首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Data in the literature suggest that site-specific differences exist in the skeleton with respect to digestion of bone by osteoclasts. Therefore, we investigated whether bone resorption by calvarial osteoclasts (intramembranous bone) differs from resorption by long bone osteoclasts (endochondral bone). The involvement of two major classes of proteolytic enzymes, the cysteine proteinases (CPs) and matrix metalloproteinases (MMPs), was studied by analyzing the effects of selective low molecular weight inhibitors of these enzymes on bone resorption. Mouse tissue explants (calvariae and long bones) as well as rabbit osteoclasts, which had been isolated from both skeletal sites and subsequently seeded on bone slices, were cultured in the presence of inhibitors and resorption was analyzed. The activity of the CP cathepsins B and K and of MMPs was determined biochemically (CPs and MMPs) and enzyme histochemically (CPs) in explants and isolated osteoclasts. We show that osteoclastic resorption of calvarial bone depends on activity of both CPs and MMPs, whereas long bone resorption depends on CPs, but not on the activity of MMPs. Furthermore, significantly higher levels of cathepsin B and cathepsin K activities were expressed by long bone osteoclasts than by calvarial osteoclasts. Resorption of slices of bovine skull or cortical bone by osteoclasts isolated from long bones was not affected by MMP inhibitors, whereas resorption by calvarial osteoclasts was inhibited. Inhibition of CP activity affected the resorption by the two populations of osteoclasts in a similar way. We conclude that this is the first report to show that significant differences exist between osteoclasts of calvariae and long bones with respect to their bone resorbing activities. Resorption by calvarial osteoclasts depends on the activity of CPs and MMPs, whereas resorption by long bone osteoclasts depends primarily on the activity of CPs. We hypothesize that functionally different subpopulations of osteoclasts, such as those described here, originate from different sets of progenitors.  相似文献   

2.
The effects of inhibitors of matrix metalloproteinases (MMPs) and lysosomal cysteine proteases on osteoclastic pit formation in dentine slices were investigated. A nonspecific cysteine protease inhibitor, E-64, inhibited pit formation on naked slices in a concentration-dependent manner, and at 10 microM E-64 reduced the pit volume by 70%. However, up to 10 microM of the MMP inhibitor, BB-94, did not show any inhibition of pit formation. On the other hand, on slices coated with reconstituted basement membrane, both BB-94 and E-64 at 10 microM showed a marked decrease in pit volume by 73% and 68%, respectively. By a combination of treatment with both BB-94 and E-64, pit formation could be completely suppressed. These results suggest that MMPs are necessary for the migration of precursor and/or immature osteoclasts to bone surface through basement membranes, while cysteine proteases are essential for the osteoclastic degradation of bone collagen.  相似文献   

3.
Ishibashi O  Niwa S  Kadoyama K  Inui T 《Life sciences》2006,79(17):1657-1660
We have previously shown that matrix metalloproteinases (MMPs) play a role in osteoclastic bone resorption by facilitating migration of osteoclastic cells toward bone surface through matrices. Of MMPs identified so far, MMP-9 is likely the most important proteinase for the action, since osteoclasts express this enzyme at a tremendously high level. However, no direct evidence has been provided to demonstrate its contribution to bone resorption. In this study, to address this point, we used an MMP-9 antisense phosphothiorate oligodeoxynucleotide (S-ODN), which was shown to inhibit the protein synthesis of MMP-9 efficiently. We demonstrated that the antisense S-ODN inhibited osteoclastic pit formation on matrigel-coated dentine slices in a concentration-dependent manner with a maximum reduction of total pit volume by 53% at 10 microM. These results, taken together, suggest that MMP-9 is involved in osteoclastic bone resorption process possibly by facilitating migration of osteoclasts through proteoglican-rich matrices.  相似文献   

4.
Effects of the selective inhibitor of cathepsins B and L, Z-Phe-AlaCH2F were studied on the degradation of fibrillar collagen by fibroblasts and osteoclasts in cultured rabbit calvariae at the electron microscopic level. Periosteal fibroblasts from inhibitor-treated explants showed a dose-dependent increase of the volume fraction of vacuoles containing cross-banded collagen fibrils. This was a 7-fold increase over control fibroblasts and the ratio of intracellular and extracellular collagen increased from 2 to 43. The presence of collagen-containing vacuoles was also found in some osteoclasts from inhibitor-treated explants (1 microM or more). The inhibitor appeared to have cytotoxic effects at a concentration of 100 microM. It was concluded that this selective inhibitor exerts its effects intralysosomally in living cells, indicating possibilities for in vivo inhibition of protein degradation.  相似文献   

5.
Cysteine proteases and matrix metalloproteinases (MMPs) are important factors in the degradation of organic matrix components of bone. Osteoprotegerin (OPG) is an osteoblast-secreted decoy receptor that inhibits osteoclast differentiation and activation. This study investigated the direct effects of human OPG on cathepsin K, MMP-9, MMP-2, and tissue inhibitors of metalloproteinases (TIMP1 and TIMP2) expressed by purified rabbit osteoclasts. The expression of two osteoclast markers, namely tartrate-resistant acid phosphatase (TRAP) and cathepsin K, was inhibited by 100 ng/mL hOPG, whereas MMP-9 expression was enhanced. Gelatinase activities were measured using a zymographic assay, and hOPG was shown to enhance both pro-MMP-9 and MMP-2 activities. Concomitantly, TIMP1 expression was greatly stimulated by hOPG, whereas TIMP2 mRNA levels were not modulated. Overall, these results show that hOPG regulates the proteases produced by purified osteoclasts differentially, producing a marked inhibitory effect on the expression of cathepsin K, the main enzyme involved in bone resorption.  相似文献   

6.
Huang J  Yuan L  Wang X  Zhang TL  Wang K 《Life sciences》2007,81(10):832-840
Icariin, a principal flavonoid glycoside in Herba Epimedii, is hypothesized to possess beneficial effects on bone mass. Icariin is metabolized to icariside II and then to icaritin in vivo. In the present study, we investigated the in vitro effects of icariin, icariside II and icaritin on both osteoblasts and osteoclasts. After treatment with these compounds at concentrations 10(-5)-10(-8) mol/l, osteoblasts were examined for proliferation, alkaline phosphatase activity, osteocalcin secretion and matrix mineralization, as well as expression levels of bone-related proteins. The formation of osteoclasts was assessed by counting the number of multinucleated TRAP-positive cells. The activity of isolated rat osteoclasts was evaluated by measuring pit area, actin rings and superoxide generation. Icariside II and icaritin increased the mRNA expression of ALP, OC, COL-1 and OPG, but suppressed that of RANKL. In addition, these compounds reduced the number of multinucleated TRAP-positive cells and the osteoclastic resorption area. Also decreases were observed in superoxide generation and actin ring formation that are required for osteoclast survival and bone resorption activity. These findings suggest that icaritin, which was more potent than icariin and icariside II, enhanced the differentiation and proliferation of osteoblasts, and facilitated matrix calcification; meanwhile it inhibited osteoclastic differentiation in both osteoblast-preosteoclast coculture and osteoclast progenitor cell culture, and reduced the motility and bone resorption activity of isolated osteoclasts.  相似文献   

7.
Type I collagen, the major organic component of bone matrix, undergoes a series of post-translational modifications that occur with aging, such as the non-enzymatic glycation. This spontaneous reaction leads to the formation of advanced glycation end products (AGEs), which accumulate in bone tissue and affect its structural and mechanical properties. We have investigated the role of matrix AGEs on bone resorption mediated by mature osteoclasts and the effects of exogenous AGEs on osteoclastogenesis. Using in vitro resorption assays performed on control- and AGE-modified bone and ivory slices, we showed that the resorption process was markedly inhibited when mature osteoclasts were seeded on slices containing matrix pentosidine, a well characterized AGE. More specifically, the total area resorbed per slice, and the area degraded per resorption lacuna created by osteoclasts, were significantly decreased in AGE-containing slices. This inhibition of bone resorption was confirmed by a marked reduction of the release of type I collagen fragments generated by the collagenolytic enzymes secreted by osteoclasts in the culture medium of AGE-modified mineralized matrices. This effect is likely to result from decreased solubility of collagen molecules in the presence of AGEs, as documented by the reduction of pepsin-mediated digestion of AGE-containing collagen. We found that AGE-modified BSA totally inhibited osteoclastogenesis in vitro, most likely by impairing the commitment of osteoclast progenitors into pre-osteoclastic cells. Although the mechanisms remain unknown, AGEs might interfere with osteoclastic differentiation and activity through their interaction with specific cell-surface receptors, because we showed that both osteoclast progenitors and mature osteoclasts expressed different AGEs receptors, including receptor for AGEs (RAGEs). These results suggest that AGEs decreased osteoclast-induced bone resorption, by altering not only the structural integrity of bone matrix proteins but also the osteoclastic differentiation process. We suggest that AGEs may play a role in the alterations of bone remodeling associated with aging and diabetes.  相似文献   

8.
Matrix metalloproteinases (MMPs) are key mediators in extra-cellular matrix remodelling and implicated primarily in bone growth, and particularly in osteoclastic bone resorption. We hypothesise that MMPs have a role in the increased bone remodelling resulting from oestrogen deficiency. Transgenic (TG) mice overexpressing TIMP-1 in their osteoblastic cells and their wild-type (WT) littermates were ovariectomised. One month after surgery, bone mineral density (BMD) and bone microarchitecture were assessed. Primary cells from WT and TG mice were used to determine how TIMP-1 affects osteoclast and osteoblastic cells. The reduction of BMD induced by ovariectomy in WT mice was not observed in the transgenic mice. The transgene overexpression also dampened the post-ovariectomy increase in bone resorption in contrast to the WT mice. In vivo, osteoclastic surfaces and D-pyridinoline were not increased in TG mice, and ex vivo, the differentiation of osteoclasts from TG bone marrow precursor cells were unaffected by in vivo oestrogen deficiency or treatment. We showed also that TIMP-1 overexpression reduces and delays the osteoblastic proliferation and differentiation respectively, and reduced the generation of the active form of TGFbeta1 in the supernatant of TG osteoblasts. Our findings support the hypothesis that in vivo inhibition of osteoblastic MMPs prevented the bone loss induced by oestrogen deficiency, with a significant decrease in bone resorption. This effect was presumably resulting from (1) a direct inhibition of osteoclastic resorption activity by the TIMP-1 and (2) the modification in the local activation of extra-cellular signalling factors such as TGFbeta1 and the OPG/RANKL ratio.  相似文献   

9.
Osteogenic cells mediate PTH-stimulated osteoclastic bone resorption by a yet unidentified mechanism. We show that primairy rat osteoblast-like cells and the clonal osteogenic sarcoma cell line UMR-106 produce interleukin-6 (IL-6) and that bPTH(1-84) and synthetic hPLP(1-34) stimulate this production dose-dependently. With both peptides a close relation between IL-6 and cyclic-AMP production was found, though for PTH concentrations higher than 2.10(-8) M a clear dissociation was observed. Significant IL-6 activity was also detected in media of cultures of 17-day-old fetal mouse radii and metacarpals which was clearly stimulated by PTH. The source of IL-6 in these bone explants seems to be the osteogenic (cartilage) cells. Treatment of bone explants with IL-6 induced osteoclastic resorption which, however, depended on the bone resorption system used. This bone resorbing action of IL-6 is exerted probably through an effect on the formation of osteoclasts (osteoclastogenesis) rather than on the activation of already existing mature osteoclasts. We suggest that IL-6 produced by osteogenic cells may be a mediator in PTH-stimulated osteoclastic bone resorption.  相似文献   

10.
There is strong evidence that matrix metalloproteinases (MMPs) play a crucial role during osteogenesis and bone remodelling. Their synthesis by osteoblasts has been demonstrated during osteoid degradation prior to resorption of mineralised matrix by osteoclasts and their activities are regulated by tissue inhibitors of metalloproteinases (TIMPs). For this study we developed and utilised specific polyclonal antibodies to assess the presence of collagenase (MMP13), stromelysin 1 (MMP3), gelatinase A (MMP2), gelatinase B (MMP9) and TIMP-2 in both freshly isolated neonatal mouse calvariae and tissues cultured with and without bone-resorbing agents. Monensin was added towards the end of the culture period in order to promote intracellular accumulation of proteins and facilitate antigen detection. In addition, bone sections were stained for the osteoclast marker, tartrate-resistant acid phosphatase (TRAP). In uncultured tissues the bone surfaces had isolated foci of collagenase staining, and cartilage matrix stained for gelatinase B (MMP9) and TIMP-2. Calvariae cultured for as little as 3 h with monensin revealed intracellular staining for MMPs and TIMP-2 in mesenchymal tissues, as well as in cells lining the bone plates. The addition of cytokines to stimulate bone resorption resulted in pronounced TRAP activity along bone surfaces, indicating active resorption. There was a marked upregulation of enzyme synthesis, with matrix staining for collagenase and gelatinase B observed in regions of eroded bone. Increased staining for TIMP-2 was also observed in association with increased synthesis of MMPs. The new antibodies to murine MMPs should prove valuable in future studies of matrix degradation.  相似文献   

11.
In order to elucidate the role of parathyroid hormone-related peptide (PTHrP) in tooth development, we treated tooth germ explants of mouse molars with antisense phosphorothioate-oligodeoxynucleotide (ODN) against PTHrP. Antisense ODN-treatment of the explants resulted in the invasion of the tooth germs by bone. The number of tartrate-resistant acid phosphatase (TRAP)-positive cells around the tooth germs in antisense ODN-treated explants was much lower than that of the control explants. Electron microscopic examination suggested that the antisense ODN-treatment inhibited differentiation of osteoclasts. Treatment of the explants with bisphosphonate or vitamin K2, inhibitors of the differentiation of osteoclasts, induced the invasion by bone into the tooth germs as observed in the antisense ODN-treated explants. The results obtained suggest that PTHrP is involved in the mechanism protecting tooth germs from bone invasion by promoting the differentiation of osteoclasts around them.  相似文献   

12.
The degradation of silk protein films by human mesenchymal stem cells (hMSCs), osteoblasts and osteoclasts, cells involved in osteogenic functions in normal and diseased bone, was assessed in vitro. The involvement of specific matrix metalloproteinases (MMPs) and integrin signaling in the degradation process was determined. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to quantitatively compare degradation by the different cell types using surface patterned silk films. Osteoblasts and osteoclasts demonstrated significant degradation of the silk films in vitro in comparison to the hMSCs and the film controls without cells. The osteoclasts degraded the silk films the most and also generated the highest level of MMPs 1 and 2. The osteoblasts upregulated integrins α5 and β1, while the osteoclasts upregulated integrins α2 and β1. There was significant contrast in responses on the silk matrices between osteogenic cells versus undifferentiated hMSCs to illustrate in vitro the role of cell type on matrix remodeling. These are important issues in matching biomaterial matrix features and studies in vitro to remodeling in vivo, in both normal and disease tissue systems. Cell populations and niche factors impact tissue regeneration, wound healing, physiological state, and the ability to better understand the role of different cell types is critical to overall regenerative outcomes.  相似文献   

13.
We compared the effects of the tyrosine kinase inhibitor genistein, a naturally occurring isoflavone, to those of tyrphostin A25, tyrphostin A47, and herbimycin on avian osteoclasts in vitro. Inactive analogs daidzein and tyrphostin A1 were used to control for nonspecific effects. None of the tyrosine kinase inhibitors inhibited bone attachment. However, bone resorption was inhibited by genistein and herbimycin with ID50s of 3 μM and 0.1 μM, respectively; tyrphostins and daidzein were inactive at concentrations below 30 μM, where nonspecific effects were noted. Genistein and herbimycin thus inhibit osteoclastic activity via a mechanism independent of cellular attachment, and at doses approximating those inhibiting tyrosine kinase autophosphorylation in vitro; the tyrphostins were inactive at meaningful doses. Because tyrosine kinase inhibitors vary widely in activity spectrum, effects of genistein on cellular metabolic processes were compared to herbimycin. Unlike previously reported osteoclast metabolic inhibitors which achieve a measure of selectivity by concentrating on bone, neither genistein nor herbimycin bound significantly to bone. Osteoclastic protein synthesis, measured as incorporation of 3H-leucine, was significantly inhibited at 10 μM genistein, a concentration greater than that inhibiting bone degradation, while herbimycin reduced protein synthesis at 10 nM. These data suggested that genistein may reduce osteoclastic activity at pharmacologically attainable levels, and that toxic potential was lower than that of herbimycin. To test this hypothesis in a mammalian system, bone mass was measured in 200 g ovariectomized rats treated with 44 μmol/day genistein, relative to untreated controls. During 30 d of treatment, weights of treated and control group animals were indistinguishable, indicating no toxicity, but femoral weight in the treated group was 12% greater than controls (P < 0.05). Our data indicate that the isoflavone inhibitor genistein suppresses osteoclastic activity in vitro and in vivo at concentrations consistent with its ID50s on tyrosine kinases, with a low potential for toxicity. © 1996 Wiley-Liss, Inc.  相似文献   

14.
Articular cartilage undergoes matrix degradation and loss of mechanical properties when stimulated with proinflammatory cytokines such as interleukin-1 (IL-1). Aggrecanases and matrix metalloproteinases (MMPs) are thought to be principal downstream effectors of cytokine-induced matrix catabolism, and aggrecanase- or MMP-selective inhibitors reduce or block matrix destruction in several model systems. The objective of this study was to use metalloproteinase inhibitors to perturb IL-1-induced matrix catabolism in bovine cartilage explants and examine their effects on changes in tissue compression and shear properties. Explanted tissue was stimulated with IL-1 for up to 24 days in the absence or presence of inhibitors that were aggrecanase-selective, MMP-selective, or non-selective. Analysis of conditioned media and explant digests revealed that aggrecanase-mediated aggrecanolysis was delayed to varying extents with all inhibitor treatments, but that aggrecan release persisted. Collagen degradation was abrogated by MMP- and non-selective inhibitors and reduced by the aggrecanase inhibitor. The inhibitors delayed but did not reduce loss of the equilibrium compression modulus, whereas the losses of dynamic compression and shear moduli were delayed and reduced. The data suggest that non-metalloproteinase mechanisms participate in IL-1-induced matrix degradation and loss of tissue material properties.  相似文献   

15.
This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ~2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expression in transgenic osteoblasts was not different. At 4, 8, and 15.3 week-old, transgenic mice showed significant bone loss determined by pQCT and confirmed by μ-CT. In vitro, transgenic osteoclasts were twice as large, had twice as much TRAP activity, resorbed twice as much bone matrix, and expressed twice as much osteoclastic genes (MMP9, calciton receptor, and ADAM12), as WT osteoclasts. The siRNA-mediated suppression of OA expression in RAW264.7-derived osteoclasts reduced cell size and osteoclastic gene expression. Bone histomorphometry revealed that transgenic mice had more osteoclasts and osteoclast surface. Plasma c-telopeptide (a resorption biomarker) measurements confirmed an increase in bone resorption in transgenic mice in vivo. In contrast, histomorphometric bone formation parameters and plasma levels of bone formation biomarkers (osteocalcin and pro-collagen type I N-terminal peptide) were not different between transgenic mice and WT littermates, indicating the lack of bone formation effects. In conclusion, this study provides compelling in vivo evidence that osteoclast-derived OA is a novel stimulator of osteoclast activity and bone resorption.  相似文献   

16.
Matrix protein effects on the differentiated activity of osteoclasts were examined in order to understand the functional significance of bone protein interactions with osteoclasts. Bone acidic glycoprotein 75 (BAG 75) from rat calvariae inhibited the resorption of bone by isolated rat osteoclasts with IC50 = 1 nM compared to IC50 = 10 nM for chicken osteoclasts. By contrast, other phosphoproteins similarly isolated from bone were less effective in inhibiting resorption with IC50 = 100 nM osteopontin and IC50 greater than 100 nM bone sialoprotein. Likewise, RGD-containing matrix proteins vitronectin, thrombospondin, and fibronectin all displayed IC50 greater than or equal to 100 nM. Mechanistically, 10 nM BAG 75 marginally slowed, but did not block, the association of bone particles with chicken osteoclasts compared with osteopontin or control media. Pretreatment of osteoclasts with 50 nM BAG 75 had no effect on subsequent bone resorption; however, pretreatment of bone with BAG 75 before incubation with osteoclasts reduced the extent of resorption by 55%. These data suggest that a BAG 75/bone surface complex, rather than BAG 75 alone, represents the inhibitory form. Consistent with this hypothesis, direct binding studies provided no evidence of specific, high-affinity receptors on osteoclasts for BAG 75, nor was an excess of BAG 75 (100 nM) able to compete with 0.3 nM sechistatin for osteoclastic avB3-like receptors. However, BAG 75 displayed cooperative binding to tissue fragments and bone particles at concentrations greater than 10 nM, suggesting that BAG 75 self-associates into higher-order species on bone surfaces. Electron microscopy confirmed the time-dependent polymerization of BAG 75 into interconnecting filaments. These data suggest a novel, inhibitory activity for surface-bound BAG 75 on bone resorption that does not appear to involve the osteoclastic avB3-like integrin.  相似文献   

17.
We report the antihypercalcemic and antimetastatic effects of CLIK-148 in vivo, which is a specific inhibitor of cathepsin L. The decalcification during bone absorption is followed by the degradation of type-1 collagen by osteoclastic cathepsins. Tumor-bearing osteoclasts or TNF-alpha-activated osteoclasts secrete large amounts of cysteine proteases, especially procathepsin L, which powerfully degrade type-1 collagen leading to tumor-associated bone absorption and release of bone calcium. The bone pit formations in vitro, which are caused by osteoclasts derived from human bone marrow cells activated by RANKL and M-CSF and also by mice osteoclasts activated by TNF-alpha, are significantly prevented by CLIK-148 treatment. We evaluated the in vivo inhibitory effect of malignant hypercalcemia induced by LJC-1 human mandibular cancer inoculation by CLIK-148 treatment, and the CLIK-148 treatment significantly protected against the tumor-induced hypercalcemia. On the protection of bone metastasis of colon 26 PMF-15 implanted to mouse calvaria, CLIK-148 treatment significantly inhibited calvaria bone absorption (direct metastasis). The CLIK-148 treatment also reduced distant bone metastasis to the femur and tibia of melanoma A375 tumors implanted into the left ventricle of the heart.  相似文献   

18.
Glutamatergic intercellular communication is involved in many aspects of metabolic homeostasis in normal bone. In bone metastasis, the balance between bone formation and degradation is disrupted. Although the responsible mechanisms are not clear, we have previously identified that cancer cell lines used in bone tumour models secrete glutamate, suggesting that tumour-derived glutamate may disrupt sensitive signalling systems in bone. This study examines the role of glutamate in mature osteoclastic bone resorption, osteoblast differentiation, and bone nodule formation. Glutamate was found to have no effect on the survival or activity of mature osteoclasts, although glutamate transporter inhibition and receptor blockade increased the number of bone resorption pits. Furthermore, transporter inhibition increased the area of resorbed bone while significantly decreasing the number of osteoclasts. Alkaline phosphatase activity and extracellular matrix mineralization were used as measurements of osteoblast differentiation. Glutamate significantly increased osteoblast differentiation and mineralization, but transport inhibitors had no effect. These studies support earlier findings suggesting that glutamate may be more important for osteoclastogenesis than for osteoclast proliferation or functions. Since glutamate is capable of changing the differentiation and activities of both osteoclast and osteoblast cell types in bone, it is reasonable to postulate that tumour-derived glutamate may impact bone homeostasis in bone metastasis.  相似文献   

19.
Effect of 24,25-dihydroxyvitamin D3 in osteoclasts.   总被引:1,自引:0,他引:1  
Previous results demonstrated that the administration of pharmacological doses of 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) to animals reduces bone resorption and increases bone volume with a decrease in osteoclast number. In order to clarify whether 24,25(OH)2D3 has an effect to inhibit osteoclastic bone resorption, the effect of 24,25(OH)2D3 on the formation and function of osteoclastic cells was examined in vitro. Treatment of hemopoietic blast cells, which are progenitors of osteoclasts, with parathyroid hormone (PTH) or 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) stimulated the formation of osteoclast-like multinucleated cells in a dose-dependent manner. Although 24,25(OH)2D3 in itself had little effect on osteoclast-like multinucleated cells formation, it inhibited the stimulatory effect of PTH on the formation of osteoclastic cells. In addition, 24,25(OH)2D3 also inhibited the stimulation of resorption pit formation by osteoclasts under stimulation with PTH. In contrast, 1,25(OH)2D3 stimulated the formation and function of osteoclastic cells even at low concentrations, and the effect was additive to PTH. These results could not be explained by either an agonistic or antagonistic effect of 24,25(OH)2D3 on 1,25(OH)2D3, and are consistent with the assumption that 24,25(OH)2D3 has a unique inhibitory effect on the formation and function of osteoclasts. Because 24,25(OH)2D3 is shown to stimulate the degradation of 1,25(OH)2D3 and because the formation of 24,25(OH)2D3 is stimulated by 1,25(OH)2D3 not only in the kidney but also in many of its target tissues, including bone, the inhibitory effect of 24,25(OH)2D3 on osteoclastic bone resorption may play a role in the local modulation of the actions of osteotropic hormones in bone.  相似文献   

20.
Here, we aim at exploring the effect of CST5 on bone resorption and activation of osteoclasts in osteoporosis (OP) rats through the NF‐κB pathway. Microarray analysis was used to screen the OP‐related differentially expressed genes. Osteoporosis was induced in rats by intragastric retinoic acid administration. The serum levels of tartrate‐resistant acid phosphatase (TRAP), bone alkaline phosphatase (BALP) and osteocalcin (OC) and the expression of CD61 on the surface of osteoclasts were examined. The number of osteoclasts and the number and area of resorption pits were detected. Besides, the pathological changes and bone mineral density in bone tissues of rats were assessed. Also, the relationship between CST5 and the NF‐κB pathway was identified through determining the expression of CST5, RANKL, RANK, OPG, p65 and IKB. Poorly expressed CST5 was indicated to affect the OP. CST5 elevation and inhibition of the NF‐κB pathway decreased serum levels of TRAP, BALP and OC and expression of CD61 in vivo and in vitro. In OP rats, CST5 overexpression increased trabecular bones and bone mineral density of bone tissues, but decreased trabecular separation, fat within the bone marrow cavities and the number of osteoclasts through inhibiting the NF‐κB pathway. In vivo experiments showed that CST5 elevation inhibited growth in number and area of osteoclastic resorption pits and restrained osteoclastic bone absorption by inhibiting the NF‐κB pathway. In summary, overexpression of CST5 suppresses the activation and bone resorption of osteoclasts by inhibiting the activation of the NF‐κB pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号