首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Eradication of the smallpox virus through extensive global vaccination efforts has resulted in one of the most important breakthroughs in medical history, saving countless lives from the severe morbidity and mortality that is associated with this disease. Although smallpox is now extinct in nature, laboratory stocks of this virus still remain and the subject of smallpox vaccination has gained renewed attention due to the potential risk that smallpox may be used as a biological weapon by terrorists or rogue states. Despite having the longest history of any modern vaccine, there is still much to be learned about smallpox vaccination and the correlates of protection remain to be formally defined. This Commentary will discuss the strengths and weaknesses of traditional smallpox vaccination in comparison with immunization using modified vaccinia virus Ankura (MVA), a non-replicating virus with a strong safety record but weakened immunogenicity.  相似文献   

2.
Outbreaks of smallpox (i.e., caused by variola virus) resulted in up to 30% mortality, but those who survived smallpox infection were regarded as immune for life. Early studies described the levels of neutralizing antibodies induced after infection, but smallpox was eradicated before contemporary methods for quantifying T-cell memory were developed. To better understand the levels and duration of immunity after smallpox infection, we performed a case-control study comparing antiviral CD4(+) and CD8(+) T-cell responses and neutralizing antibody levels of 24 smallpox survivors with the antiviral immunity observed in 60 smallpox-vaccinated (i.e., vaccinia virus-immune) control subjects. We found that the duration of immunity following smallpox infection was remarkably similar to that observed after smallpox vaccination, with antiviral T-cell responses that declined slowly over time and antiviral antibody responses that remained stable for decades after recovery from infection. These results indicate that severe, potentially life-threatening disease is not required for the development of sustainable long-term immunity. This study shows that the levels of immunity induced following smallpox vaccination are comparable in magnitude to that achieved through natural variola virus infection, and this may explain the notable success of vaccination in eradicating smallpox, one of the world's most lethal diseases.  相似文献   

3.
Smallpox is a serious and highly contagious disease that is caused by the variola virus. It is one of the most severe infectious human diseases known, with mortality rates as high as 30%. A successful worldwide vaccination program led to the eradication of smallpox in 1980. However, the high transmission rate of variola virus, coupled with the deadly nature of smallpox, makes this virus a potentially devastating weapon for bioterrorism. Currently, there is no specific treatment for smallpox. However, a recent article on the structure of a variola topoisomerase IB-DNA complex provides an intriguing starting point for the rational design of drugs with potential activity against smallpox.  相似文献   

4.
Berche P 《Comptes rendus biologies》2002,325(8):845-50; discussion 879-83
Smallpox is a highly contagious disease mainly transmitted by aerosols with a high case-fatality. The smallpox virus has evolved from a long adaptation to humans during Evolution, explaining that the virus is highly specific for humans and nonpathogenic for animals. Smallpox was eradicated in 1977 and vaccination was abandoned in the 1980's. This virus is a dreadful potential biological weapon since the reemergence of smallpox on the planet might be expected to be devastating, due to its high 'contagiosity', which would rapidly spread in naive populations, especially those living in urban areas, and worldwide through air travels. There is no anti-viral treatment and vaccine is active in the first four days post-exposure. Today, the stocks of smallpox virus constitute one of the most dangerous threats for humanity. There is a need for improving the safety of the vaccine and to reconsider the preventive strategy to face a possible attack by smallpox virus.  相似文献   

5.
The potential use of variola virus, the etiological agent of smallpox, as a bioterror agent has heightened the interest in the reinitiation of smallpox vaccination. However, the currently licensed Dryvax vaccine, despite its documented efficacy in eradicating smallpox, is not optimal for the vaccination of contemporary populations with large numbers of individuals with immunodeficiencies because of severe adverse effects that can occur in such individuals. Therefore, the development of safer smallpox vaccines that can match the immunogenicity and efficacy of Dryvax for the vaccination of contemporary populations remains a priority. Using the Wyeth strain of vaccinia virus derived from the Dryvax vaccine, we generated a recombinant Wyeth interleukin-15 (IL-15) with integrated IL-15, a cytokine with potent immunostimulatory functions. The integration of IL-15 into the Wyeth strain resulted in a >1,000-fold reduction in lethality of vaccinated athymic nude mice and induced severalfold-higher cellular and humoral immune responses in wild-type mice that persisted longer than those induced by the parental Wyeth strain. The superior efficacy of Wyeth IL-15 was further demonstrated by the ability of vaccinated mice to fully survive a lethal intranasal challenge of virulent vaccinia virus even 10 months after vaccination, whereas all mice vaccinated with parental Wyeth strain succumbed. By integrating IL-15 into modified vaccinia virus Ankara (MVA), a virus currently under consideration as a substitute for the Dryvax vaccine, we developed a second vaccine candidate (MVA IL-15) with greater immunogenicity and efficacy than Dryvax. Thus, Wyeth IL-15 and MVA IL-15 viruses hold promise as more-efficacious and safe alternatives to the Dryvax vaccine.  相似文献   

6.
Smallpox was eradicated by the World Health Organization (WHO) vaccination campaign in the 1970s and the variola virus was restricted to repositories in the United States and Russia. Recently, however, concerns have arisen about the possible existence of variola outside these sites and the potential for using the virus as a weapon of bioterror. The world population now has little residual immunity to smallpox and supplies of the smallpox vaccine are being reconstituted. Large numbers of individuals with various skin diseases or immunosuppression owing to AIDS or organ transplantation medications, or who are pregnant or have heart disease might not be ideal candidates for vaccination with the current live vaccines. It would be useful to have an orally active drug that could be self-administered in case of an outbreak of smallpox.  相似文献   

7.
The effect of antigenic polymorphism of the ABO-system blood groups on the character of the vaccinal process after immunization against natural smallpox was investigated. The increased susceptibility of persons possessing A antigen to the harmful effect of smallpox vaccine virus is due to hereditary rather than to acquired factors. The leukocytes of peripheral blood of these persons showed a poorer binding capacity with respect to the smallpoxvaccine virus; they also exhibited a high rate of chromosomal aberration after vaccination, resulting to some extent from increased proliferative ability of the cells.  相似文献   

8.
The detection of neutralizing antibodies against vaccinia virus is a valuable tool for the investigation of previous smallpox vaccination. Compulsory smallpox vaccination ended in Brazil during the early 1970s, although the vaccine was available until the late 1970s. The threat of smallpox as a biological weapon has called the attention of public health authorities to the need for an evaluation of the immune status of the population. Based on our previous experience with a micro plaque reduction neutralization test (PRNT) for the evaluation of yellow fever immunity, a similar test was developed for the detection and quantification of vaccinia neutralizing antibodies. A cross-sectional study to test the repeatability and validity of plaque reduction neutralization test (PRNT) for vaccinia antibodies was performed in 182 subjects divided into two categories: subjects above 31 years old and the other > or = 35 years old. Cases were subjects considered to have been vaccinated with vaccinia virus if they declared vaccination history or evidenced vaccination marks. The assay is carried out in 96-well plates, provides results within 30 h, is easily performed, has good sensitivity (92.7%) and specificity (90.8), excellent repeatability (ICC 0.89 (0.88; 0.92)) and is thus suitable for use in mass screening of a population's antibody levels.  相似文献   

9.
Pütz MM  Midgley CM  Law M  Smith GL 《Nature medicine》2006,12(11):1310-1315
Smallpox was eradicated without an adequate understanding of how vaccination induced protection. In response to possible bioterrorism with smallpox, the UK government vaccinated approximately 300 health care workers with vaccinia virus (VACV) strain Lister. Antibody responses were analyzed using ELISA for multiple surface antigens of the extracellular enveloped virus (EEV) and the intracellular mature virus (IMV), plaque reduction neutralization and a fluorescence-based flow cytometric neutralization assay. Antibody depletion experiments showed that the EEV surface protein B5 is the only target responsible for EEV neutralization in vaccinated humans, whereas multiple IMV surface proteins, including A27 and H3, are targets for IMV-neutralizing antibodies. These data suggest that it would be unwise to exclude the B5 protein from a future smallpox vaccine. Repeated vaccination provided significantly higher B5-specific and thus EEV-neutralizing antibody responses. These data provide a benchmark against which new, safer smallpox vaccines and residual immunity can be compared.  相似文献   

10.
Post-vaccinal encephalitis, although relatively uncommon, is a known adverse event associated with many live, attenuated smallpox vaccines. Although smallpox vaccination ceased globally in 1980, vaccine manufacture has resumed in response to concerns over the possible use of smallpox virus as an agent of bioterrorism. To better support the production of safer smallpox vaccines, we previously reported the development of a mouse model in which a relatively attenuated vaccine strain (Dryvax®) could be discerned from a more virulent laboratory strain (WR). Here we have further tested the performance of this assay by evaluating the neurovirulence of several vaccinia virus-based smallpox vaccines spanning a known range in neurovirulence for humans. Our data indicate that testing of 10–100 pfu of virus in mice following intracranial inoculation reliably assesses the virus's neurovirulence potential for humans.  相似文献   

11.
Clonal vaccinia virus grown in cell culture as a new smallpox vaccine   总被引:1,自引:0,他引:1  
Although the smallpox virus was eradicated over 20 years ago, its potential release through bioterrorism has generated renewed interest in vaccination. To develop a modern smallpox vaccine, we have adapted vaccinia virus that was derived from the existing Dryvax vaccine for growth in a human diploid cell line. We characterized six cloned and one uncloned vaccine candidates. One clone, designated ACAM1000, was chosen for development based on its comparability to Dryvax when tested in mice, rabbits and monkeys for virulence and immunogenicity. By most measures, ACAM1000 was less virulent than Dryvax. We compared ACAM1000 and Dryvax in a randomized, double-blind human clinical study. The vaccines were equivalent in their ability to produce major cutaneous reactions ('takes') and to induce neutralizing antibody and cell-mediated immunity against vaccinia virus.  相似文献   

12.
Smallpox DNA vaccine protects nonhuman primates against lethal monkeypox   总被引:4,自引:0,他引:4  
Two decades after a worldwide vaccination campaign was used to successfully eradicate naturally occurring smallpox, the threat of bioterrorism has led to renewed vaccination programs. In addition, sporadic outbreaks of human monkeypox in Africa and a recent outbreak of human monkeypox in the U.S. have made it clear that naturally occurring zoonotic orthopoxvirus diseases remain a public health concern. Much of the threat posed by orthopoxviruses could be eliminated by vaccination; however, because the smallpox vaccine is a live orthopoxvirus vaccine (vaccinia virus) administered to the skin, the vaccine itself can pose a serious health risk. Here, we demonstrate that rhesus macaques vaccinated with a DNA vaccine consisting of four vaccinia virus genes (L1R, A27L, A33R, and B5R) were protected from severe disease after an otherwise lethal challenge with monkeypox virus. Animals vaccinated with a single gene (L1R) which encodes a target of neutralizing antibodies developed severe disease but survived. This is the first demonstration that a subunit vaccine approach to smallpox-monkeypox immunization is feasible.  相似文献   

13.
J W McIntyre  C S Houston 《CMAJ》1999,161(12):1543-1547
Edward Jenner''s first treatise in 1798 described how he used cowpox material to provide immunity to the related smallpox virus. He sent this treatise and some cowpox material to his classmate John Clinch in Trinity, Nfld., who gave the first smallpox vaccinations in North America. Dissemination of the new technique, despite violent criticism, was rapid throughout Europe and the United States. Within a few years of its discovery, vaccination was instrumental in controlling smallpox epidemics among aboriginal people at remote trading posts of the Hudson''s Bay Company. Arm-to-arm transfer at 8-day intervals was common through most of the 19th century. Vaccination and quarantine eliminated endemic smallpox throughout Canada by 1946. The last case, in Toronto in 1962, came from Brazil.  相似文献   

14.
Smallpox, caused by variola virus (VARV), is a devastating human disease that affected millions worldwide until the virus was eradicated in the 1970 s. Subsequent cessation of vaccination has resulted in an immunologically naive human population that would be at risk should VARV be used as an agent of bioterrorism. The development of antivirals and improved vaccines to counter this threat would be facilitated by the development of animal models using authentic VARV. Towards this end, cynomolgus macaques were identified as adequate hosts for VARV, developing ordinary or hemorrhagic smallpox in a dose-dependent fashion. To further refine this model, we performed a serial sampling study on macaques exposed to doses of VARV strain Harper calibrated to induce ordinary or hemorrhagic disease. Several key differences were noted between these models. In the ordinary smallpox model, lymphoid and myeloid hyperplasias were consistently found whereas lymphocytolysis and hematopoietic necrosis developed in hemorrhagic smallpox. Viral antigen accumulation, as assessed immunohistochemically, was mild and transient in the ordinary smallpox model. In contrast, in the hemorrhagic model antigen distribution was widespread and included tissues and cells not involved in the ordinary model. Hemorrhagic smallpox developed only in the presence of secondary bacterial infections - an observation also commonly noted in historical reports of human smallpox. Together, our results support the macaque model as an excellent surrogate for human smallpox in terms of disease onset, acute disease course, and gross and histopathological lesions.  相似文献   

15.
Although naturally occurring smallpox was eliminated through the efforts of the World Health Organization Global Eradication Program, it remains possible that smallpox could be intentionally released. Here we examine the magnitude and duration of antiviral immunity induced by one or more smallpox vaccinations. We found that more than 90% of volunteers vaccinated 25-75 years ago still maintain substantial humoral or cellular immunity (or both) against vaccinia, the virus used to vaccinate against smallpox. Antiviral antibody responses remained stable between 1-75 years after vaccination, whereas antiviral T-cell responses declined slowly, with a half-life of 8-15 years. If these levels of immunity are considered to be at least partially protective, then the morbidity and mortality associated with an intentional smallpox outbreak would be substantially reduced because of pre-existing immunity in a large number of previously vaccinated individuals.  相似文献   

16.

Background

The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.

Methods

We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.

Results

The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.

Conclusion

These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.  相似文献   

17.
Experiments were conducted on guinea pigs with the use of cell migration inhibition test of the peritoneal exudate; stimulation of a definite level of cell immunity in response to the administration of both live and of inactivated vaccine virus was shown. The results obtained are used for the interpretation of the action mechanism of the inactivated preparation in two-stage smallpox vaccination.  相似文献   

18.
猴痘(monkeypox)是由猴痘病毒感染所致的人兽共患病,主要发生在非洲中部、西部地区。猴痘病毒可感染多种哺乳类动物,主要在动物中流行,人接触感染动物后可被传染。猴痘的临床表现与天花相似(发热、皮疹等),但症状较轻。天花疫苗接种可提供预防猴痘的免疫保护力。然而,因全球天花被消灭而停止接种天花疫苗后,猴痘成为最可能威胁人类的正痘病毒性疾病。近期,其散发病例在欧洲多地出现。2022年5月7日英国报道了猴痘疫情。随后,欧洲报道猴痘确诊和疑似病例超过100例。猴痘主要传播途径包括接触感染动物、与患者直接接触或间接接触。2022年5月20日,世界卫生组织就此次猴痘疫情召开了紧急会议,旨在提高对猴痘的认识,做好防范应对准备。世界卫生组织、美国疾病预防控制中心、英国卫生部门报告了相关疫情并制定了相应的防控措施。截至2022年5月28日我国尚无输入性猴痘报道,但因国际交往频繁等仍须提高警惕。本文介绍了猴痘流行现状及有关防控信息,以供借鉴。  相似文献   

19.
Smallpox, a highly contagious infectious disease caused by the variola major virus, has an overall mortality rate of about 30%. Because there currently is no specific treatment for smallpox, and the only prevention is vaccination, there is an urgent need for the development of effective antiviral drugs. The dual specificity protein phosphatase encoded by the smallpox virus (H1) is essential for the production of infectious viral particles, making it a promising molecular target for antiviral therapeutics. Here, we report the molecular cloning, overproduction, purification, and initial biochemical characterization of H1 phosphatase, thereby paving the way for the discovery of small molecule inhibitors.  相似文献   

20.
While the smallpox vaccine, Dryvax or Dryvax-derived ACAM2000, holds potential for public immunization against the spread of smallpox by bioterror, there is serious concern about Dryvax-mediated side effects. Here, we report that a single-dose vaccination regimen comprised of Dryvax and an antiviral agent, cidofovir, could reduce vaccinia viral loads after vaccination and significantly control Dryvax vaccination side effects. However, coadministration of cidofovir and Dryvax also reduced vaccine-elicited immune responses of antibody and T effector cells despite the fact that the reduced priming could be boosted as a recall response after monkeypox virus challenge. Evaluations of four different aspects of vaccine efficacy showed that coadministration of cidofovir and Dryvax compromised the Dryvax-induced immunity against monkeypox, although the covaccinated monkeys exhibited measurable protection against monkeypox compared to that of naïve controls. Thus, the single-dose coadministration of cidofovir and Dryvax effectively controlled vaccination side effects but significantly compromised vaccine-elicited immune responses and vaccine-induced immunity to monkeypox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号