首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some features of the proliferative cells at the bottom of the ileal crypts in BDF1 mice have been studied in relation to the distribution of Paneth cells (PC) in an attempt to clarify the nature and function of these crypt base columnar cells (BCC) and to elucidate some aspects of the role of the microenvironment created by the PC. Longitudinal sections of crypts have shown that the ratio of PC to the BCC, which are scattered amongst the PC, is 2.7:1 in sections or approximately 29 PC and 9 BCC per whole crypt, i.e., a ratio of 3.2:1. The labelling index of BCC is about 35%, which is comparable to that of mid-crypt columnar cells. Although the BCC do become labeled, it is concluded that they cannot create vertical pairs or runs of several adjacent BCC since this would seriously disturb the distribution of Paneth cells. Only in dividing crypts are such runs (consisting of 3 to 5 cells) observed. The ability of BCC to synthesize DNA is not dependent on their position in the Paneth cell zone. In 95% of the crypts, the highest Paneth cell is below the 7th cell position from the bottom of the crypt, and the positions of the highest PC on either side of a given crypt are similar. The secreted granules or the cytoplasm of PC specifically bind pokeweed lectin, and this can be used for identification. Tracer doses of 3HTdR (37 kBq/gm body weight) result in the histological death of some BCC, and these damaged cells are evenly distributed throughout the Paneth cell zone. These tracer doses are somewhat selectively incorporated into BCC, i.e., the BCC have a higher grain count in autoradiographs, probably because they possess more thymidine kinase enzyme activity. This ability is very sensitive to the withdrawal of food, because 24 hr of fasting abolished the observed gradient in the intensity of labelling, which is very well correlated with the distribution of BCC. Regeneration of the crypts following cytotoxic exposure to Ara-C is initiated at the base of the crypt and hence may involve the BCC with possible help from the Paneth cells. The latter are insensitive to cytotoxic (S phase specific) agents and may help in the regeneration by preserving the architecture of the base of the crypt.  相似文献   

2.
Abstract. A new cell kinetic approach is presented from which the duration of the S and G2+ M phases can be estimated. the technique involves an analysis of the spatial distribution of labelled cells in sections or sheets of epithelium (i.e. an analysis of clustered labelled cells). the technique is largely independent of the absolute number of labelled cells and hence is not influenced by factors which affect the absolute number of labelled cells. the technique is described and experimental data from dorsal murine skin are presented. the technique has also been simulated mathematically so that the phase durations and their variances could be estimated. the advantages of the technique are: (1) it is technically simple; (2) it provides at least two independent estimates of the phase durations; (3) unlabelled cells need not be counted (compare with LI or PLM analysis); (4) it is independent of variations in the absolute yield of labelled cells, and (5) it is applicable if the LI is low and the S phase is short (where the PLM technique tends to fail).  相似文献   

3.
A cell-cycle analysis based on a fully automated TV-image scanning system is proposed to replace the laborious PLM method. To compare the efficiency of the two procedures, cell-cycle parameters were assessed in Ehrlich (diploid and hyperdiploid), L-1210, and JB-1 mouse ascites tumours and in rat jejunal crypts. The percentages of labelled mitoses (PLM) were counted visually on Feulgen-stained autoradiographs obtained at various times after a single 3H-thymidine pulse. The fraction of labelled cells (P) and the DNA ratio of labelled and unlabelled cells were measured by TV-image analysis in the same slides and plotted against time. Within practical limits, TV-image analysis using the P-curve gives the same results as the PLM method. Using the P-curve has the important advantage that its first part, beginning at the time of 3H-thymidine injection and ending at the first maximum, furnishes more information about the cell cycle than the corresponding part of the PLM curve. It can be used to compute tG2M tS and the ratio of the growth faction index to the cell-cycle time (IP/tC) whereas the first part of the PLM-curve reveals only the length of the S-phase (tS). The IP/tC ratio is a readily accessible measure of growth and increases when the cells divide more frequently. Cell death rates may be neglected since the ratio is determined within less than the duration of one cell cycle. Moreover, the data from the first part of the P curve indicate whether there is a large non-growth fraction. If the non-growth fraction is small, i.e. if IP approximately 1, the P curve need only be measured until the first maximum is reached so that fewer samples and animals are required. If the non-growth fraction is large or unknown, the cell-cycle parameters are calculated by reference to the position and size not only of the first minimum and the first maximum, but also of the second minimum of the P curve.  相似文献   

4.
A new cell kinetic approach is presented from which the duration of the S and G2 + M phases can be estimated. The technique involves an analysis of the spatial distribution of labelled cells in sections or sheets of epithelium (i.e. an analysis of clustered labelled cells). The technique is largely independent of the absolute number of labelled cells and hence is not influenced by factors which affect the absolute number of labelled cells. The technique is described and experimental data from dorsal murine skin are presented. The technique has also been simulated mathematically so that the phase durations and their variances could be estimated. The advantages of the technique are: it is technically simple; it provides at least two independent estimates of the phase durations; unlabelled cells need not be counted (compare with LI or PLM analysis); it is independent of variations in the absolute yield of labelled cells, and it is applicable if the LI is low and the S phase is short (where the PLM technique tends to fail).  相似文献   

5.
Neonatal administration of guanethidine-sulfate results in an alteration of the cell proliferative pattern of the small intestinal epithelium of the young adult rat. Sympathectomy with guanethidine has previously been shown to depress mitotic, labelling, and total cellular migration indices while increasing the generation cycle time (Tc) of small intestinal crypt cells as measured by a stathmokinetic method. The present study showed that the G1, S and G2 phases of the crypt cell cycle are altered by sympathectomy, G1 accounting for most of the increase in Tc. In addition, the percentage of [3H]-thymidine labelled crypt cells is reduced and the duration of crypt cell transit is lengthened by guanethidine-induced sympathectomy.  相似文献   

6.
The left flank of hairless mouse skin was irradiated with a minimal erythema dose of ultraviolet B (UVB) light at 297 nm (25 mJcm-2), while the right flank served as untreated control. The alterations in epidermal growth kinetics induced by this UVB dose were studied with the percentage of labelled mitoses (PLM) technique during the period of increased proliferation. Thirty hours after irradiation, when a large cohort of cells appears in S phase, each animal was injected intra-peritoneally with 50 microCi tritiated thymidine [( 3H]-TdR). The number of labelled basal and suprabasal cells, as well as their localization in epidermis were registered in histological sections at short intervals up to 48 h after the [3H]-TdR pulse. Labelled mitoses were also counted in the same specimens. The results showed a four-fold increase of the high initial number of labelled cells in UVB-exposed epidermis within 18 h of the pulse injection, and a six-fold increase after 36 h. In control epidermis, where the starting value of the labelling index was much lower, there was only a three to four-fold increase in the number of labelled cells during the period studied. The PLM and the labelling index data were consistent with an average cell cycle time of approximately 10-12 h for UVB-exposed cells, in contrast to about 30 h for the fastest cycling population in control epidermis. The PLM curve also indicated a prolonged S phase duration in UVB-exposed epidermis compared with controls. In addition, labelled cells were seen in the suprabasal layer as early as 6 h after the [3H]-TdR injection and within 36 h labelled cells had reached the outermost layer of nucleated cells, indicating a reduced transit time through epidermis. The present study shows that a minimal erythema dose of UVB light at 297 nm induced a period of increased transit time through the S phase, combined with rapid cell proliferation, leading to an overall shortening of the epidermal cell cycle time. The cohort of cells labelled with [3H]-TdR 30 h after irradiation seemed to proceed as a wave of partially synchronized cells through the cell cycle for more than two rounds, which is comparable with the cell kinetic perturbations observed in regenerating mouse epidermis.  相似文献   

7.
Abstract. The left flank of hairless mouse skin was irradiated with a minimal erythema dose of ultraviolet B (UVB) light at 297 nm (25 mJcm-2), while the right flank served as untreated control. The alterations in epidermal growth kinetics induced by this UVB dose were studied with the percentage of labelled mitoses (PLM) technique during the period of increased proliferation. Thirty hours after irradiation, when a large cohort of cells appears in S phase, each animal was injected intra-peritoneally with 50 /iCi tritiated thymidine ([3H]-TdR). The number of labelled basal and suprabasal cells, as well as their localization in epidermis were registered in histological sections at short intervals up to 48 h after the [3H]-TdR pulse. Labelled mitoses were also counted in the same specimens. The results showed a four-fold increase of the high initial number of labelled cells in UVB-exposed epidermis within 18 h of the pulse injection, and a sixfold increase after 36 h. In control epidermis, where the starting value of the labelling index was much lower, there was only a three to four-fold increase in the number of labelled cells during the period studied. The PLM and the labelling index data were consistent with an average cell cycle time of approximately 10–12 h for UVB-exposed cells, in contrast to about 30 h for the fastest cycling population in control epidermis. The PLM curve also indicated a prolonged S phase duration in UVB-exposed epidermis compared with controls. In addition, labelled cells were seen in the suprabasal layer as early as 6 h after the [3H]-TdR injection and within 36 h labelled cells had reached the outermost layer of nucleated cells, indicating a reduced transit time through epidermis. The present study shows that a minimal erythema dose of UVB light at 297 nm induced a period of increased transit time through the S phase, combined with rapid cell proliferation, leading to an overall shortening of the epidermal cell cycle time. The cohort of cells labelled with [3H]-TdR 30 h after irradiation seemed to proceed as a wave of partially synchronized cells through the cell cycle for more than two rounds, which is comparable with the cell kinetic perturbations observed in regenerating mouse epidermis.  相似文献   

8.
Abstract. A statistical analysis of the distribution of [3H]TdR-labelled cells in longitudinal and transverse sections of crypts from the ileum of the mouse, indicated that there was a strong tendency for labelled or unlabelled cells to be associated in short vertical runs and lateral clumps, suggesting the presence of clusters of labelled cells on the sides of the crypts. A model is discussed for the cellular spatial organization of the crypt that proposes a vertical alignment of the cells within branches of the proliferative cell lineage. The model would predict vertical alignment of partially synchronized cells as well as some lateral clumping.
In the present studies mitoses were not observed at higher levels in the crypt than labelled (S phase) cells. This observation would be predicted by the non-random spatial organization suggested by the model.
The model would also make certain predictions concerning cell migration. These are discussed in relation to cell migration studies which include evidence that migration continues in the absence of mitotic activity.  相似文献   

9.
Abstract. Different sets of cell kinetic data obtained over many years from hairless mouse epidermis have been simulated by a mathematical model including circadian variations. Simulating several independent sets of data with the same mathematical model strengthens the validity of the results obtained. The data simulated in this investigation were all obtained with the experimental system in a state of natural synchrony. The data include cell cycle phase distributions measured by DNA flow cytometry of isolated epidermal basal cells, fractions of tritiated thymidine ([3H]TdR) labelled cells within the cell cycle phases measured by cell sorting at intervals after [3H]TdR pulse labelling, bivariate bromodeoxyuridine (BrdUrd)/DNA data from epidermal basal cells isolated at intervals after pulse labelling with BrdUrd, mitotic rate and per cent labelled mitosis (PLM) data from histologic sections. The following main new findings were made from the simulations: the second PLM peak observed at about 35 h after pulse labelling is hardly influenced by circadian variations; the peak is mainly determined by persisting synchrony of a rapidly cycling population with a G1-duration (TG1) of 20 h to 30 h; and there is a highly significant population of slowly cycling G1-cells (G). However, no significant circadian variations were found in the number of these cells.  相似文献   

10.
In a low concentration of calcium (0.1 mM), keratinocytes form a monolayer with about 30% of cells synthesizing involucrin. After addition of calcium to the culture medium to a concentration of 1.2 mM, the monolayer stratifies within 24 h, with a preferential migration of involucrin positive keratinocytes. In the present study, we tried to determine if keratinocytes control the decision to migrate at a distinct cell cycle point. A percentage labelled mitosis (PLM) curve was constructed for keratinocytes grown in low calcium medium and values for the length of the cell cycle (47 h), S phase duration (11 h) and G2+M period (6 h), were obtained. Monolayer cultures at 80% confluence were switched to high calcium concentration at various times (from 0 to 48 h), after pulse labelling with [3H]-thymidine. Based on the PLM data, the behaviour of cells known to be in S, G1 and G2 at the time of the migration stimulus were followed. No significant difference in the percentage of labelled suprabasal cells was found for any point of the cell cycle. For cells submitting to stratification, in S phase involucrin staining showed that about 60% of the [3H]-thymidine labelled cells were also involucrin negative. These results indicate that upward migration of keratinocytes in cultured epithelium can be triggered at all points in the cell cycle with equal probability and is not restricted to those cells that already contained involucrin.  相似文献   

11.
The influence of experimental bypass on the epithelial cell kinetics in the rat descending colon was studied. It was found that the number of cells per crypt was markedly reduced at 6 weeks after bypass. The percentage of labelled crypt cells, 1 h after 3HTdR, and the distribution of labelled cells in the crypt was normal. Also the life span of the epithelial cells was the same in control and bypassed colon. The response of crypt cell proliferation to ischaemia-induced cell loss in the bypassed descending colon was similar to the one previously described for normal descending colon. This indicates that the absence of the normal luminal contents does not result in a different response of colonic crypts to induced cell loss. Furthermore, it was found that the number of cells per crypt and the proliferative activity did not change in the transverse colon after temporary ischaemia of the bypassed descending colon. This indicates that the increase in crypt cell proliferation after ischaemia-induced cell loss is a local response.  相似文献   

12.
Full PLM curves have been obtained for four sites in the mouse. The first peaks have been analysed by computer and the duration of the G2 + M and S phases determined together with their standard deviations. The full curves showed a general similarity for all four sites with no clear second peak. The data are compared with the published data for mouse and human epidermis using the in vivo PLM technique. The timing and shape of the first peak can vary considerably even for one site in mice. Hence, both G2 + M and S can vary in their durations. Cells labelled at one time of day exhibit different kinetic properties to those labelled at another time of day. The duration of G2 + M is shortest in dorsum labelled at 03.00 hours (3 X 2 hr) and longest in tail (up to 7 X 5 hr). The S-phase is shortest in dorsum (6 X 3-7 X 2 hr) and longest in tail or ear (13 X 3-14 X 1 hr). There is also a very large standard deviation in tail and foot. There is little general variability when the psoriatic human data are considered, which is surprising. The general variability amongst the data from experimental mice might also be expected amongst humans which might make comparisons between the cell kinetics of normal and diseased skin difficult.  相似文献   

13.
Cell replacement in the crypt of the murine small intestine has been studied and modelled mathematically under steady-state conditions. A great deal of information is available for this system, e.g. cell cycle times, S phase durations, the rate of daily cell production, the Paneth cell distribution etc. The purpose of the present work was to consider simultaneously as much of these data as possible and to formulate a model based upon the behaviour of individual cells which adequately accounted for them. A simple mathematical representation of the crypt has been developed. This consists of sixteen stem cells per crypt (TC = 16 hr, TS = 9 hr), and four subsequent transit cell divisions (TC = 11 to 12 hr, TS = 8 hr) before maturation. Experimental data considered to test the modelling were LI and data on the number of vertical runs of similarly labelled cells. All data were obtained from the ileum after 25 microCi [3H]TdR given at 09:00 hours. A number of alternative assumptions have been considered and either accepted or rejected. Two alternative model concepts of cell displacement explain the data equally well. One is dependent upon strong local cell generation age determinance while the other could accommodate any weak local cell displacement process in conjunction with an environmental cut-off determinant at the middle of the crypt. Both models provide new interpretations of the data, e.g. certain rates of lateral cell exchange between neighbouring columns (250 to 350 per crypt per day out of a total of 420 cell divisions per day) can be concluded from run data, while LI data provide information about the mechanisms involved in maintaining a position-related age order in the crypt.  相似文献   

14.
Abstract. Cell replacement in the crypt of the murine small intestine has been studied and modelled mathematically under steady-state conditions. A great deal of information is available for this system, e.g. cell cycle times, S phase durations, the rate of daily cell production, the Paneth cell distribution etc. the purpose of the present work was to consider simultaneously as much of these data as possible and to formulate a model based upon the behaviour of individual cells which adequately accounted for them. A simple mathematical representation of the crypt has been developed. This consists of sixteen stem cells per crypt (Tc= 16 hr, Ts= 9 hr), and four subsequent transit cell divisions (Tc= 11 to 12 hr, Ts= 8 hr) before maturation. Experimental data considered to test the modelling were LI and data on the number of vertical runs of similarly labelled cells. All data were obtained from the ileum after 25 μCi [3H]TdR given at 09.00 hours. A number of alternative assumptions have been considered and either accepted or rejected. Two alternative model concepts of cell displacement explain the data equally well. One is dependent upon strong local cell generation age determinance while the other could accommodate any weak local cell displacement process in conjunction with an environmental cut-off determinant at the middle of the crypt. Both models provide new interpretations of the data, e.g. certain rates of lateral cell exchange between neighbouring columns (250 to 350 per crypt per day out of a total of 420 cell divisions per day) can be concluded from run data, while LI data provide information about the mechanisms involved in maintaining a position-related age order in the crypt.  相似文献   

15.
Percentage labelled mitosis (PLM) measurements were initiated at four different times during a 24-hr period and continued for 24 hr in hairless mouse epidermis. Estimates of G2 and S phase durations (mean TG2 and mean TS) were calculated. A significant number of labelled mitoses (10–20%) was seen after 30 min in all four PLM measurements and the estimated mean TG2 varied from 1.4 to 2.5 hr and was in agreement with values from PLM measurements in other epithelial tissues. These mean TG2 values were much shorter than expected from [3H]TdR double labelling experiments and from a multiparameter cell kinetic study in hairless mouse epidermis and did not reflect the circadian variations seen in these studies. the differences in estimates of phase durations can be explained by postulating two G2 cell populations; one with a rapid and another with a slow rate of cell cycle progression. the cells with the higher rate are mainly registered by the PLM method, whereas those with the lower rate largely escape detection by this method. TG2 estimates from PLM measurements in mouse epidermis therefore do not reflect the phase duration of the entire G2 population. It is also concluded that circadian variations in TS can not be accurately registered by the PLM method.  相似文献   

16.
The question was investigated of whether for crypt epithelia of the jejunum of the mouse all cells labelled after a single injection of 3H-TdR subsequently divide or whether cells exist in the crypt which synthesize metabolic DNA and, therefore, do not undergo division after labelling.
A double labelling experiment was performed with a first injection of 3H-TdR followed 1 hr later by an injection of 14C-TdR. Then from double emulsion autoradiographs of isolated squashed crypts the number of 3H-only, 14C-only and double labelled cells and mitoses were counted.
The double labelling produced a narrow, 1 hr wide sub-population of 3H-only labelled cells. This subpopulation of S cells completed its division before labelled cells were lost from the crypts by migration onto the villi. The results showed that this subpopulation of 3H-only cells completely doubled within 3 hr and then remained constant through 6 hr. From this result it was concluded that every cell labelled after a single injection of 3H-TdR divides.
From the same autoradiographs the flow rate through the end of mitosis was measured. From the flow rate and the mitotic index a mitotic duration of 0·5 hr was determined. The agreement of this measured mitotic time with the value calculated from the labelling index, mitotic index and S duration is also strong evidence that every labelled cell divides.
Both experiments show that the intestinal crypt does not contain cells synthesizing metabolic DNA.  相似文献   

17.
Cells of a mutant in vivo subline of the Ehrlich-Lettré mouse ascites tumour (ELAT) were converted to growth in suspension culture. Kinetic analysis revealed the selective character of the conversion process; without a detectable adaptation period, a fraction of about 2 X 10(-5) of the explanted cells continued to grow in vitro. The resulting, mutant Ehrlich-Lettré ascites cell strain was designated HD33 and propagated uninterruptedly from 1974 on. The corresponding in vivo ELAT subline HD33 was derived from the HD33 ascites cell strain by intraperitoneal retransplantation. In HD33 cell suspension cultures, the population doubling time, the average intermitotic interval, as determined by videomonitoring, and the average duration of the cell cycle, as determined from percentage of labelled mitoses (PLM) data, were all measured at 15 hr. Cell loss and quiescent compartments were insignificant. The duration of the G1 phase was effectively zero. Both PLM data and [3H]/[14C] thymidine double-labelling measurements revealed an S-phase duration of between 11 and 12 hr. The G2 phase lasted 3-5 hr. The HD33 strain differs from comparable suspension strains of wild-type Ehrlich ascites cells in the insignificant role of density-dependent inhibition in growth, and the striking prolongation of the S phase which is associated with an excessive, cytoplasmic storage of glycogen by the mutant cells.  相似文献   

18.
Neonatal administration of guanethidine-sulfate results in an alteration of the cell proliferative pattern of the small intestinal epithelium of the young adult rat. Sympathectomy with guanethidine has previously been shown to depress mitotic, labelling, and total cellular migration indices while increasing the generation cycle time (TC) of small intestinal crypt cells as measured by a stathmokinetic method. The present study showed that the G1, S and G2 phases of the crypt cell cycle are altered by sympathectomy, G1 accounting for most of the increase in TC. In addition, the percentage of [3H]-thymidine labelled crypt cells is reduced and the duration of crypt cell transit is lengthened by guanethidine-induced sympathectomy.  相似文献   

19.
The labelled glycopeptides obtained by Pronase digestion of rat intestinal epithelial cell membranes were examined by gel filtration after injection of D-[2-3H]mannose and L-[6-3H]fucose. Three labelled fraction were eluted in the following order from Bio-Gel P-6, Fraction I, which was excluded from the gel, was labelled mostly with [3H]fucose and slightly with [3H]mannose. Fraction II contained "complex" asparagine-linked oligosaccharides since it was labelled with [3H]mannose and [3H]fucose, was stable to mild alkali treatment, and resistant to endo-beta-N-acetyl-glucosaminidase H. Fraction III contained "high-mannose" asparagine-linked oligosaccharides, which were labelled with [3H]mannose, but not with [3H]fucose; these were sensitive to endo-beta-N-acetylglucosaminidase H, and were adsorbed on concanavalin A-Sepharose and subsequently eluted with methyl alpha-D-mannopyranoside. The time course of incorporation of [3H]mannose into these glycopeptides in microsomal fractions showed that high-mannose oligosaccharides were precursors of complex oligosaccharides. The rate of this processing was faster in rapidly dividing crypt cells than in differentiated villus cells. The ratio of radioactively labelled complex oligosaccharides to high-mannose oligosaccharides, 3h after [3H]mannose injection, was greater in crypt than in villus-cell lateral membranes. Luminal membranes of both crypt and villus cells were greatly enriched in labelled complex oligosaccharides compared with the labelling in lateral-basal membranes. These studies show that intestinal epithelial cells are polarized with respect to the structure of the asparagine-linked oligosaccharides on their membrane glycoproteins. During differentiation of these cells quantitative differences in labelled membrane glycopeptides, But no major qualitative change, were observed.  相似文献   

20.
Using the developed method of modelling the curves of the fraction of labelled indexes (FLI) in the small intestine epithelium, a relationship was found between the FLI shape and duration of the S phase and the whole generation cycle for various generations of proliferating crypt cells. On the basis of the comparison between the theoretical and experimental FLI the normal values of the generation cycles along the crypt were specified for various intestinal parts. FLI were shaped along the crypt at various time intervals after irradiation. As a result, the data were obtained on the correlation between the duration of generation cycles and their phases during the postirradiation period and for various cell generations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号