximately 30 min after horizontal orientation with maximal (50°) curvature being attained in 3 h. Analysis of surface extension patterns during the response indicated that curvature results from a reduction in growth rate along both the upper and lower surfaces with stronger reduction along the lower surface.  相似文献   

5.
Fan L  Neumann PM 《Plant physiology》2004,135(4):2291-2300
Growth of elongating primary roots of maize (Zea mays) seedlings was approximately 50% inhibited after 48 h in aerated nutrient solution under water deficit induced by polyethylene glycol 6000 at -0.5 MPa water potential. Proton flux along the root elongation zone was assayed by high resolution analyses of images of acid diffusion around roots contacted for 5 min with pH indicator gel. Profiles of root segmental elongation correlated qualitatively and quantitatively (r(2) = 0.74) with proton flux along the surface of the elongation zone from water-deficit and control treatments. Proton flux and segmental elongation in roots under water deficit were remarkably well maintained in the region 0 to 3 mm behind the root tip and were inhibited from 3 to 10 mm behind the tip. Associated changes in apoplastic pH inside epidermal cell walls were measured in three defined regions along the root elongation zone by confocal laser scanning microscopy using a ratiometric method. Finally, external acidification of roots was shown to specifically induce a partial reversal of growth inhibition by water deficit in the central region of the elongation zone. These new findings, plus evidence in the literature concerning increases induced by acid pH in wall-extensibility parameters, lead us to propose that the apparently adaptive maintenance of growth 0 to 3 mm behind the tip in maize primary roots under water deficit and the associated inhibition of growth further behind the tip are related to spatially variable changes in proton pumping into expanding cell walls.  相似文献   

6.
The effects of vitamin K3 or dicumarol on plasma membrane boundhexacyanoferrate (III) and hexabromoiridate (IV) reductase activityand on the H+ pumping rate were investigated. Incubation withvitamin K3 followed by intense rinsing stimulated the subsequentreduction of hexabromoiridate (IV) and hexacyanoferrate (III)as well as proton secretion induced by external electron-acceptors,while pretreatment with dicumarol inhibited proton secretioninduced by redox activity and hexacyanoferrate (III) reductionrate, but not the effects of hexabromoiridate (IV). A 30 minincubation in 0·2 mM K3 or dicumarol, followed by rinsing,inhibited H+ secretion for about 2 d. Incubation for more than12 h in 0·1 mM dicumarol or 0·2 mM K3 caused lethalinjury to the root cells. Key words: Vitamin K.3, dicumarol, plasmalemma redox system, Zea mays L., proton pump  相似文献   

7.
To mark the apoplastic pathway of ions in the root of the dicotyledonous plant Lepidium sativum we used the heavy element lanthanum, which can be identified by analytical electron microscopy (EELS and ESI). In the front root tip, the primary walls of all meristematic cells contained lanthanum. 10-15 mm behind the root apex, lanthanum was found in the cortex cell walls up to the endodermis, but not in the stele. 20-25 mm from the tip, lanthanum was accumulated in the radial cell walls of the hypodermis, which, however, is not a complete diffusion barrier for ions, so that traces of lanthanum also were found in the cortex cell walls up to the endodermis. This study provides evidence for the presence of two apolastic diffusion barriers in the region of highest water uptake in cress roots.  相似文献   

8.
Intact Zea mays L. cv. Golden Bantam seedlings which were not cold adapted were exposed to various temperatures. Trans plasma membrane potential difference was measured in a temperature range from 0 to 40 °C using intracellular microelectrodes. The depolarization caused by electron transfer across the PM to artificial external electron acceptors was investigated. Active membrane potential increased with temperature in the range from 0 to 15 °C but was independent of temperature above 20 °C. Depolarization caused by the non-membrane-permeating electron acceptors hexacyanoferrate III (HCF III) and hexabromoiridate IV (HBIIV) took place over the whole temperature range investigated. The effect of HBI IV increased up to 10 °C whereas the HCF III effects increased up to 25 °C.  相似文献   

9.
10.
Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots. The results compare well with the distribution of total Al determined by LA-ICP-MS which could be reliably calibrated to compare with Al contents by conventional total Al determination using graphite furnace atomic absorption spectrometry. The Al localization in root cross-sections along the root tip showed that in buckwheat Al is highly mobile in the radial direction. The root apex predominantly accumulated Al in the cortex. The subapical root section showed a homogenous Al distribution across the whole section. In the following root section Al was located particularly in the pericycle and the xylem parenchyma cells. With further increasing distance from the root apex Al could be detected only in individual xylem vessels. The results support the view that the 10 mm apical root tip is the main site of Al uptake into the symplast of the cortex, while the subapical 10-20 mm zone is the main site of xylem loading through the pericycle and xylem parenchyma cells. Progress in the better molecular understanding of Al transport in buckwheat will depend on the consideration of the tissue specificity of Al transport and complexation.  相似文献   

11.
The effect of Cd on H2O2 production, peroxidase (POD) activity and root hair formation were analyzed in barley root. Cd causes a strong H2O2 burst in the root region 0–6 mm behind the root tip. POD activity was activated in root tip and raised toward the root base in Cd treated roots. In situ analyses showed that both elevated H2O2 production and POD activity are localized in the early metaxylem vascular bundles. Cd induces root hair formation in the region 2 to 4 mm behind the root tip that was not detected in control roots. These results suggest that Cd-induced root growth inhibition is at least partially the consequence of Cd-stimulated premature root development involving xylogenesis and root hair formation, which is correlated with shortening of root elongation zone and therefore with root growth reduction.  相似文献   

12.
The present report describes experiments in which the effects of growth in aerated and stagnant nutrient solutions on adventitious root porosities and patterns of radial O2 loss (ROL) from the roots of four genotypes of rice (Oryza sativa L.) were evaluated. The genotypes studied are usually cultivated in farming systems which differ markedly in their degree of soil waterlogging and flooding. Rice genotypes were found to differ in the constitutive porosity (% gas space) of their adventitious roots when grown in aerated solutions (lowest was 16%, highest was 30%), and the roots grown in stagnant conditions had porosities between 28% and 38%. ROL from the adventitious roots raised in aerated solution increased with distance behind the tip in three of the four genotypes; whereas for roots raised in stagnant solution, ROL decreased with distance behind the tip which is indicative of a high resistance to diffusion between the aerenchyma and external medium. For example, at 35 mm behind the root tip the ROL from roots of the 'deepwater' cultivar grown in stagnant conditions was 0.7% of the rate of its aerated roots, for the 'lowland' cultivar it was 5.6%, and for one of the 'upland' cultivars it was 43.6%. Thus, the barrier to ROL from the adventitious roots in three of the four genotypes was induced by growth in stagnant nutrient solution. A low rate of ROL from the basal zones of roots in an O2-free environment is of adaptative value since longitudinal diffusion of O2 to the root apex would be enhanced which, in turn, enables greater penetration of roots into anaerobic soils.  相似文献   

13.
Melchior W  Steudle E 《Plant physiology》1993,101(4):1305-1315
The hydraulic architecture of developing onion (Allium cepa L. cv Calypso) roots grown hydroponically was determined by measuring axial and radial hydraulic conductivities (equal to inverse of specific hydraulic resistances). In the roots, Casparian bands and suberin lamellae develop in the endodermis and exodermis (equal to hypodermis). Using the root pressure probe, changes of hydraulic conductivities along the developing roots were analyzed with high resolution. Axial hydraulic conductivity (Lx) was also calculated from stained cross-sections according to Poiseuille's law. Near the base and the tip of the roots, measured and calculated Lx values were similar. However, at distances between 200 and 300 mm from the apex, measured values of Lx were smaller by more than 1 order of magnitude than those calculated, probably because of remaining cross walls between xylem vessel members. During development of root xylem, Lx increased by 3 orders of magnitude. In the apical 30 mm (tip region), axial resistance limited water transport, whereas in basal parts radial resistances (low radial hydraulic conductivity, Lpr) controlled the uptake. Because of the high axial hydraulic resistance in the tip region, this zone appeared to be "hydraulically isolated" from the rest of the root. Changes of the Lpr of the roots were determined by measuring the hydraulic conductance of roots of different length and referring these data to unit surface area. At distances between 30 and 150 mm from the root tip, Lpr was fairly constant (1.4 x 10-7 m s-1 MPa-1). In more basal root zones, Lpr was considerably smaller and varied between roots. The low contribution of basal zones to the overall water uptake indicated an influence of the exodermal Casparian bands and/or suberin lamellae in the endodermis or exodermis, which develop at distances larger than 50 to 60 mm from the root tip.  相似文献   

14.
Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.  相似文献   

15.
X-Ray microanalysis of fully hydrated, bulk-frozen samples was used to measure concentrations of potassium, sodium and chloride in various cell types along seminal roots of barley ( Hordeum vulgare L. cv. California Mariout) seedlings (1 to 150 mm from the tip). In the cytoplasm of all meristematic cells 1 mm from the root tip, the average concentrations of potassium and chloride were ca 200 and 15 m M , respectively. The potassium level was also high in the vacuoles of incipient xylem elements and did not drop to significantly lower values until 10 mm from the tip in protoxylem, 50 mm in early metaxylem and 150 mm in late metaxylem (LMX). Light microscopy observations (Nomarski optics) of hand-cut sections showed the presence of cytoplasmic strands and also the presence of intact cross walls in LMX up to a distance of 100 mm. Both quantitative analysis of ion contents and structural observations suggested that LMX elements act as a large transitional sink of accumulated ions and therefore may not function as a main pathway of transport until perforation of the end wall takes place 100–150 mm from the root tip. Treatment with 50 m M NaCl resulted in higher concentrations of sodium and chloride in LMX elements than in the surrounding cells, suggesting that living xylem elements, which develop a large central vacuole at an early stage of root differentiation, may assist in alleviating salinity stress in the meristematic region of barley root tips. Further, it is proposed that reabsorption of sodium and chloride from the LMX, especially before the disappearance of the cross walls, may provide a means of salinity tolerance.  相似文献   

16.
Summary Barley roots fixed with OsO4 containing potassium pyroantimonate showed the presence of several types of electron opaque precipitates in the cells. Thin sections were cut from a region about 1 cm from the root tip and the electron opaque deposits analysed using EMMA-4 with KEVEX Si(Li) energy dispersive analyser. Antimony-containing deposits at the root surface associated with the mucilaginous sheath were found to contain Fe and P, and count ratios suggest constant proportions of these elements in the precipitates. Within the root cells, vacuolar deposits generally contained Os and Sb, but occasional deposits in epidermal cell vacuoles contained some Fe. Fe was also detected in nuclear deposits in endodermal cells.These findings are discussed briefly in relation to the uptake of Fe into plant roots.  相似文献   

17.
The objective of our study is to correlate Fe, Cu, Zn, Pb, Br, Sr, and Mo concentrations in human teeth crown, root, and bone. The samples, teeth from a lower jaw bone and the lower jaw bone itself, were obtained from a 97-yr-old female cadaver. Two hundred milligrams of crown and root of the teeth, and lower jaw bones were fixed to a Kapton film and irradiated with a 3.8-MeV external proton beam from an 8-MV FN Tandem Van de Graaff Accelerator. TheF-test was used to analyze the difference between crown, root, and bone. It resulted in the following: For Fe, Zn, and Pb, the comparison showed significant differences among the three sample populations of tooth crown, root, and bone; for Cu, Br, Sr, and Mo, the comparison showed no significant differences among all three sample populations. Several elements in the samples were highly interrelated.  相似文献   

18.
The electric spatial pattern and invertase activity distribution in growing roots of azuki bean (Phaseolus chrysanthos) have been studied. The electric potential near the surface along the root showed a banding pattern with a spatial period of about 2 cm. It was found that the enzyme activity has a peak around 3-7 mm from the root tip, in good agreement with the position of the first peak of the electric potential, which is located a little behind the elongation zone. An inhomogeneous distribution of ATP content was also detected along the root. Experiments on the electric isolation of the elongation zone from the mature zone and acidification treatment showed that H+ is transported from the mature-side to elongation-side regions, causing tip elongation through an acid-growth mechanism. Both acidification and electric disturbance on growing roots affected growth significantly. Simultaneous measurements of electric potential and enzyme activity clearly showed a good correlation between these two quantities and growth speed. From an analogy with the Characean banding, the spatio-temporal organization via the cell membrane in electric potential and enzyme activity can be regarded as a dissipative structure arising far from equilibrium. These experimental results can be interpreted with a new mechanism that the dissipative structure is formed spontaneously along the whole root, accompanied by energy metabolism, to make H+ flow into the root tip.  相似文献   

19.
A thermophilic bacterium that can use O2, NO3-, Fe(III), and S0 as terminal electron acceptors for growth was isolated from groundwater sampled at a 3.2-km depth in a South African gold mine. This organism, designated SA-01, clustered most closely with members of the genus Thermus, as determined by 16S rRNA gene (rDNA) sequence analysis. The 16S rDNA sequence of SA-01 was >98% similar to that of Thermus strain NMX2 A.1, which was previously isolated by other investigators from a thermal spring in New Mexico. Strain NMX2 A.1 was also able to reduce Fe(III) and other electron acceptors. Neither SA-01 nor NMX2 A.1 grew fermentatively, i.e., addition of an external electron acceptor was required for anaerobic growth. Thermus strain SA-01 reduced soluble Fe(III) complexed with citrate or nitrilotriacetic acid (NTA); however, it could reduce only relatively small quantities (0.5 mM) of hydrous ferric oxide except when the humic acid analog 2,6-anthraquinone disulfonate was added as an electron shuttle, in which case 10 mM Fe(III) was reduced. Fe(III)-NTA was reduced quantitatively to Fe(II); reduction of Fe(III)-NTA was coupled to the oxidation of lactate and supported growth through three consecutive transfers. Suspensions of Thermus strain SA-01 cells also reduced Mn(IV), Co(III)-EDTA, Cr(VI), and U(VI). Mn(IV)-oxide was reduced in the presence of either lactate or H2. Both strains were also able to mineralize NTA to CO2 and to couple its oxidation to Fe(III) reduction and growth. The optimum temperature for growth and Fe(III) reduction by Thermus strains SA-01 and NMX2 A.1 is approximately 65 degrees C; their optimum pH is 6.5 to 7.0. This is the first report of a Thermus sp. being able to couple the oxidation of organic compounds to the reduction of Fe, Mn, or S.  相似文献   

20.

Aims

The rhizosphere is a dynamic system strongly influenced by root activity. Roots modify the pH of their surrounding soil causing the soil pH to vary as a function of distance from root surface, location along root axes, and root maturity. Non-invasive imaging techniques provide the possibility to capture pH patterns around the roots as they develop.

Methods

We developed a novel fluorescence imaging set up and applied to the root system of two lupin (Lupinus albus L., Lupinus angustifolius L.) and one soft-rush (Juncus effusus L.) species. We grew plants in glass containers filled with soil and equipped with fluorescence sensor foils on the container side walls. We gained highly-resolved data on the spatial distribution of H+ around the roots by taking time-lapse images of the samples over the course of several days.

Results

We showed how the soil pH in the vicinity of roots developed over time to different values from that of the original bulk soil. The soil pH in the immediate vicinity of the root surface varied greatly along the root length, with the most acidic point being at 0.56–3.36 mm behind the root tip. Indications were also found for temporal soil pH changes due to root maturity.

Conclusion

In conclusion, this study shows that this novel optical fluorescence imaging set up is a powerful tool for studying pH developments around roots in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号